A Systematic Review of Deep Learning Methodologies Used in the Drug Discovery Process with Emphasis on In Vivo Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Study Information Sources and Search Terms
- (“drug discovery” OR “drug design” OR “de novo” OR “ligand-based” OR “structure-based” OR “virtual screening” OR “protein-ligand interaction *” OR “protein-protein interface”) AND
- (“deep learning” OR “neural network” OR autoencoder * OR “generative adversarial network” OR “deep reinforcement learning” OR “graph attention”) AND
- (“in vivo” OR “animal” OR “mouse” OR “murine” OR “rat”)
2.4. Study Selection
2.5. Outcomes
3. Results
3.1. Applied Deep Learning Models Overview
3.1.1. Autoencoders
3.1.2. Generative Adversarial Networks
3.1.3. Recurrent Neural Networks
3.1.4. Convolutional Neural Networks
3.2. Generating Compounds and Searching Chemical Libraries
3.3. De Novo Peptide Generation
3.4. Interaction Prediction
3.5. Databases for Drug Discovery
Reference | Dataset | Dataset Size |
---|---|---|
GENTRL [57] | ZINC | 904,801 |
Integrity, ChEMBL, literature (DDR1 kinase inhibitors) | 1370 | |
Integrity, ChEMBL (Kinase inhibitors) | 23,378 | |
Integrity, ChEMBL (Non-inhibitors) | 16,692 | |
Integrity (Biological active molecules) | 17,000 | |
[58] | ChEMBL (DDR/FGFR inhibitors) | 902 |
[59] | ChEMBL | 194,560 |
ChEMBL (p300 inhibitors) | 135 | |
ChemBridge [80], Asinex[81] | 38,176 | |
[61] | ZINC | 310,703 |
GLASS [82], Reaxys, SciFinder [21] | 10,286 | |
DLEPS [66] | L1000 project—Library of Integrated Network-Based Cellular Signatures [83] | 17,051 |
[63] | FDA (growth inhibition of E. coli) | 2335 |
Drug Repurposing Hub [64] | 6111 | |
WuXi, ZINC | >107 million | |
[65] | Literature search (Calcium channel blockers) MUV [84] | 240 400 |
3.6. Drug Representation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAE | Adversarial autoencoder |
AEs | Autoencoders |
AMP | Antimicrobial peptide |
ANNs | Artificial neural networks |
CADD | Computer-aided drug design |
CBP | CREB-binding protein |
CNNs | Convolutional neural networks |
D-MPNN | Direct-message-passing neural network |
DB | Database |
DDIs | Drug–Drug Interactions |
DDR1 | Discoidin domain receptor1 |
DDNs | Drug–Disease Networks |
DSENs | Drug–Side effect Networks |
DTIs | Drug–target interactions |
FDA | Food and drug administration |
GANs | Generative adversarial networks |
GAT | Graph attention network |
GCNs | Graph convolutional networks |
GNN | Graph neural network |
GPCR | G-protein coupled receptor |
GPU | Graphical processing units |
GRU | Gated recurrent units |
GVAE | Grammar variational autoencoder |
HTS | High-throughput screening |
IC50 | Half-maximum inhibitory concentration |
LSTM | Long short-term memory |
MAE | Mean absolute error |
MTDNN | Multitask deep neural network |
NLP | Natural language processing |
NNs | Neural networks |
ORGAN | Objective-Reinforced Generative Adversarial Networks |
ORGANIC | Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry |
PPIs | Protein–Protein Interactions |
PRISMA | Preferred reporting items for systematic review and meta-analyses |
PUNs | Pretrained unsupervised networks |
QSAR | Quantitative Structure–Activity Relationships |
RANC | Reinforced adversarial neural computer |
ReLU | Rectified linear unit |
RL | Reinforcement Learning |
RNNs | Recurrent neural networks |
ROC-AUC | Receiver operating characteristic curve-area under curve |
ROR-γt | Retinoic-acid-receptor related orphan receptor-gamma t |
SMILES | Simplified molecular input line entry system |
SOM | Self-organizing map |
TL | Transfer Learning |
TTD | Therapeutic Target DB |
VAE | Variational autoencoder |
WAE | Wasserstein autoencoder |
References
- Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W.; Wang, S. Machine Learning Methods in Drug Discovery. Molecules 2020, 25, 5277. [Google Scholar] [CrossRef] [PubMed]
- Torjesen, I. Drug Development: The Journey of a Medicine from Lab to Shelf. Pharm. J. 2015. Available online: https://pharmaceutical-journal.com/article/feature/drug-development-the-journey-of-a-medicine-from-lab-to-shelf (accessed on 12 March 2022).
- Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 2012, 11, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol. 2011, 162, 1239–1249. [Google Scholar] [CrossRef] [Green Version]
- Polishchuk, P.G.; Madzhidov, T.I.; Varnek, A. Estimation of the size of drug-like chemical space based on GDB-17 data. J. Comput. Mol. Des. 2013, 27, 675–679. [Google Scholar] [CrossRef]
- Mouchlis, V.D.; Melagraki, G.; Zacharia, L.C.; Afantitis, A. Computer-Aided Drug Design of β-Secretase, γ-Secretase and Anti-Tau Inhibitors for the Discovery of Novel Alzheimer’s Therapeutics. Int. J. Mol. Sci. 2020, 21, 703. [Google Scholar] [CrossRef] [Green Version]
- Schneider, G.; Clark, D.E. Automated De Novo Drug Design: Are We Nearly There Yet? Angew. Chem. Int. Ed. 2019, 58, 10792–10803. [Google Scholar] [CrossRef]
- Mouchlis, V.D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A.G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in de Novo Drug Design: From Conventional to Machine Learning Methods. Int. J. Mol. Sci. 2021, 22, 1676. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Byrne, R.; Schneider, G.; Yang, S. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chem. Rev. 2019, 119, 10520–10594. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today 2018, 23, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.P.; Lu, S.; Kamaraj, K.; Slowikowski, A.; Venkatesh, H.C. Deep Learning Architectures. In Deep Learning: Concepts and Architectures; Pedrycz, W., Chen, S.M., Eds.; Springer: Cham, Switzerland, 2020; Volume 866, pp. 1–24. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Min, D.; Kim, W. Comprehensive Survey of Recent Drug Discovery Using Deep Learning. Int. J. Mol. Sci. 2021, 22, 9983. [Google Scholar] [CrossRef] [PubMed]
- Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Born, J.; Manica, M. Trends in Deep Learning for Property-driven Drug Design. Curr. Med. Chem. 2021, 28, 7862–7886. [Google Scholar] [CrossRef] [PubMed]
- Kimber, T.; Chen, Y.; Volkamer, A. Deep Learning in Virtual Screening: Recent Applications and Developments. Int. J. Mol. Sci. 2021, 22, 4435. [Google Scholar] [CrossRef]
- Koutroumpa, N.-M.; Afantitis, A.; Papadiamantis, A.G.; Melagraki, G. A Systematic Review of Deep Learning Methodologies Used in the Drug Discovery Process with Emphasis on the In Vivo Validation. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022329949 (accessed on 10 November 2022).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Scopus. Available online: https://www.scopus.com/ (accessed on 10 December 2022).
- PubMed.gov. National Library of Medicine, National Center for Biotechnology Information. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 10 December 2022).
- SciFinder. Available online: https://scifinder.cas.org (accessed on 10 December 2022).
- Google Scholar. Available online: https://scholar.google.com/ (accessed on 10 December 2022).
- University of Toronto Libraries. Searching the Literature: A Guide to Comprehensive Searching in the Health Sciences: Precision vs. Sensitivity—Key to Effective Searching. Available online: https://guides.library.utoronto.ca/c.php?g=577919&p=4304403 (accessed on 10 December 2022).
