Blood–Brain Barrier Biomarkers before and after Kidney Transplantation
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Population
Characteristics of Male and Female Participants at Baseline
2.2. Circulating Biomarker Levels
2.3. Sex-Disaggregated Analysis of Biomarkers
2.4. Correlation Analysis
2.5. BBB Biomarker Levels According to Calcification and Fibrosis Score in Epigastric Artery
2.6. Plasma EV Phenotypic Characterization
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Blood Plasma Biomarkers and Laboratory Analyses
4.3. EV Isolation from Plasma Samples
4.4. Nanosight Analysis
4.5. Phenotypic Characterization of EVs
4.6. Determination of Calcification and Fibrosis Scores
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, Regional, and National Burden of Chronic Kidney Disease, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murton, M.; Goff-Leggett, D.; Bobrowska, A.; Garcia Sanchez, J.J.; James, G.; Wittbrodt, E.; Nolan, S.; Sörstadius, E.; Pecoits-Filho, R.; Tuttle, K. Burden of Chronic Kidney Disease by KDIGO Categories of Glomerular Filtration Rate and Albuminuria: A Systematic Review. Adv. Ther. 2021, 38, 180–200. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Bowe, B.; Mokdad, A.H.; Xian, H.; Yan, Y.; Li, T.; Maddukuri, G.; Tsai, C.-Y.; Floyd, T.; Al-Aly, Z. Analysis of the Global Burden of Disease Study Highlights the Global, Regional, and National Trends of Chronic Kidney Disease Epidemiology from 1990 to 2016. Kidney Int. 2018, 94, 567–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebert, T.; Pawelzik, S.C.; Witasp, A.; Arefin, S.; Hobson, S.; Kublickiene, K.; Shiels, P.G.; Bäck, M.; Stenvinkel, P. Inflammation and Premature Ageing in Chronic Kidney Disease. Toxins 2020, 12, 227. [Google Scholar] [CrossRef] [Green Version]
- Stenvinkel, P.; Larsson, T.E. Chronic Kidney Disease: A Clinical Model of Premature Aging; Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 62, ISBN 9789180161176. [Google Scholar]
- Griva, K.; Thompson, D.; Jayasena, D.; Davenport, A.; Harrison, M.; Newman, S.P. Cognitive Functioning Pre- to Post-Kidney Transplantation—A Prospective Study. Nephrol. Dial. Transplant. 2006, 21, 3275–3282. [Google Scholar] [CrossRef] [Green Version]
- Vallianou, N.G.; Mitesh, S.; Gkogkou, A.; Geladari, E. Chronic Kidney Disease and Cardiovascular Disease: Is There Any Relationship? Curr. Cardiol. Rev. 2019, 15, 55–63. [Google Scholar] [CrossRef]
- Arnold, R.; Issar, T.; Krishnan, A.V.; Pussell, B.A. Neurological Complications in Chronic Kidney Disease. JRSM Cardiovasc. Dis. 2016, 5, 2048004016677687. [Google Scholar] [CrossRef] [Green Version]
- Chillon, J.M.; Massy, Z.A.; Stengel, B. Neurological Complications in Chronic Kidney Disease Patients. Nephrol. Dial. Transplant. 2016, 31, 1606–1614. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Jabbari, B.; Vaziri, N.D. Uremia Induces Upregulation of Cerebral Tissue Oxidative/Inflammatory Cascade, down-Regulation of Nrf2 Pathway and Disruption of Blood Brain Barrier. Am. J. Transl. Res. 2018, 10, 2137–2147. [Google Scholar]
