Mineral Metabolism in Children: Interrelation between Vitamin D and FGF23
Abstract
:1. Major Regulatory Hormones of Mineral Metabolism
2. Circulating Variables Linked to Mineral Metabolism_Reference Values in the Pediatric Age
3. FGF23 and Vitamin D Metabolism
3.1. FGF23 and Vitamin D Metabolism: Fetal Life and Neonatal Period
3.2. FGF23 and Vitamin D Metabolism: Vitamin D Deficiency_Rickets
3.3. FGF23 and Vitamin D Metabolism: Vitamin D Deficiency_Extraskeletal Manifestations
3.4. FGF23 and Vitamin D Metabolism: Chronic Kidney Disease
3.5. FGF23 and Vitamin D Metabolism: Hypophosphatemic Disorders
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blau, J.E.; Collins, M.T. The PTH-Vitamin D-FGF23 axis. Rev. Endocr. Metab. Disord. 2015, 16, 165–174. [Google Scholar] [CrossRef]
- DeLuca, H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr. 2004, 80, 1689S–1696S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, N.J.; Mughal, M.Z. Vitamin D and child health: Part 2 (extraskeletal and other aspects). Arch. Dis. Child. 2013, 98, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Yoshioka, M.; Itoh, N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem. Biophys. Res. Commum. 2000, 277, 494–498. [Google Scholar] [CrossRef]
- Mirams, M.; Robinson, B.G.; Mason, R.S.; Nelson, A.E. Bone as a source of FGF23: Regulation by phosphate? Bone 2004, 35, 1192–1199. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Goetz, R.; Fu, L.; Jayaraman, S.; Hu, M.C.; Moe, O.W.; Liang, G.; Li, X.; Mohammadi, M. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 2018, 553, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Quinn, S.J.; Thomsen, A.R.; Pang, J.L.; Kantham, L.; Bräuner-Osborne, H.; Pollak, M.; Goltzman, D.; Brown, E.M. Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E310-20. [Google Scholar] [CrossRef] [Green Version]
- Urakawa, I.; Yamazaki, Y.; Shimada, T.; Iijima, K.; Hasegawa, H.; Okawa, K.; Fujita, T.; Fukumoto, S.; Yamashita, T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006, 444, 770–774. [Google Scholar] [CrossRef]
- Horowitz, G.L.; Altaie, S.; Boyd, J.C. CLSI C28-A3: Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory, 3rd ed.; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- Ritchie, R.F.; Palomaki, G. Selecting clinically relevant populations for reference intervals. Clin. Chem. Lab. Med. 2004, 42, 702–709. [Google Scholar] [CrossRef]
- Yang, L.; Grey, V. Pediatric reference intervals for bone markers. Clin. Biochem. 2006, 39, 561–568. [Google Scholar] [CrossRef]
- Fischer, D.C.; Mischek, A.; Wolf, S.; Rahn, A.; Salweski, B.; Kundt, G.; Haffner, D. Paediatric reference values for the C-terminal fragment of fibroblast-growth factor-23, sclerostin, bone-specific alkaline phosphatase and isoform 5b of tartrate-resistant acid phosphatase. Ann. Clin. Biochem. 2012, 49, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Colantonio, D.A.; Kyriakopoulou, L.; Chan, M.K.; Daly, C.H.; Brinc, D.; Venner, A.A.; Pasic, M.D.; Armbruster, D.; Adeli, K. Closing the gaps in pediatric laboratory reference intervals: A CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin. Chem. 2012, 58, 854–868. [Google Scholar] [CrossRef] [Green Version]