- Relevo, R. Chapter 4 of Methods Guide for Medical Test Reviews. In Effective Search Strategies for Systematic Reviews of Medical Tests; AHRQ Publication No. 12-EHC076-EF; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2012. [Google Scholar]
- Arshia, A.H.; Shadravan, S.; Solhjoo, A.; Sakhteman, A.; Sami, A. De novo design of novel protease inhibitor candidates in the treatment of SARS-CoV-2 using deep learning, docking, and molecular dynamic simulations. Comput. Biol. Med. 2021, 139, 104967. [Google Scholar] [CrossRef]
- Khanna, V.; Li, L.; Fung, J.; Ranganathan, S.; Petrovsky, N. Prediction of novel mouse TLR9 agonists using a random forest approach. BMC Cell Biol. 2019, 20, 56. [Google Scholar] [CrossRef]
- Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial Autoencoders. arXiv 2015, arXiv:1511.05644. [Google Scholar]
- Cinelli, L.P.; Marins, M.A.; da Silva, E.A.B.; Netto, S.L. Variational Autoencoder. In Variational Methods for Machine Learning with Applications to Deep Networks; Springer International Publishing: Cham, Switzerland, 2021; pp. 111–149. [Google Scholar] [CrossRef]
- Girin, L.; Leglaive, S.; Bie, X.; Diard, J.; Hueber, T.; Alameda-Pineda, X. Dynamical Variational Autoencoders: A Comprehensive Review. Found. Trends Mach. Learn. 2021, 15, 1–175. [Google Scholar] [CrossRef]
- Kusner, M.J.; Paige, B.; Hernández-Lobato, J.M. Grammar Variational Autoencoder. In Proceedings of the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; Volume 4, pp. 3072–3084. [Google Scholar]
- Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.K.; Hernandez-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Central Sci. 2018, 4, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Schultz, K.J.; Colby, S.M.; Yesiltepe, Y.; Nuñez, J.R.; McGrady, M.Y.; Renslow, R.S. Application and assessment of deep learning for the generation of potential NMDA receptor antagonists. Phys. Chem. Chem. Phys. 2020, 23, 1197–1214. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Ryu, S.; Kim, J.W.; Kim, W.Y. Molecular generative model based on conditional variational autoencoder for de novo molecular design. J. Chemin- 2018, 10, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadurin, A.; Aliper, A.; Kazennov, A.; Mamoshina, P.; Vanhaelen, Q.; Khrabrov, K.; Zhavoronkov, A. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget 2017, 8, 10883–10890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadurin, A.; Nikolenko, S.; Khrabrov, K.; Aliper, A.; Zhavoronkov, A. druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico. Mol. Pharm. 2017, 14, 3098–3104. [Google Scholar] [CrossRef]
- Yi, X.; Walia, E.; Babyn, P. Generative adversarial network in medical imaging: A review. Med Image Anal. 2019, 58, 101552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, E.; Lin, C.-H.; Lane, H.-Y. Relevant Applications of Generative Adversarial Networks in Drug Design and Discovery: Molecular De Novo Design, Dimensionality Reduction, and De Novo Peptide and Protein Design. Molecules 2020, 25, 3250. [Google Scholar] [CrossRef]
- Sanchez-Lengeling, B.; Outeiral, C.; Guimaraes, G.L.; Aspuru-Guzik, A. Optimizing distributions over molecular space: An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). ChemRxiv 2017, 1–18. Available online: http://itempdf74155353254prod.s3.amazonaws.com/5309668/Optimizing_distributions_over_molecular_space__An_Objective-Reinforced_Generative_Adversarial_Network_for_Inverse-design_v2.pdf (accessed on 20 February 2023).