- Bobot, M.; Thomas, L.; Moyon, A.; Fernandez, S.; Mckay, N.; Balasse, L.; Garrigue, P.; Brige, P.; Chopinet, S.; Poitevin, S.; et al. Uremic Toxic Blood-Brain Barrier Disruption Mediated by AhR Activation Leads to Cognitive Impairment during Experimental Renal Dysfunction. J. Am. Soc. Nephrol. 2020, 31, 1509–1521. [Google Scholar] [CrossRef]
- Claro, L.M.; Moreno-Amaral, A.N.; Gadotti, A.C.; Dolenga, C.J.; Nakao, L.S.; Azevedo, M.L.V.; de Noronha, L.; Olandoski, M.; de Moraes, T.P.; Stinghen, A.E.M.; et al. The Impact of Uremic Toxicity Induced Inflammatory Response on the Cardiovascular Burden in Chronic Kidney Disease. Toxins 2018, 10, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaglia, M.; Fanelli, V.; Merlotti, G.; Costamagna, A.; Deregibus, M.C.; Marengo, M.; Balzani, E.; Brazzi, L.; Camussi, G.; Cantaluppi, V. Dual Role of Extracellular Vesicles in Sepsis-Associated Kidney and Lung Injury. Biomedicines 2022, 10, 2448. [Google Scholar] [CrossRef] [PubMed]
- Barberis, E.; Vanella, V.V.; Falasca, M.; Caneapero, V.; Cappellano, G.; Raineri, D.; Ghirimoldi, M.; De Giorgis, V.; Puricelli, C.; Vaschetto, R.; et al. Circulating Exosomes Are Strongly Involved in SARS-CoV-2 Infection. Front. Mol. Biosci. 2021, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Georgatzakou, H.T.; Pavlou, E.G.; Papageorgiou, E.G.; Papassideri, I.S.; Kriebardis, A.G.; Antonelou, M.H. The Multi-Faced Extracellular Vesicles in the Plasma of Chronic Kidney Disease Patients. Front. Cell Dev. Biol. 2020, 8, 227. [Google Scholar] [CrossRef]
- Cavallari, C.; Dellepiane, S.; Fonsato, V.; Medica, D.; Marengo, M.; Migliori, M.; Quercia, A.D.; Pitino, A.; Formica, M.; Panichi, V.; et al. Online Hemodiafiltration Inhibits Inflammation-Related Endothelial Dysfunction and Vascular Calcification of Uremic Patients Modulating MiR-223 Expression in Plasma Extracellular Vesicles. J. Immunol. 2019, 202, 2372–2383. [Google Scholar] [CrossRef] [Green Version]
- Jakubec, M.; Maple-Grødem, J.; Akbari, S.; Nesse, S.; Halskau, Ø.; Mork-Jansson, A.E. Plasma-Derived Exosome-like Vesicles Are Enriched in Lyso-Phospholipids and Pass the Blood-Brain Barrier. PLoS ONE 2020, 15, e0232442. [Google Scholar] [CrossRef]
- León, J.; Acurio, J.; Bergman, L.; López, J.; Karin Wikström, A.; Torres-Vergara, P.; Troncoso, F.; Castro, F.O.; Vatish, M.; Escudero, C. Disruption of the Blood-Brain Barrier by Extracellular Vesicles From Preeclampsia Plasma and Hypoxic Placentae: Attenuation by Magnesium Sulfate. Hypertension 2021, 78, 1423–1433. [Google Scholar] [CrossRef]
- Hajal, C.; Le Roi, B.; Kamm, R.D.; Maoz, B.M. Biology and Models of the Blood–Brain Barrier. Annu. Rev. Biomed. Eng. 2021, 23, 359–384. [Google Scholar] [CrossRef]
- Hernandez, L.; Ward, L.J.; Arefin, S.; Ebert, T.; Laucyte-Cibulskiene, A.; Collaborators, G.-F.; Heimbürger, O.; Barany, P.; Wennberg, L.; Stenvinkel, P.; et al. Blood-Brain Barrier and Gut Barrier Dysfunction in Chronic Kidney Disease with a Focus on Circulating Biomarkers and Tight Junction Proteins. Sci. Rep. 2022, 12, 4414. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.; Zuo, L.; Hu, W.; Jiang, T. Increase of Blood-Brain Barrier Leakage Is Related to Cognitive Decline in Vascular Mild Cognitive Impairment. BMC Neurol. 2021, 21, 159. [Google Scholar] [CrossRef]
