On the Use of Pseudo-Protic Ionic Liquids to Extract Gold(III) from HCl Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Generation of the PPILs
2.2. Gold(III) Extraction by the PPILs
2.2.1. Influence of the Equilibration Time on Gold Extraction
2.2.2. Influence of the Temperature of Gold Extraction
2.2.3. Influence of the PPIL Concentration in the Organic Phase on Gold Extraction
2.2.4. Influence of the Initial Gold(III) Concentration in the Aqueous Phase on the Metal Extraction
2.2.5. Estimation of the (AuCl4−,H+) Interaction Coefficients
2.2.6. Gold Stripping from Metal-Loaded Organic Phases
2.2.7. Precipitation of Zero-Valent Gold from Stripping Solutions
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nie, Y.; Chen, J.; Wang, Q.; Shi, C.; Xing, B.; Jiang, Y.; Wang, S. Calcined high-sulfur coal for highly efficient adsorption of Au(S2O3)23− from a gold thiosulfate leaching solution using an external reduction potential. ACS Sustain. Chem. Eng. 2022, 10, 11782–11790. [Google Scholar] [CrossRef]
- Msumange, D.A.; Yazici, E.Y.; Celep, O.; Deveci, H. A comparison of ion-exchange resins and activated carbon in recovering gold from cyanide leach solutions with low levels of copper. Bull. Miner. Res. Explor. 2022, 168, 35–41. [Google Scholar] [CrossRef]
- Jeon, S.; Bright, S.; Park, I.; Tabelin, C.B.; Ito, M.; Hiroyoshi, N. A simple and efficient recovery technique for gold ions from ammonium thiosulfate medium by galvanic interactions of zero-valent aluminum and activated carbon: A parametric and mechanistic study of cementation. Hydrometallurgy 2022, 208, 105815. [Google Scholar] [CrossRef]
- Nie, Y.; Wang, S.; Wang, Q.; Chen, J.; Jiang, Y. Applying an external reduction potential to reduce the consumption of zinc powder during gold cementation. Miner. Eng. 2023, 191, 107981. [Google Scholar] [CrossRef]
- Msumange, D.A.; Yazici, E.Y.; Celep, O.; Deveci, H.; Kritskii, A.; Karimov, K. Recovery of Au and Ag from the roasted calcine of a copper-rich pyritic refractory gold ore using ion exchange resins. Miner. Eng. 2023, 195, 108017. [Google Scholar] [CrossRef]
- Vallejos-Michea, C.; Barrueto, Y.; Jimenez, Y.P. Life cycle analysis of the ionic liquid leaching process of valuable metals from electronic wastes. J. Clean. Prod. 2022, 348, 131357. [Google Scholar] [CrossRef]
- Zupanc, A.; Install, J.; Jereb, M.; Repo, T. Sustainable and selective modern methods of noble metal recycling. Angew. Chem.-Int. Ed. 2023, 62, e202214453. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Liu, R.; Lv, P.; Xue, W.; Guo, J.; Wei, H.; Wei, H.; Yang, Y. Selective and efficient gold extraction from e-waste by pyrrolidinium-based ionic liquids with various N-ubstituents. ACS Sustain. Chem. Eng. 2023, 11, 638–648. [Google Scholar] [CrossRef]
- Liu, R.; Hao, J.; Wang, Y.; Meng, Y.; Yang, Y. A separation strategy of Au(III), Pd(II) and Pt(IV) based on hydrophobic deep eutectic solvent from hydrochloric acid media. J. Mol. Liq. 2022, 365, 120200. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Liu, R.; Zhang, L.; Xue, W.; Yang, Y. Toward green and efficient recycling of Au(III), Pd(II) and Pt(IV) from acidic medium using UCST-type ionic liquid. Sep. Purif. Technol. 2022, 298, 121620. [Google Scholar] [CrossRef]