- Guimaraes, G.L.; Sanchez-Lengeling, B.; Outeiral, C.; Farias, P.L.C.; Aspuru-Guzik, A. Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models. arXiv 2017, arXiv:1705.10843. [Google Scholar]
- Putin, E.; Asadulaev, A.; Vanhaelen, Q.; Ivanenkov, Y.; Aladinskaya, A.V.; Aliper, A.; Zhavoronkov, A. Adversarial Threshold Neural Computer for Molecular de Novo Design. Mol. Pharm. 2018, 15, 4386–4397. [Google Scholar] [CrossRef] [Green Version]
- Lipton, Z.C.; Berkowitz, J.; Elkan, C.A. Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv 2015, arXiv:1506.00019. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Graves, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. [Google Scholar]
- Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular de-novo design through deep reinforcement learning. J. Chemin 2017, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 2018, 4, eaap7885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popova, M.; Shvets, M.; Oliva, J.; Isayev, O. MolecularRNN: Generating realistic molecular graphs with optimized properties. arXiv 2019, arXiv:1905.13372. [Google Scholar]
- Gupta, A.; Müller, A.T.; Huisman, B.J.H.; Fuchs, J.A.; Schneider, P.; Schneider, G. Generative Recurrent Networks for De Novo Drug Design. Mol. Inf. 2018, 37, 1700111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arús-Pous, J.; Patronov, A.; Bjerrum, E.J.; Tyrchan, C.; Reymond, J.-L.; Chen, H.; Engkvist, O. SMILES-based deep generative scaffold decorator for de-novo drug design. J. Chemin. 2020, 12, 38. [Google Scholar] [CrossRef]
- Kim, P. Convolutional Neural Network. In MATLAB Deep Learning; Springer: Singapore, 2017; pp. 121–147. [Google Scholar]
- Berrhail, F.; Belhadef, H.; Haddad, M. Deep Convolutional Neural Network to improve the performances of screening process in LBVS. Expert Syst. Appl. 2022, 203, 117287. [Google Scholar] [CrossRef]
- Huang, K.; Fu, T.; Glass, L.M.; Zitnik, M.; Xiao, C.; Sun, J. DeepPurpose: A deep learning library for drug–target interaction prediction. Bioinformatics 2020, 36, 5545–5547. [Google Scholar] [CrossRef]
- Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying Graph Convolutional Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; Volume 97, pp. 6861–6871. [Google Scholar]
- Ryu, S.; Lim, J.; Hong, S.H.; Kim, W.Y. Deeply learning molecular structure-property relationships using attention- and gate-augmented graph convolutional network. arXiv 2018, arXiv:1805.10988. [Google Scholar]
- Shang, C.; Liu, Q.; Chen, K.S.; Sun, J.; Lu, J.; Yi, J.; Bi, J. Edge Attention-based Multi-Relational Graph Convolutional Networks. arXiv 2018. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, S.; Gilvary, C.; Elemento, O.; Zhou, J.; Wang, F. Graph convolutional networks for computational drug development and discovery. Brief. Bioinform. 2019, 21, 919–935. [Google Scholar] [CrossRef] [PubMed]
- Weininger, D. SMILES, a chemical language and information system. Introduction to methodology and encoding rules. J. Chem. Inf. Model. 1988, 28, 31–36. [Google Scholar] [CrossRef]
- Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019, 37, 1038–1040. [Google Scholar] [CrossRef]
- Tan, X.; Li, C.; Yang, R.; Zhao, S.; Li, F.; Li, X.; Chen, L.; Wan, X.; Liu, X.; Yang, T.; et al. Discovery of Pyrazolo[3,4-d]pyridazinone Derivatives as Selective DDR1 Inhibitors via Deep Learning Based Design, Synthesis, and Biological Evaluation. J. Med. Chem. 2021, 65, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, R.; Li, Z.; Mei, L.; Wan, S.; Ding, H.; Chen, Z.; Xing, J.; Feng, H.; Han, J.; et al. Discovery of Highly Potent, Selective, and Orally Efficacious p300/CBP Histone Acetyltransferases Inhibitors. J. Med. Chem. 2020, 63, 1337–1360. [Google Scholar] [CrossRef] [PubMed]