- Bergman, L.; Åkerud, H. Plasma Levels of the Cerebral Biomarker, Neuron-Specific Enolase, Are Elevated during Pregnancy in Women Developing Preeclampsia. Reprod. Sci. 2016, 23, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Kurajoh, M.; Kadoya, M.; Morimoto, A.; Miyoshi, A.; Kanzaki, A.; Kakutani-Hatayama, M.; Hamamoto, K.; Shoji, T.; Moriwaki, Y.; Yamamoto, T.; et al. Plasma Brain-Derived Neurotrophic Factor Concentration Is a Predictor of Chronic Kidney Disease in Patients with Cardiovascular Risk Factors—Hyogo Sleep Cardio-Autonomic Atherosclerosis Study. PLoS ONE 2017, 12, e0178686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, A.; Polcyn, R.; Matzelle, D.; Banik, N.L. New Insights into the Role of Neuron-Specific Enolase in Neuro-Inflammation, Neurodegeneration, and Neuroprotection. Brain Sci. 2018, 8, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akamine, S.; Marutani, N.; Kanayama, D.; Gotoh, S.; Maruyama, R.; Yanagida, K.; Sakagami, Y.; Mori, K.; Adachi, H.; Kozawa, J.; et al. Renal Function Is Associated with Blood Neurofilament Light Chain Level in Older Adults. Sci. Rep. 2020, 10, 812. [Google Scholar] [CrossRef]
- Khalil, M.; Pirpamer, L.; Hofer, E.; Voortman, M.M.; Barro, C.; Leppert, D.; Benkert, P.; Ropele, S.; Enzinger, C.; Fazekas, F.; et al. Serum Neurofilament Light Levels in Normal Aging and Their Association with Morphologic Brain Changes. Nat. Commun. 2020, 11, 812. [Google Scholar] [CrossRef] [Green Version]
- Barro, C.; Chitnis, T.; Weiner, H.L. Blood Neurofilament Light: A Critical Review of Its Application to Neurologic Disease. Ann. Clin. Transl. Neurol. 2020, 7, 2508–2523. [Google Scholar] [CrossRef]
- Chen, H.J.; Wen, J.; Qi, R.; Zhong, J.; Schoepf, U.J.; Varga-Szemes, A.; Lesslie, V.W.; Kong, X.; Wang, Y.F.; Xu, Q.; et al. Re-Establishing Brain Networks in Patients with ESRD after Successful Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2018, 13, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Xu, X.; Ye, Z. Effect of Renal Function and Hemodialysis on the Serum Tumor Markers in Patients with Chronic Kidney Disease. Front. Med. China 2007, 1, 308–311. [Google Scholar] [CrossRef]
- Molnar, A.; Szkibinszkij, E.; Lenart, L.; Hosszu, A.; Kovacs, I.; Wagner, L.; Rimaszombati, F.; Novozanszki, S.; Szabo, A.; Fekete, A. P1669 prognostic importance of brain-derived neurotrophic factor (bdnf) in renal transplantation. Nephrol. Dial. Transplant. 2020, 35, gfaa142.P1669. [Google Scholar] [CrossRef]
- Dai, L.; Qureshi, A.R.; Witasp, A.; Lindholm, B.; Stenvinkel, P. Early Vascular Ageing and Cellular Senescence in Chronic Kidney Disease. Comput. Struct. Biotechnol. J. 2019, 17, 721–729. [Google Scholar] [CrossRef]
- Hobson, S.; Arefin, S.; Kublickiene, K.; Shiels, P.G.; Stenvinkel, P. Senescent Cells in Early Vascular Ageing and Bone Disease of Chronic Kidney Disease—A Novel Target for Treatment. Toxins 2019, 11, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koini, M.; Pirpamer, L.; Hofer, E.; Buchmann, A.; Pinter, D.; Ropele, S.; Enzinger, C.; Benkert, P.; Leppert, D.; Kuhle, J.; et al. Factors Influencing Serum Neurofilament Light Chain Levels in Normal Aging. Aging 2021, 13, 25729–25738. [Google Scholar] [CrossRef] [PubMed]