- Matsumiya, M.; Kinoshita, R.; Sasaki, Y. Recovery of gold by solvent extraction and direct electrodeposition using phosphonium-based ionic liquids. J. Electrochem. Soc. 2022, 169, 082513. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Chou, S.-L.; Lo, S.-L. Gold recovery from waste printed circuit boards of mobile phones by using microwave pyrolysis and hydrometallurgical methods. Sustain. Environ. Res. 2022, 32, 6. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, L.; Zhang, C.; Wang, J.; Guan, J.; Jian, Z.; Bu, Y. Selective extraction of precious metals in the polar aprotic solvent system: Experiment and simulation. Waste Manag. 2022, 153, 1–12. [Google Scholar] [CrossRef]
- Xu, Q.; Du, X.-H.; Luo, D.; Strømme, M.; Zhang, Q.-F.; Xu, C. Gold recovery from E-waste using freestanding nanopapers of cellulose and ionic covalent organic frameworks. Chem. Eng. J. 2023, 458, 141498. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.; Lin, G.; Zhang, H. Extraction of gold from the leachate of copper anode slime by quaternary ammonium rice husk lignin. Solvent Extr. Ion Exch. 2023, 41, 1–19. [Google Scholar] [CrossRef]
- Hao, F.; Du, J.; Peng, L.; Zhang, M.; Dong, Z.; Shen, Y.; Zhao, L. Selective and effective gold recovery from printed circuit boards and gold slag using amino-acid-functionalized cellulose microspheres. Polymers 2023, 15, 321. [Google Scholar] [CrossRef]
- Lin, X.; Song, M.-H.; Tran, D.T.; Lee, Y.-S.; Yun, Y.-S. Development of polyethylenimine-functionalized cellulose fibers for recovery of Au(0) from Au(III)-containing acidic solutions through an adsorption–reduction–detachment–aggregation mechanism. J. Clean. Prod. 2023, 389, 136019. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, J.-Q.; Zheng, Q.-Q.; Xiao, S.-J.; Zhang, C.-R.; Yi, S.-M.; Liu, X.; Jiang, W.; Tan, Q.-G.; Liang, R.-P.; et al. A 2D mesoporous hydrazone covalent organic framework for selective detection and ultrafast recovery of Au(III) from electronic waste. Chem. Eng. J. 2023, 454, 140212. [Google Scholar] [CrossRef]
- Niu, H.; Yang, H.; Tong, L.; Kamali, A.R. The adsorption characteristics and performance of gold onto elemental carbon extracted from refractory carbonaceous gold concentrate. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130635. [Google Scholar] [CrossRef]
- Xia, J.; Twinney, J.; Marthi, R.; Ghahreman, A. Ultra-efficient and selective recovery of Au(III) using magnetic Fe3S4/Fe7S8. Sep. Purif. Technol. 2023, 306, 122611. [Google Scholar] [CrossRef]
- Melnyk, I.V.; Vaclavikova, M.; Ivanicova, L.; Kanuchova, M.; Seisenbaeva, G.A.; Kessler, V.G. Features of the surface layer structure of the magnetosensitive materials functionalized by silica with thiourea groups and their applying for selective Cu(II) and Au(III) ions removal. Appl. Surf. Sci. 2023, 609, 155253. [Google Scholar] [CrossRef]
- Bożejewicz, D.; Kaczorowska, M.A.; Witt, K. Recent advances in the recovery of precious metals (Au, Ag, Pd) from acidic and WEEE solutions by solvent extraction and polymer inclusion membrane processes–a mini-review. Desalination Water Treat. 2022, 246, 12–24. [Google Scholar] [CrossRef]
- Meseret, M.; Liu, J.-F.; Pang, L. Environmental application, fate, effects, and concerns of ionic liquids: A review. Environ. Sci. Technol. 2015, 49, 12611–12627. [Google Scholar]