- Segler, M.H.S.; Kogej, T.; Tyrchan, C.; Waller, M.P. Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks. ACS Central Sci. 2017, 4, 120–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, X.; Jiang, X.; He, Y.; Zhong, F.; Li, X.; Xiong, Z.; Li, Z.; Liu, X.; Cui, C.; Zhao, Q.; et al. Automated design and optimization of multitarget schizophrenia drug candidates by deep learning. Eur. J. Med. Chem. 2020, 204, 112572. [Google Scholar] [CrossRef]
- Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao, H.; Guzman-Perez, A.; Hopper, T.; Kelley, B.; Mathea, M.; et al. Analyzing Learned Molecular Representations for Property Prediction. J. Chem. Inf. Model. 2019, 59, 3370–3388. [Google Scholar] [CrossRef] [Green Version]
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; Macnair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; et al. A Deep Learning Approach to Antibiotic Discovery. Cell 2020, 180, 688–702.e13. [Google Scholar] [CrossRef] [Green Version]
- Corsello, S.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; et al. The Drug Repurposing Hub: A next-generation drug library and information resource. Nat. Med. 2017, 23, 405–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Xie, M.; Rizzi, G.; Li, X.; Tan, K.; Fussenegger, M. Identification of Sclareol As a Natural Neuroprotective Cav1.3-Antagonist Using Synthetic Parkinson-Mimetic Gene Circuits and Computer-Aided Drug Discovery. Adv. Sci. 2022, 9, e2102855. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, J.; Wang, X.; Gao, M.; Guo, B.; Gao, M.; Liu, J.; Yu, Y.; Wang, L.; Kong, W.; et al. Prediction of drug efficacy from transcriptional profiles with deep learning. Nat. Biotechnol. 2021, 39, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Kontogiorgos-Heintz, D.; de la Fuente-Nunez, C. Deep generative models for peptide design. Digit. Discov. 2022, 1, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Hiss, J.A.; Schneider, G. Recurrent Neural Network Model for Constructive Peptide Design. J. Chem. Inf. Model. 2018, 58, 472–479. [Google Scholar] [CrossRef]
- Bolatchiev, A.; Baturin, V.; Shchetinin, E.; Bolatchieva, E. Novel Antimicrobial Peptides Designed Using a Recurrent Neural Network Reduce Mortality in Experimental Sepsis. Antibiotics 2022, 11, 411. [Google Scholar] [CrossRef]
- Das, P.; Sercu, T.; Wadhawan, K.; Padhi, I.; Gehrmann, S.; Cipcigan, F.; Chenthamarakshan, V.; Strobelt, H.; dos Santos, C.; Chen, P.-Y.; et al. Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat. Biomed. Eng. 2021, 5, 613–623. [Google Scholar] [CrossRef]
- Schissel, C.K.; Mohapatra, S.; Wolfe, J.M.; Fadzen, C.M.; Bellovoda, K.; Wu, C.-L.; Wood, J.A.; Malmberg, A.B.; Loas, A.; Gómez-Bombarelli, R.; et al. Deep learning to design nuclear-targeting abiotic miniproteins. Nat. Chem. 2021, 13, 992–1000. [Google Scholar] [CrossRef]
- Askr, H.; Elgeldawi, E.; Ella, H.A.; Elshaier, Y.A.M.M.; Gomaa, M.M.; Hassanien, A.E. Deep learning in drug discovery: An integrative review and future challenges. Artif. Intell. Rev. 2022, 1–63. [Google Scholar] [CrossRef]
- Abbasi, K.; Razzaghi, P.; Poso, A.; Ghanbari-Ara, S.; Masoudi-Nejad, A. Deep Learning in Drug Target Interaction Prediction: Current and Future Perspectives. Curr. Med. Chem. 2021, 28, 2100–2113. [Google Scholar] [CrossRef]
- Zeng, X.; Zhu, S.; Lu, W.; Liu, Z.; Huang, J.; Zhou, Y.; Fang, J.; Huang, Y.; Guo, H.; Li, L.; et al. Target identification among known drugs by deep learning from heterogeneous networks. Chem. Sci. 2020, 11, 1775–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Zheng, K.; Guan, B.; Guo, M.; Song, L.; Gao, J.; Qu, H.; Wang, Y.; Shi, D.; Zhang, Y. DLDTI: A learning-based framework for drug-target interaction identification using neural networks and network representation. J. Transl. Med. 2020, 18, 434. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A Free Tool to Discover Chemistry for Biology. J. Chem. Inf. Model. 2012, 52, 1757–1768. [Google Scholar] [CrossRef] [PubMed]
- Sterling, T.; Irwin, J.J. ZINC 15—Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef]
- EBI Web Team. ChEMBL. Available online: https://www.ebi.ac.uk/chembl/ (accessed on 20 February 2023).