- Kavya, K.; Arul Kumaran, K.; Thomas, A.; Nagesh, R.V.; Matthews, K.A.; Mangathayaru, K. A Study of the Association between Brain Derived Neurotrophic Factor and Metabolic Syndrome: A Preliminary Systematic Review and Meta-Analysis of Case-Control Studies. Sri Ramachandra J. Med. 2015, 8, 1–6. [Google Scholar]
- Pluchino, N.; Cubeddu, A.; Begliuomini, S.; Merlini, S.; Giannini, A.; Bucci, F.; Casarosa, E.; Luisi, M.; Cela, V.; Genazzani, A.R. Daily Variation of Brain-Derived Neurotrophic Factor and Cortisol in Women with Normal Menstrual Cycles, Undergoing Oral Contraception and in Postmenopause. Hum. Reprod. 2009, 24, 2303–2309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckert, A.; Karen, S.; Beck, J.; Brand, S.; Hemmeter, U.; Hatzinger, M.; Holsboer-Trachsler, E. The Link between Sleep, Stress and BDNF. Eur. Psychiatry 2017, 41, S282. [Google Scholar] [CrossRef]
- Bastani, A.; Rajabi, S.; Kianimarkani, F. The Effects of Fasting during Ramadan on the Concentration of Serotonin, Dopamine, Brainderived Neurotrophic Factor and Nerve Growth Factor. Neurol. Int. 2017, 9, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Balietti, M.; Giuli, C.; Conti, F. Peripheral Blood Brain-Derived Neurotrophic Factor as a Biomarker of Alzheimer’s Disease: Are There Methodological Biases? Mol. Neurobiol. 2018, 55, 6661–6672. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Alizadeh, S.; Ahmadi, M.; Ghorbani Nejad, B.; Djazayeri, A.; Shab-Bidar, S. Metabolic Syndrome and Its Components Are Associated with Increased Chronic Kidney Disease Risk: Evidence from a Meta-Analysis on 11 109 003 Participants from 66 Studies. Int. J. Clin. Pract. 2018, 72, e13201. [Google Scholar] [CrossRef] [Green Version]
- Ruan, X.; Guan, Y. Metabolic Syndrome and Chronic Kidney Disease. J. Diabetes 2009, 1, 236–245. [Google Scholar] [CrossRef]
- Sun, F.; Tao, Q.; Zhan, S. Metabolic Syndrome and the Development of Chronic Kidney Disease among 118 924 Non-Diabetic Taiwanese in a Retrospective Cohort. Nephrology 2010, 15, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Shao, X.; Gao, P.; Zou, H.; Zhang, X. Metabolic Syndrome Components and Chronic Kidney Disease in a Community Population Aged 40 Years and Older in Southern China: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Cheddani, L.; Haymann, J.P.; Liabeuf, S.; Tabibzadeh, N.; Boffa, J.-J.; Letavernier, E.; Essig, M.; Drüeke, T.B.; Delahousse, M.; Massy, Z.A. Less Arterial Stiffness in Kidney Transplant Recipients than Chronic Kidney Disease Patients Matched for Renal Function. Clin. Kidney J. 2020, 14, 1244–1254. [Google Scholar] [CrossRef]
- Chaldakov, G.N.; Fiore, M.; Stankulov, I.S.; Manni, L.; Hristova, M.G.; Antonelli, A.; Ghenev, P.I.; Aloe, L. Neurotrophin Presence in Human Coronary Atherosclerosis and Metabolic Syndrome: A Role for NGF and BDNF in Cardiovascular Disease? In Progress in Brain Research; NGF and Related Molecules in Health and Disease; Elsevier: Amsterdam, The Netherlands, 2004; Volume 146, pp. 279–289. [Google Scholar]