- Tahmasebi, H.; Higgins, V.; Woroch, A.; Asgari, S.; Adeli, K. Pediatric reference intervals for clinical chemistry assays on Siemens ADVIA XPT/1800 and Dimension EXL in the CALIPER cohort of healthy children and adolescents. Clin. Chim. Acta 2019, 490, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Higgins, V.; Truong, D.; White-Al Habeeb, N.; Fung, A.; Hoffman, B.; Adeli, K. Pediatric reference intervals for 1,25-dihydroxyvitamin D using the DiaSorin LIAISON XL assay in the healthy CALIPER cohort. Clin. Chem. Lab. Med. 2018, 56, 964–972. [Google Scholar] [CrossRef]
- Bailey, D.; Colantonio, D.; Kyriakopoulou, L.; Cohen, A.H.; Chan, M.K.; Armbruster, D.; Adeli, K. Marked biological variance in endocrine and biochemical markers in childhood: Establishment of pediatric reference intervals using healthy community children from the CALIPER cohort. Clin. Chem. 2013, 59, 1393–1405. [Google Scholar] [CrossRef] [Green Version]
- Karbasy, K.; Lin, D.C.; Stoianov, A.; Chan, M.K.; Bevilacqua, V.; Chen, Y.; Adeli, K. Pediatric reference value distributions and covariate-stratified reference intervals for 29 endocrine and special chemistry biomarkers on the Beckman Coulter Immunoassay Systems: A CALIPER study of healthy community children. Clin. Chem. Lab. Med. 2016, 54, 643–657. [Google Scholar] [CrossRef] [PubMed]
- Higgins, V.; Fung, A.; Chan, M.K.; Macri, J.; Adeli, K. Corrigendum to: Pediatric reference intervals for 29 Ortho VITROS 5600 immunoassays using the CALIPER cohort of healthy children and adolescents. Clin. Chem. Lab. Med. 2020, 58, 635–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohn, M.K.; Higgins, V.; Asgari, S.; Leung, F.; Hoffman, B.; Macri, J.; Adeli, K. Paediatric reference intervals for 17 Roche cobas 8000 e602 immunoassays in the CALIPER cohort of healthy children and adolescents. Clin. Chem. Lab. Med. 2019, 57, 1968–1979. [Google Scholar] [CrossRef]
- Gkentzi, D.; Efthymiadou, A.; Kritikou, D.; Chrysis, D. Fibroblast growth factor 23 and Klotho serum levels in healthy children. Bone 2014, 66, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Kubota, T.; Naganuma, J.; Arisaka, O.; Ozono, K.; Yoshihara, S. Incidence rate of vitamin D deficiency and FGF23 levels in 12- to 13-year-old adolescents in Japan. J. Bone Miner. Metab. 2021, 39, 456–462. [Google Scholar] [CrossRef]
- Brescia, V.; Fontana, A.; Lovero, R.; Capobianco, C.; Marsico, S.V.; De Chirico, T.; Pinto, C.; Varraso, L.; Cazzolla, A.P.; Di Serio, F. Determination of iFGF23 upper reference limits (URL) in healthy pediatric population, for its better correct use. Front. Endocrinol. 2022, 13, 1018523. [Google Scholar] [CrossRef] [PubMed]
- Seo, E.G.; Einhorn, T.A.; Norman, A.W. 24R,25-dihydroxyvitamin D3: An essential vitamin D3 metabolite for both normal bone integrity and healing of tibial fracture in chicks. Endocrinology 1997, 138, 3864–3872. [Google Scholar] [CrossRef] [PubMed]
- Ryan, B.A.; Kovacs, C.S. Calciotropic and phosphotropic hormones in fetal and neonatal bone development. Semin. Fetal Neonatal Med. 2020, 25, 101062. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, C.S. Bone development and mineral homeostasis in the fetus and neonate: Roles of the calciotropic and phosphotropic hormones. Physiol. Rev. 2014, 94, 1143–1218. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Kirby, B.J.; Fairbridge, N.A.; Karaplis, A.C.; Lanske, B.; Kovacs, C.S. FGF23 is not required to regulate fetal phosphorus metabolism but exerts effects within 12 hours after birth. Endocrinology 2017, 158, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.N.; Josefson, J.; Mendez, A.J.; Mestan, K.; Wolf, M. Cord blood ferritin and fibroblast growth factor-23 levels in neonates. J. Clin. Endocrinol. Metab. 2016, 101, 1673–1679. [Google Scholar] [CrossRef] [Green Version]