- Bystrzanowska, M.; Pena-Pereira, F.; Marcinkowski, L.; Tobiszewski, L. How green are ionic liquids?—A multicriteria decision analysis approach. Ecotoxicol. Environ. Saf. 2019, 174, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Marcionilio, S.M.L.O.; Araújo, D.M.; Nascimento, T.V.; Martínez-Huitle, C.A.; Linares, J.J. Evaluation of the toxicity reduction of an ionic liquid solution electrochemically treated using BDD films with different sp3/sp2 ratios. Electrochem. Commun. 2020, 118, 106792. [Google Scholar] [CrossRef]
- Castillo-Ramírez, C.; Janssen, C.H.C. Pseudo-protic ionic liquids for the extraction of metals relevant for urban mining. Ind. Eng. Chem. Res. 2023, 62, 627–636. [Google Scholar] [CrossRef]
- Kobrak, M.N.; Yager, K.G. X-Ray scattering and physicochemical studies of trialkylamine/carboxylic acid mixtures: Nanoscale structure in pseudoprotic ionic liquids and related solutions. Phys. Chem. Chem. Phys. 2018, 20, 18639–18646. [Google Scholar] [CrossRef]
- Patsos, N.; Lewis, K.; Picchioni, F.; Kobrak, M.N. Extraction of acids and bases from aqueous phase to a pseudoprotic ionic liquid. Molecules. 2019, 24, 894. [Google Scholar] [CrossRef] [Green Version]
- Alguacil, F.J. Mechanistic investigation of facilitated transport of gold(III) from HCl media using ionic liquid Cyphos IL102 as carrier across a supported liquid membrane. Gold Bull. 2019, 52, 145–151. [Google Scholar] [CrossRef]
- Ciavatta, L. The specific interaction theory in evaluating ionic equilibria. ChemSusChem 1980, 70, 551–567. [Google Scholar]
- Ciavatta, L. The specific interaction theory in equilibrium analysis. Some empirical rules for estimation interaction coefficients of metal-ion complexes. Ann. Di Chim. 1990, 80, 255–263. [Google Scholar]
- Bretti, C.; Foti, C.; Sammartano, S. A new approach in the use of SIT in determining the dependence on ionic strength of activity coefficients. Application to some chloride salt of interest in the speciation of natural fluids. Chem. Speciat. Bioavailab. 2004, 16, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Barbosa-Filho, O.; Monhemius, A.J. Leaching of gold in thiocyanate solutions. Part 1: Chemistry and thermodynamics. Trans. IMM 1994, 103, C105–C110. [Google Scholar]
- Balaji, R.; Ilangeswaran, D. Choline chloride–Urea deep eutectic solvent an efficient media for the preparation of metal nanoparticles. J. Indian Chem. Soc. 2022, 99, 100446. [Google Scholar] [CrossRef]
- Proniewicz, E. Metallic nanoparticles as effective sensors of bio-molecules. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2023, 288, 122207. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zou, Y.; Jiang, J. Synthesis of chorogi-like Au nanoparticles with chiral plasmonic response and enantioselective electrocatalytic activity. Mater. Lett. 2023, 331, 133432. [Google Scholar] [CrossRef]
- Ding, Y.; Huang, P.-J.J.; Zandieh, M.; Wang, J.; Liu, J. Gold nanoparticles synthesized using various reducing agents and the effect of aging for DNA sensing. Langmuir 2023, 39, 256–264. [Google Scholar] [CrossRef]
- Wei, D.; Li, M.; Wang, Y.; Zhu, N.; Hu, X.; Zhao, B.; Zhang, Z.; Yin, D. Encapsulating gold nanoclusters into metal–organic frameworks to boost luminescence for sensitive detection of copper ions and organophosphorus pesticides. J. Hazard. Mater. 2023, 441, 129890. [Google Scholar] [CrossRef]