- Kordestani-Moghadam, P.; Assari, S.; Nouriyengejeh, S.; Mohammadipour, F.; Pourabbasi, A. Cognitive Impairments and Associated Structural Brain Changes in Metabolic Syndrome and Implications of Neurocognitive Intervention. J. Obes. Metab. Syndr. 2020, 29, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Yates, K.F.; Sweat, V.; Yau, P.L.; Turchiano, M.M.; Convit, A. Impact of Metabolic Syndrome on Cognition and Brain: A Selected Review of the Literature. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2060–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.-Y.; Zha, X.-J.; Zhu, X.-Y.; Li, W.-B.; Ma, J.; Wu, Z.-W.; Wu, H.; Jiang, M.-F.; Wen, Y.-F. Metabolic Syndrome and Its Components with Neuron-Specific Enolase: A Cross-Sectional Study in Large Health Check-up Population in China. BMJ Open 2018, 8, 20899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, N. Neurofilament Light Chain as a Biomarker in Cerebral Small-Vessel Disease. Mol. Diagn. Ther. 2022, 26, 1–6. [Google Scholar] [CrossRef]
- Amabile, N.; Guérin, A.P.; Leroyer, A.A.A.; Mallat, Z.; Nguyen, C.A.A.; Boddaert, J.; London, G.A.A.M.; Tedgui, A.; Boulanger, C.M. Circulating Endothelial Microparticles Are Associated with Vascular Dysfunction in Patients with End-Stage Renal Failure. J. Am. Soc. Nephrol. 2005, 16, 3381. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Zhu, T.; Xu, F.; Zhong, J.-Y.; Li, F.; Shan, S.-K.; Wu, F.; Guo, B.; Zheng, M.-H.; Wang, Y.; et al. Plasma Exosomes Derived from Patients with End-Stage Renal Disease and Renal Transplant Recipients Have Different Effects on Vascular Calcification. Front. Cell Dev. Biol. 2021, 8, 618228. [Google Scholar] [CrossRef]
- Desideri, G.; Panichi, V.; Paoletti, S.; Grassi, D.; Bigazzi, R.; Beati, S.; Bernabini, G.; Rosati, A.; Ferri, C.; Taddei, S.; et al. Soluble CD40 Ligand Is Predictive of Combined Cardiovascular Morbidity and Mortality in Patients on Haemodialysis at a Relatively Short-Term Follow-Up. Nephrol. Dial. Transplant. 2011, 26, 2983–2988. [Google Scholar] [CrossRef] [Green Version]
- Campean, V.; Neureiter, D.; Nonnast-Daniel, B.; Garlichs, C.; Gross, M.-L.; Amann, K. CD40–CD154 Expression in Calcified and Non-Calcified Coronary Lesions of Patients with Chronic Renal Failure. Atherosclerosis 2007, 190, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Schönbeck, U.; Sukhova, G.K.; Shimizu, K.; Mach, F.; Libby, P. Inhibition of CD40 Signaling Limits Evolution of Established Atherosclerosis in Mice. Proc. Natl. Acad. Sci. USA 2000, 97, 7458–7463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, Z.; Dolmatova, E.; Lassègue, B.; Griendling, K.K. Β1- and Β2-Integrins: Central Players in Regulating Vascular Permeability and Leukocyte Recruitment during Acute Inflammation. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H734–H739. [Google Scholar] [CrossRef] [PubMed]
- Tigges, U.; Boroujerdi, A.; Welser-Alves, J.V.; Milner, R. TNF-α Promotes Cerebral Pericyte Remodeling in Vitro, via a Switch from A1 to A2 Integrins. J. Neuroinflamm. 2013, 10, 812. [Google Scholar] [CrossRef] [Green Version]