- Takaiwa, M.; Aya, K.; Miyai, T.; Hasegawa, K.; Yokoyama, M.; Kondo, Y.; Kodani, N.; Seino, Y.; Tanaka, H.; Morishima, T. Fibroblast growth factor 23 concentrations in healthy term infants during the early postpartum period. Bone 2010, 47, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Ohata, Y.; Arahori, H.; Namba, N.; Kitaoka, T.; Hirai, H.; Wada, K.; Nakayama, M.; Michigami, T.; Imura, A.; Nabeshima, Y.; et al. Circulating levels of soluble alpha-Klotho are markedly elevated in human umbilical cord blood. J. Clin. Endocrinol. Metab. 2011, 96, 943–947. [Google Scholar] [CrossRef] [Green Version]
- Slavin, R.E.; Wen, J.; Barmada, A. Tumoral calcinosis–a pathogenetic overview: A histological and ultrastructural study with a report of two new cases, one in infancy. Int. J. Surg. Pathol. 2012, 20, 462–473. [Google Scholar] [CrossRef]
- Polykandriotis, E.P.; Beutel, F.K.; Horch, R.E.; Grünert, J. A case of familial tumoral calcinosis in a neonate and review of the literature. Arch. Orthop. Trauma Surg. 2004, 124, 563–567. [Google Scholar] [CrossRef]
- Moncrieff, M.W. Early biochemical findings in familial hypophosphataemic, hyper- phosphaturic rickets and response to treatment. Arch. Dis. Child. 1982, 7, 70–72. [Google Scholar]
- Sitara, D.; Razzaque, M.S.; Hesse, M.; Yoganathan, S.; Taguchi, T.; Erben, R.G.; Jüppner, H.; Lanske, B. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 2004, 23, 421–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Samaraweera, M.; Cooke-Hubley, S.; Kirby, B.J.; Karaplis, A.C.; Lanske, B.; Kovacs, C.S. Neither absence nor excess of FGF23 disturbs murine fetal-placental phosphorus homeostasis or prenatal skeletal development and mineralization. Endocrinology 2014, 155, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Holmlund-Suila, E.; Viljakainen, H.; Ljunggren, Ö.; Hytinantti, T.; Andersson, S.; Mäkitie, O. Fibroblast growth factor 23 concentrations reflect sex differences in mineral metabolism and growth in early infancy. Horm. Res. Paediatr. 2016, 85, 232–241. [Google Scholar] [CrossRef]
- Creo, A.L.; Thacher, T.D.; Pettifor, J.M.; Strand, M.A.; Fischer, P.R. Nutritional rickets around the world: An update. Paediatr. Int. Child. Health 2017, 37, 84–98. [Google Scholar] [CrossRef]
- Uday, S.; Högler, W. Nutritional rickets osteomalacia: A practical approach to management. Indian J. Med. Res. 2020, 152, 356–367. [Google Scholar] [CrossRef]
- Chun, R.F.; Peercy, B.E.; Orwoll, E.S.; Nielson, C.M.; Adams, J.S.; Hewison, M. Vitamin D and DBP: The free hormone hypothesis revisited. J. Steroid Biochem. Mol. Biol. 2014, 144, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Mantecón, L.; Alonso, M.A.; Moya, V.; Andrés, A.G.; Avello, N.; Martínez-Morillo, E.; Santos, F. Marker of vitamin D status in healthy children: Free or total 25-hydroxyvitamin D? PLoS ONE 2018, 13, e0202237. [Google Scholar] [CrossRef] [Green Version]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global consensus recommendations on prevention and management of nutritional rickets. Horm. Res. Paediatr. 2016, 85, 83–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, T.O.; Shaw, N.J.; Portale, A.A.; Ward, L.M.; Abrams, S.A.; Pettifor, J.M. Rickets. Nat. Rev. Dis. Prim. 2017, 3, 17101. [Google Scholar] [CrossRef] [PubMed]