- Clarivate Analytics Integrity. Integrity DataBase. Available online: https://integrity.clarivate.com/ (accessed on 15 December 2022).
- ChemBridge. The Gold Standard in Small Molecule Libraries and Building Blocks. Available online: https://chembridge.com/ (accessed on 10 March 2023).
- Asinex. Available online: https://www.asinex.com/ (accessed on 10 March 2023).
- Zhang Group. GLASS: GPCR-Ligand Association Database. Available online: https://zhanggroup.org/GLASS/ (accessed on 10 March 2023).
- Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 2017, 171, 1437–1452.e17. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, S.G.; Baumann, K. Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data. J. Chem. Inf. Model. 2009, 49, 169–184. [Google Scholar] [CrossRef]
- University of Nebraska Medical Center. APD3 Antimicrobial Peptide Database. Available online: https://aps.unmc.edu/ (accessed on 20 February 2023).
- UniPro. Available online: http://www.uniprot.org (accessed on 10 March 2023).
- Bhadra, P.; Yan, J.; Li, J.; Fong, S.; Siu, S.W.I. AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci. Rep. 2018, 8, 1697. [Google Scholar] [CrossRef] [Green Version]
- Pirtskhalava, M.; Gabrielian, A.; Cruz, P.; Griggs, H.L.; Squires, R.B.; Hurt, D.E.; Grigolava, M.; Chubinidze, M.; Gogoladze, G.; Vishnepolsky, B.; et al. DBAASP v.2: An enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res. 2015, 44, D1104–D1112. [Google Scholar] [CrossRef]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S.; Open Source Drug Discovery Consortium. In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, P.; Bhalla, S.; Usmani, S.S.; Singh, S.; Chaudhary, K.; Raghava, G.P.S.; Gautam, A. CPPsite 2.0: A repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res. 2015, 44, D1098–D1103. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5. 0: A Major Update to the DrugBank Database for Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Yang, H.; Qin, C.; Li, Y.H.; Tao, L.; Zhou, J.; Yu, C.Y.; Xu, F.; Chen, Z.; Zhu, F.; Chen, Y.Z. Therapeutic target database update 2016: Enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res. 2015, 44, D1069–D1074. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Boussard, T.; Whirl-Carrillo, M.; Hebert, J.M.; Gong, L.; Owen, R.; Gong, M.; Gor, W.; Liu, F.; Truong, C.; Whaley, R.; et al. The pharmacogenetics and pharmacogenomics knowledge base: Accentuating the knowledge. Nucleic Acids Res. 2008, 36, D913–D918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, F.; Li, W.; Wang, X.; Zhou, Y.; Wu, Z.; Shen, J.; Tang, Y. Adverse Drug Events: Database Construction and in Silico Prediction. J. Chem. Inf. Model. 2013, 53, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Ctd. Illuminating How Chemicals Affect Human Health. Available online: http://ctdbase.org/ (accessed on 10 March 2023).
- SIDER 4.1. Side Effect Resource. Available online: http://sideeffects.embl.de/ (accessed on 10 March 2023).