- Budatha, M.; Zhang, J.; Schwartz, M.A. Fibronectin-Mediated Inflammatory Signaling Through Integrin A5 in Vascular Remodeling. J. Am. Heart Assoc. 2021, 10, e021160. [Google Scholar] [CrossRef]
- Yun, S.; Budatha, M.; Dahlman, J.E.; Coon, B.G.; Cameron, R.T.; Langer, R.; Anderson, D.G.; Baillie, G.; Schwartz, M.A. Interaction between Integrin A5 and PDE4D Regulates Endothelial Inflammatory Signalling. Nat. Cell Biol. 2016, 18, 1043–1053. [Google Scholar] [CrossRef]
- Guo, Q.; Furuta, K.; Lucien, F.; Gutierrez Sanchez, L.H.; Hirsova, P.; Krishnan, A.; Kabashima, A.; Pavelko, K.D.; Madden, B.; Alhuwaish, H.; et al. Integrin Β1-Enriched Extracellular Vesicles Mediate Monocyte Adhesion and Promote Liver Inflammation in Murine NASH. J. Hepatol. 2019, 71, 1193–1205. [Google Scholar] [CrossRef]
- Chen, X.; Lin, J.; Hu, T.; Ren, Z.; Li, L.; Hameed, I.; Zhang, X.; Men, C.; Guo, Y.; Xu, D.; et al. Galectin-3 Exacerbates Ox-LDL-mediated Endothelial Injury by Inducing Inflammation via Integrin Β1-RhoA-JNK Signaling Activation. J. Cell. Physiol. 2019, 234, 10990–11000. [Google Scholar] [CrossRef] [Green Version]
- Alvis, B.D.; Hughes, C.G. Physiology Considerations in the Geriatric Patient. Anesthesiol. Clin. 2015, 33, 447–456. [Google Scholar] [CrossRef] [Green Version]
- Monach, P.A. Repeating Tests: Different Roles in Research Studies and Clinical Medicine. Biomark. Med. 2012, 6, 691–703. [Google Scholar] [CrossRef] [Green Version]
- Fishman, J.A. Infection in Organ Transplantation. Am. J. Transplant. 2017, 17, 856–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-W.; Jiang, M.-Y. Higher Volume of Water Intake Is Associated with Lower Risk of Albuminuria and Chronic Kidney Disease. Medicine 2021, 100, e26009. [Google Scholar] [CrossRef] [PubMed]
- Baxmann, A.C.; Ahmed, M.S.; Marques, N.C.; Menon, V.B.; Pereira, A.B.; Kirsztajn, G.M.; Heilberg, I.P. Influence of Muscle Mass and Physical Activity on Serum and Urinary Creatinine and Serum Cystatin C. Clin. J. Am. Soc. Nephrol. CJASN 2008, 3, 348–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thongprayoon, C.; Cheungpasitporn, W.; Kashani, K. Serum Creatinine Level, a Surrogate of Muscle Mass, Predicts Mortality in Critically Ill Patients. J. Thorac. Dis. 2016, 8, E305–E311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badrick, T. Biological Variation: Understanding Why It Is so Important? Pract. Lab. Med. 2021, 23, e00199. [Google Scholar] [CrossRef]
- Valo, E.; Colombo, M.; Sandholm, N.; McGurnaghan, S.J.; Blackbourn, L.A.K.; Dunger, D.B.; McKeigue, P.M.; Forsblom, C.; Groop, P.-H.; Colhoun, H.M.; et al. Effect of Serum Sample Storage Temperature on Metabolomic and Proteomic Biomarkers. Sci. Rep. 2022, 12, 4571. [Google Scholar] [CrossRef]
- Cuhadar, S.; Koseoglu, M.; Atay, A.; Dirican, A. The Effect of Storage Time and Freeze-Thaw Cycles on the Stability of Serum Samples. Biochem. Med. 2013, 23, 70–77. [Google Scholar] [CrossRef]
- Xie, E.; Zhang, W.; Xu, H.; Ling, Y.; Zhang, Q.; Pan, S. Correction of Serum NSE Reference Intervals Includes the Unidentified Hemolysis Sample: 1-year Data Analysis from Healthcare Individuals. J. Clin. Lab. Anal. 2019, 33, e22997. [Google Scholar] [CrossRef] [Green Version]