- Uday, S.; Högler, W. Nutritional rickets and osteomalacia in the twenty first Century: Revised concepts, public health, and prevention strategies. Curr. Osteoporos. Rep. 2017, 15, 293–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladhani, S.; Srinivasan, L.; Buchanan, C.; Allgrove, J. Presentation of vitamin D deficiency. Arch. Dis. Child. 2004, 89, 781–784. [Google Scholar] [CrossRef] [Green Version]
- Basatemur, E.; Sutcliffe, A. Incidence of hypocalcemic seizures due to vitamin D deficiency in children in the United Kingdom and Ireland. J. Clin. Endocrinol. Metab. 2015, 100, E91–E95. [Google Scholar] [CrossRef] [Green Version]
- Mughal, M.Z. Rickets. Curr. Osteoporos. Rep. 2011, 9, 291–299. [Google Scholar] [CrossRef]
- Chibuzor, M.T.; Graham-Kalio, D.; Osaji, J.O.; Meremikwu, M.M. Vitamin D, calcium or a combination of vitamin D and calcium for the treatment of nutritional rickets in children. Cochrane Database Syst. Rev. 2020, 4, CD012581. [Google Scholar] [CrossRef]
- Kubota, T.; Kitaoka, T.; Miura, K.; Fujiwara, M.; Ohata, Y.; Miyoshi, Y.; Yamamoto, K.; Takeyari, S.; Yamamoto, T.; Namba, N.; et al. Serum fibroblast growth factor 23 is a useful marker to distinguish vitamin D-deficient rickets from hypophosphatemic rickets. Horm. Res. Paediatr. 2014, 81, 251–257. [Google Scholar] [CrossRef]
- Alonso, M.A.; Mantecón, L.; Santos, F. Vitamin D deficiency in children: A challenging diagnosis! Pediatr. Res. 2019, 85, 596–601. [Google Scholar] [CrossRef]
- Pilz, S.; Trummer, C.; Theiler-Schwetz, V.; Grübler, M.R.; Verheyen, N.D.; Odler, B.; Karras, S.N.; Zittermann, A.; März, W. Critical appraisal of large vitamin D randomized controlled trials. Nutrients 2022, 14, 303. [Google Scholar] [CrossRef]
- Barbarawi, M.; Kheiri, B.; Zayed, Y.; Barbarawi, O.; Dhillon, H.; Swaid, B.; Yelangi, A.; Sundus, S.; Bachuwa, G.; Alkotob, M.L.; et al. Vitamin D supplementation and cardiovascular disease risks in more than 83 000 Individuals in 21 randomized clinical trials: A meta-analysis. JAMA Cardiol. 2019, 4, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D′Agostino, D.; et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fang, F.; Tang, J.; Jia, L.; Feng, Y.; Xu, P.; Faramand, A. Association between vitamin D supplementation and mortality, systematic review and meta-analysis. BMJ 2019, 366, l4673. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.; Gonzalez, A.; Yue, J.; Wu, X.; Qiu, M.; Gui, L.; Zhu, S.; Huang, L. Efficacy and safety of vitamin D supplementation in patients with systemic lupus erythematosus, A meta-analysis of randomized controlled trials. Am. J. Med. Sci. 2019, 358, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Pittas, A.G.; Dawson-Hughes, B.; Sheehan, P.; Ware, J.H.; Knowler, W.C.; Aroda, V.R.; Brodsky, I.; Ceglia, L.; Chadha, C.; Chatterjee, R.; et al. Vitamin D supplementation and prevention of type 