- Kuhn, M.; Campillos, M.; Letunic, I.; Jensen, L.J.; Bork, P. A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 2010, 6, 343. [Google Scholar] [CrossRef]
- Arús-Pous, J.; Johansson, S.V.; Prykhodko, O.; Bjerrum, E.J.; Tyrchan, C.; Reymond, J.-L.; Chen, H.; Engkvist, O. Randomized SMILES strings improve the quality of molecular generative models. J. Chemin- 2019, 11, 71. [Google Scholar] [CrossRef]
- Schroedl, S. Current methods and challenges for deep learning in drug discovery. Drug Discov. Today Technol. 2019, 32–33, 9–17. [Google Scholar] [CrossRef]
- Nag, S.; Baidya, A.T.K.; Mandal, A.; Mathew, A.T.; Das, B.; Devi, B.; Kumar, R. Deep learning tools for advancing drug discovery and development. 3 Biotech 2022, 12, 110. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Song, T.; Wang, G.; Ding, M.; Rodriguez-Paton, A.; Wang, X.; Wang, S. Network-Based Approaches for Drug Repositioning. Mol. Informatics 2021, 41, 2100200. [Google Scholar] [CrossRef]
- Staszak, M.; Staszak, K.; Wieszczycka, K.; Bajek, A.; Roszkowski, K.; Tylkowski, B. Machine learning in drug design: Use of artificial intelligence to explore the chemical structure–biological activity relationship. WIREs Comput. Mol. Sci. 2021, 12, e1568. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Sun, H.; Wang, J.; Shen, C.; Weng, G.; Chai, X.; Li, H.; Cao, D.; Hou, T. Deep learning approaches for de novo drug design: An overview. Curr. Opin. Struct. Biol. 2022, 72, 135–144. [Google Scholar] [CrossRef] [PubMed]
Reference | Dataset | Dataset Size |
---|---|---|
[69] | APD3 | 3100 sequences |
[71] | CPPSite2.0 | 1150 19,800 sequence-next character pairs |
CLaSS [70] | Uniprot DB AmPEP/DBAASP/ToxinPred | ~1.7 million sequences 9000 sequences |
deepDTnet [74] | DrugBank/TTD/PharmGKB | 5680 DTIs |
15 bioinformatics DBs | 16,133 PPIs | |
DrugBank | 132,768 DDIs | |
repoDB, DrugBank, DrugCentral | 1208 DDNs | |
MetaADEBD, CTD, SIDER, OFFSIDES | 263,805 DSENs | |
DLDTI [75] | DrugBank | 904 drugs 613 targets |
Author | Application | Tool |
---|---|---|
Bolatchiev et al., 2022 [69] | De novo peptide design | github.com/alexarnimueller/LSTM_peptides (accessed on 10 December 2022) |
Wang et al., 2022 [65] | Drug property prediction | github.com/chemprop/chemprop (accessed on 10 December 2022) |
Das et al., 2021 [70] | De novo peptide design | github.com/IBM/controlled-peptide-generation (accessed on 10 December 2022) |
Schissel et al., 2021 [71] | De novo peptide design | github.com/learningmatter-mit/peptimizer (accessed on 10 December 2022) |
Zhu et al., 2021 [66] | Drug efficacy prediction | github.com/kekegg/DLEPS www.dleps.tech/dleps/index (accessed on 10 December 2022) |
Stokes et al., 2020 [63] | Drug property prediction | github.com/chemprop/chemprop chemprop.csail.mit.edu/ (accessed on 10 December 2022) |
Zeng et al., 2020 [74] | DTI | github.com/ChengF-Lab/deepDTnet (accessed on 10 December 2022) |
Zhavoronkov et al., 2019 [57] | De novo molecular design | github.com/insilicomedicine/gentrl (accessed on 10 December 2022) |
Author | Animal Model |
---|---|
Tan et al., 2022 [58] | Dextran sulfate sodium-induced inflammatory bowel disease mouse model |
Bolatchiev et al., 2022 [69] | Murine experimental model of sepsis |
Wang et al., 2022 [65] | Parkinson’s disease mouse model |