- Erlandsson, H.; Qureshi, A.R.; Ripsweden, J.; Haugen Löfman, I.; Söderberg, M.; Wennberg, L.; Lundgren, T.; Bruchfeld, A.; Brismar, T.B.; Stenvinkel, P. Scoring of Medial Arterial Calcification Predicts Cardiovascular Events and Mortality after Kidney Transplantation. J. Intern. Med. 2022, 291, 813–823. [Google Scholar] [CrossRef]
- Hobson, S.; de Loor, H.; Kublickiene, K.; Beige, J.; Evenepoel, P.; Stenvinkel, P.; Ebert, T. Lipid Profile Is Negatively Associated with Uremic Toxins in Patients with Kidney Failure—A Tri-National Cohort. Toxins 2022, 14, 412. [Google Scholar] [CrossRef]
- Alves, F.C.; Sun, J.; Qureshi, A.R.; Dai, L.; Snaedal, S.; Bárány, P.; Heimbürger, O.; Lindholm, B.; Stenvinkel, P. The Higher Mortality Associated with Low Serum Albumin Is Dependent on Systemic Inflammation in End-Stage Kidney Disease. PLoS ONE 2018, 13, e0190410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, L.; Mukai, H.; Lindholm, B.; Heimbürger, O.; Barany, P.; Stenvinkel, P.; Qureshi, A.R. Clinical Global Assessment of Nutritional Status as Predictor of Mortality in Chronic Kidney Disease Patients. PLoS ONE 2017, 12, e0186659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snaedal, S.; Qureshi, A.R.; Lund, S.H.; Germanis, G.; Hylander, B.; Heimbürger, O.; Carrero, J.J.; Stenvinkel, P.; Bárány, P. Dialysis Modality and Nutritional Status Are Associated with Variability of Inflammatory Markers. Nephrol. Dial. Transplant. 2016, 31, 1320–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Axelsson, J.; Machowska, A.; Heimbürger, O.; Bárány, P.; Lindholm, B.; Lindström, K.; Stenvinkel, P.; Qureshi, A.R. Biomarkers of Cardiovascular Disease and Mortality Risk in Patients with Advanced CKD. Clin. J. Am. Soc. Nephrol. 2016, 11, 1163–1172. [Google Scholar] [CrossRef] [Green Version]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medica, D.; Franzin, R.; Stasi, A.; Castellano, G.; Migliori, M.; Panichi, V.; Figliolini, F.; Gesualdo, L.; Camussi, G.; Cantaluppi, V. Extracellular Vesicles Derived from Endothelial Progenitor Cells Protect Human Glomerular Endothelial Cells and Podocytes from Complement- and Cytokine-Mediated Injury. Cells 2021, 10, 1675. [Google Scholar] [CrossRef]
- Franzin, R.; Stasi, A.; Sallustio, F.; Bruno, S.; Merlotti, G.; Quaglia, M.; Grandaliano, G.; Pontrelli, P.; Thurman, J.M.; Camussi, G.; et al. Extracellular Vesicles Derived from Patients with Antibody-Mediated Rejection Induce Tubular Senescence and Endothelial to Mesenchymal Transition in Renal Cells. Am. J. Transplant. 2022, 22, 2139–2157. [Google Scholar] [CrossRef]
Parameters | Baseline (n = 74) | Two Years (n = 74) | p Value |
---|---|---|---|
Age (yrs) | 46 (32–53) | 48 (34–55) | - |
Male Sex | 52 (70) | ||
BMI (kg/m2) | 24.6 (22.6–28.0), n = 31 | 25.3 (23.3–29.3), n = 31 | 0.0086 * |
SBP (mmHg | 138 (127–159), n = 34 | 132 (123–142), n = 34 | 0.0380 * |
DBP (mmHg) | 86 (77–97), n = 34 | 80 (77–83), n = 34 | 0.0794 |
Vintage (years) | 0. 8 (0.6–3.0), n = 39 | - | - |
Comorbidities | |||
CVD | 62 (84) | - | - |
DM | 6 (8) | - | - |
Medications | |||