- Oestreicher, V.; García, C.S.; Soler-Illia, G.J.A.A.; Angelomé, P.C. Gold recycling at laboratory scale: From nanowaste to nanospheres. ChemSusChem 2019, 12, 4882–4888. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Adeva, P.; Alonso, M. Processing of residual gold (III) solutions via ion exchange. Gold Bull. 2005, 38, 9–13. [Google Scholar] [CrossRef] [Green Version]
Precursor | Concentration, M | DHCl | PPIL Formed | Acronysm | log Kext |
---|---|---|---|---|---|
Primene 81R | 0.11 | 0.11 | RNH2H+Cl− | priNH2H+Cl− | 2.99 a |
0.21 | 0.24 | ||||
0.41 | 0.65 | ||||
0.82 | 3.6 | ||||
Amberlite LA2 | 0.06 | 0.063 | R´R´´NHH+Cl− | secNHH+Cl− | 2.90 b |
0.12 | 0.13 | ||||
0.24 | 0.31 | ||||
0.48 | 0.89 | ||||
Hostarex A327 | 0.06 | 0.056 | R3NH+Cl− | terNH+Cl− | 2.65 c |
0.12 | 0.12 | ||||
0.21 | 0.26 | ||||
0.42 | 0.72 |
PPIL, M | 1000/T, K−1 | log DAu | ΔH°, kJ/mol | ΔS°, J/mol K | ΔG°, kJ/mol |
---|---|---|---|---|---|
a 2.1 ××10−2 | 3.4 | a 1.6 | −10 | −31 | −1 |
3.3 | 1.5 | ||||
3.2 | 1.2 | ||||
3.1 | 1.1 | ||||
3.0 | 1.0 | ||||
b 2.3 × 10−4 | 3.4 | b 4.6 | −21 | −59 | −4 |
3.3 | 3.6 | ||||
3.2 | 2.6 | ||||
3.1 | 2.0 | ||||
3.0 | 1.7 | ||||
c 5.3 × 10−5 | 3.4 | c 0.28 | −26 | −82 | −2 |
3.3 | 0.15 | ||||
3.2 | 0.04 | ||||
3.1 | −0.17 | ||||
3.0 | −0.25 |
HCl, M | IM | priNH2H+Cl− | secNHH+Cl− | terNH+Cl− |
---|---|---|---|---|
1 | 1.02 | 4.9 × 103 | 7.1 × 103 | 6.0 × 105 |
2 | 2.02 | 8.3 × 103 | 1.4 × 104 | 7.6 × 105 |
3 | 3.19 | 1.3 × 104 | 2.2 × 104 | 1.1 × 106 |
4 | 4.36 | 1.7 × 104 | 3.0 × 104 | 1.6 × 106 |
5 | 5.57 | 2.2 × 104 | 3.9 × 104 | 2.0 × 106 |
6 | 6.85 | 2.8 × 104 | 4.9 × 104 | 2.5 × 106 |
7 | 8.19 | 3.2 × 104 | 5.6 × 104 | 3.9 × 106 |
8 | 9.61 | 3.7 × 104 | 6.6 × 104 | 4.9 × 106 |
9 | 11.11 | 4.2 × 104 | 7.6 × 104 | 6.0 × 106 |
10 | 12.69 | 4.7 × 104 | 8.7 × 104 | 7.1 × 106 |
Im | a log Kext,m | b log Kext,m | c log Kext,m |
---|---|---|---|
1.02 | 3.69 | 3.85 | 5.78 |
2.02 | 3.92 | 4.16 | 5.88 |
3.19 | 4.10 | 4.34 | 6.06 |
4.36 | 4.24 | 4.48 | 6.20 |
5.57 | 4.35 | 4.59 | 6.31 |
6.85 | 4.44 | 4.69 | 6.40 |
8.19 | 4.50 | 4.75 | 6.59 |
9.61 | 4.57 | 4.82 | 6.69 |
11.11 | 4.62 | 4.88 | 6.78 |
12.69 | 4.67 | 4.94 | 6.85 |
log K0 | 3.80 | 4.01 | 5.74 |
ε(AuCl4−,H+) | 0.20 | 0.20 | 0.21 |
r2 | 0.906 | 0.886 | 0.979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alguacil, F.J.; Robla, J.I. On the Use of Pseudo-Protic Ionic Liquids to Extract Gold(III) from HCl Solutions. Int. J. Mol. Sci. 2023, 24, 6305. https://doi.org/10.3390/ijms24076305
Alguacil FJ, Robla JI. On the Use of Pseudo-Protic Ionic Liquids to Extract Gold(III) from HCl Solutions. International Journal of Molecular Sciences. 2023; 24(7):6305. https://doi.org/10.3390/ijms24076305
Chicago/Turabian StyleAlguacil, Francisco Jose, and Jose Ignacio Robla. 2023. "On the Use of Pseudo-Protic Ionic Liquids to Extract Gold(III) from HCl Solutions" International Journal of Molecular Sciences 24, no. 7: 6305. https://doi.org/10.3390/ijms24076305
APA StyleAlguacil, F. J., & Robla, J. I. (2023). On the Use of Pseudo-Protic Ionic Liquids to Extract Gold(III) from HCl Solutions. International Journal of Molecular Sciences, 24(7), 6305. https://doi.org/10.3390/ijms24076305