Das et al., 2021 [70] | BALB/c mice |
Schissel et al., 2021 [71] | Mice containing EGFP IVS2-654 gene |
Zhu et al., 2021 [66] | Diet-induced obesity mouse model Hyperuricemia mouse model Nonalcoholic steatohepatitis mouse model |
Stokes et al., 2020 [63] | Murine wound model of A. baumannii and C. difficile infections |
Tan et al., 2020 [61] | Phencyclidine-induced hyperactivity ICR mouse model |
Yang et al., 2020 [59] | Animal model of human cancer (Balb/c mice bearing MV-4-11 tumor cells) |
Zhao et al., 2020 [75] | Ldlr−/− hamsters developed severe hyperlipidemia and atherosclerosis lesions |
Zeng et al., 2020 [74] | Experimental autoimmune encephalomyelitis mouse model |
Zhavoronkov et al., 2019 [57] | C57BL/6 mice |
Author | Reported Candidate Compounds and Biologics |
---|---|
Tan et al., 2022 [58] | 2-(2-(4-Acetamidophenyl)-4-amino-7-oxo-6,7-dihydro- 2H-pyrazolo[3,4-d]pyridazin-3-yl)-3-methyl-N-(3- (trifluoromethyl)phenyl)benzofuran-6-carboxamide |
Bolatchiev et al., 2022 [69] | PEP-36 GIFSKLAGKKIKNLLISGLKNIGKEVGM PEP-137 KWKSFIKKLAKFGFKVIKKFAKKHGSKIAKNQ |
Wang et al., 2022 [65] | Sclareol |
Das et al., 2021 [70] | YI12 YLRLIRYMAKMI-CONH2 FK13 FPLTWLKWWKWKK-CONH2 |
Schissel et al., 2021 [71] | Mach3 and Mach4 |
Zhu et al., 2021 [66] | Chikusetsusaponin IV Perillen Trametinib |
Stokes et al., 2020 [63] | c-Jun N-terminal kinase inhibitor SU3327 (halicin) |
Tan et al., 2020 [61] | 1-(4-(4-(benzo[b]thiophen-4-yl)piperazin-1-yl)butyl)quinazoline-2,4(1H, 3H)-dione |
Yang et al., 2020 [59] | (S)-1-(2-((S)-7-Fluoro-3-(trifluoromethyl)-2,3-dihydrobenzo[f ]-[1,4]oxazepin-4(5H)-yl)-2-oxoethyl)-5′-(1-methyl-1H-pyrazol-4-yl)- 2′,3′-dihydrospiro[imidazolidine-4,1′-indene]-2,5-dione (B026) |
Zhao et al., 2020 [75] | 288 predicted targets of tetramethylpyrazine on atherosclerosis, and 190 proteins involved in the platelet activation process, indicating that tetramethylpyrazine inhibited signaling transduction. |
Zeng et al., 2020 [74] | Topotecan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutroumpa, N.-M.; Papavasileiou, K.D.; Papadiamantis, A.G.; Melagraki, G.; Afantitis, A. A Systematic Review of Deep Learning Methodologies Used in the Drug Discovery Process with Emphasis on In Vivo Validation. Int. J. Mol. Sci. 2023, 24, 6573. https://doi.org/10.3390/ijms24076573
Koutroumpa N-M, Papavasileiou KD, Papadiamantis AG, Melagraki G, Afantitis A. A Systematic Review of Deep Learning Methodologies Used in the Drug Discovery Process with Emphasis on In Vivo Validation. International Journal of Molecular Sciences. 2023; 24(7):6573. https://doi.org/10.3390/ijms24076573
Chicago/Turabian StyleKoutroumpa, Nikoletta-Maria, Konstantinos D. Papavasileiou, Anastasios G. Papadiamantis, Georgia Melagraki, and Antreas Afantitis. 2023. "A Systematic Review of Deep Learning Methodologies Used in the Drug Discovery Process with Emphasis on In Vivo Validation" International Journal of Molecular Sciences 24, no. 7: 6573. https://doi.org/10.3390/ijms24076573
APA StyleKoutroumpa, N. -M., Papavasileiou, K. D., Papadiamantis, A. G., Melagraki, G., & Afantitis, A. (2023). A Systematic Review of Deep Learning Methodologies Used in the Drug Discovery Process with Emphasis on In Vivo Validation. International Journal of Molecular Sciences, 24(7), 6573. https://doi.org/10.3390/ijms24076573