Ca Channel Blockers | 40 (54) | 31 (37) | 0.0358 * |
Beta Blockers | 48 (65) | 45 (54) | 0.1753 |
ACEi/ARBs | 42 (57) | 62 (75) | 0.0176 * |
Statins | 20 (27) | 53 (64) | <0.0001 |
Biochemistry | |||
Creatinine, μmol/L | 678 (578–854), n = 73 | 111 (97–136), n = 73 | <0.0001 * |
Albumin, g/L | 35.5 (32.8–38.0), n = 70 | 38 (36–39), n = 70 | <0.0001 * |
hsCRP, mg/L | 0.7 (0.3–1.7), n = 71 | 1.1 (0.6–2.4), n = 71 | 0.0414 * |
Calcium, mmol/L | 2. 3 (2.1–2. 4), n = 68 | 2.4 (2.3–2.5), n = 68 | <0.0001 * |
Phosphate, mmol/L | 1.7 (1.3–2.0), n = 68 | 1.0 (0.8–1.1), n = 68 | <0.0001 * |
Troponin T, μg/L | 21 (13–38), n = 62 | 8 (6–12), n = 62 | <0.0001 * |
Triglycerides, mmol/L | 1.3 (1.0–1.8), n = 66 | 1.4 (1.0–1.7), n = 66 | 0.9272 |
Cholesterol, mmol/L | 4. 5 (3.7–5.1), n = 66 | 4.4 (3.9–5.1), n = 66 | 0.4836 |
HDL-cholesterol, mmol/L | 1.4 (1.0–1.7), n = 67 | 1.4 (1.2–1.9), n = 67 | 0.0069 * |
Apo-A1, g/L | 1.40 (1.18–1.61), n = 65 | 1.49 (1.31–1.77), n = 65 | 0.0003 * |
Apo-B, g/L | 0.89 (0.71–1.01), n = 64 | 0.77 (0.65–0.97), n = 64 | 0.3044 |
Lp(a), mg/L | 51 (14–122), n = 45 | 12 (10–32), n = 45 | <0.0001 * |
HBA1c, mmol/mol | 35 (32–39), n = 63 | 37 (35–42), n = 63 | <0.0001 * |
Homocysteine, μmol/L | 36 (29–48), n = 66 | 18 (13–22), n = 66 | <0.0001 * |
Glucose, mmol/L | 5.7 (4.9–7.40), n = 23 | 5.8 (5.4–6.4), n = 23 | 0.3160 |
Baseline | p-Value | 2 Years | p-Value | |||
---|---|---|---|---|---|---|
Females | Males | Females | Males | |||
NSE, ng/mL | 4.7 (3.8–5.7; n = 22) | 4.5 (3.4–6.0; n = 52) | 0.57 | 3.5 (2.5–3.9; n = 22) | 3.4(2.6–4.8; n = 52) | 0.44 |
BDNF, ng/mL | 1.2 (0.8–1.6; n = 22) | 1.09 (0.7–1.4; n = 52) | 0.35 | 1.1 (0.7–1.5; n = 22) | 1.5 (0.9–2.3; n = 52) | 0.05 * |
NfL, ng/mL | 86.5 (70.2–108.2; n = 22) | 94.7 (67.0–110.5; n = 52) | 0.75 | 113.3 (99.7–144.8; n = 22) | 138.2 (110.4– 173.1; n = 52) | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez, L.; Ward, L.J.; Arefin, S.; Barany, P.; Wennberg, L.; Söderberg, M.; Bruno, S.; Cantaluppi, V.; Stenvinkel, P.; Kublickiene, K. Blood–Brain Barrier Biomarkers before and after Kidney Transplantation. Int. J. Mol. Sci. 2023, 24, 6628. https://doi.org/10.3390/ijms24076628
Hernandez L, Ward LJ, Arefin S, Barany P, Wennberg L, Söderberg M, Bruno S, Cantaluppi V, Stenvinkel P, Kublickiene K. Blood–Brain Barrier Biomarkers before and after Kidney Transplantation. International Journal of Molecular Sciences. 2023; 24(7):6628. https://doi.org/10.3390/ijms24076628
Chicago/Turabian StyleHernandez, Leah, Liam J. Ward, Samsul Arefin, Peter Barany, Lars Wennberg, Magnus Söderberg, Stefania Bruno, Vincenzo Cantaluppi, Peter Stenvinkel, and Karolina Kublickiene. 2023. "Blood–Brain Barrier Biomarkers before and after Kidney Transplantation" International Journal of Molecular Sciences 24, no. 7: 6628. https://doi.org/10.3390/ijms24076628
APA StyleHernandez, L., Ward, L. J., Arefin, S., Barany, P., Wennberg, L., Söderberg, M., Bruno, S., Cantaluppi, V., Stenvinkel, P., & Kublickiene, K. (2023). Blood–Brain Barrier Biomarkers before and after Kidney Transplantation. International Journal of Molecular Sciences, 24(7), 6628. https://doi.org/10.3390/ijms24076628