2 diabetes. N. Engl. J. Med. 2019, 381, 520–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arihiro, S.; Nakashima, A.; Matsuoka, M.; Suto, S.; Uchiyama, K.; Kato, T.; Mitobe, J.; Komoike, N.; Itagaki, M.; Miyakawa, Y.; et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza and upper respiratory infection in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2019, 25, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.H.; Zelnick, L.R.; Ruzinski, J.; Friedenberg, G.; Duszlak, J.; Bubes, V.Y.; Hoofnagle, A.N.; Thadhani, R.; Glynn, R.J.; Buring, J.E.; et al. Effect of vitamin D and omega-3 fatty acid supplementation on kidney function in patients with type 2 diabetes, A randomized clinical trial. JAMA 2019, 322, 1899–1909. [Google Scholar] [CrossRef]
- Ganmaa, D.; Uyanga, B.; Zhou, X.; Gantsetseg, G.; Delgerekh, B.; Enkhmaa, D.; Khulan, D.; Ariunzaya, S.; Sumiya, E.; Bolortuya, B.; et al. Vitamin D supplements for prevention of tuberculosis infection and disease. N. Engl. J. Med. 2020, 383, 359–368. [Google Scholar] [CrossRef]
- Rawat, D.; Roy, A.; Maitra, S.; Shankar, V.; Khanna, P.; Baidya, D.K. Vitamin D supplementation and COVID-19 treatment, A systematic review and meta-analysis. Diabetes Metab. Syndr. 2021, 15, 102189. [Google Scholar] [CrossRef] [PubMed]
- Bassatne, A.; Basbous, M.; Chakhtoura, M.; El Zein, O.; Rahme, M.; El-Hajj Fuleihan, G. The link between COVID-19 and vItamin D (VIVID), A systematic review and meta-analysis. Metabolism 2021, 119, 154753. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Camargo, C.A.; Sluyter, J.D., Jr.; Aglipay, M.; Aloia, J.F.; Ganmaa, D.; Bergman, P.; Bischoff-Ferrari, H.A.; Borzutzky, A.; Damsgaard, C.T.; et al. Vitamin D supplementation to prevent acute respiratory infections, a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021, 9, 276–292. [Google Scholar] [CrossRef] [PubMed]
- Theodoridis, X.; Grammatikopoulou, M.G.; Stamouli, E.M.; Talimtzi, P.; Pagkalidou, E.; Zafiriou, E.; Haidich, A.B.; Bogdanos, D.P. Effectiveness of oral vitamin D supplementation in lessening disease severity among patients with psoriasis, A systematic review and meta-analysis of randomized controlled trials. Nutrition 2021, 82, 111024. [Google Scholar] [CrossRef] [PubMed]
- Juhász, M.F.; Varannai, O.; Németh, D.; Szakács, Z.; Kiss, S.; Izsák, V.D.; Martonosi, Á.R.; Hegyi, P.; Párniczky, A. Vitamin D supplementation in patients with cystic fibrosis, A systematic review and meta-analysis. J. Cyst. Fibros. 2021, 20, 729–736. [Google Scholar] [CrossRef]
- Hahn, J.; Cook, N.R.; Alexander, E.K.; Friedman, S.; Walter, J.; Bubes, V.; Kotler, G.; Lee, I.M.; Manson, J.E.; Costenbader, K.H. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease, VITAL randomized controlled trial. BMJ 2022, 376, e066452. [Google Scholar] [CrossRef]
- Luo, C.; Sun, Y.; Zeng, Z.; Liu, Y.; Peng, S. Vitamin D supplementation in pregnant women or infants for preventing allergic diseases, a systematic review and meta-analysis of randomized controlled trials. Chin. Med. J. 2022, 135, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, E.A.; Han, X.; Xiao, Z.; Quarles, L.D. Role of fibroblast growth factor-23 in innate immune responses. Front. Endocrinol. 2018, 9, 320. [Google Scholar] [CrossRef] [Green Version]
- Fajol, A.; Honisch, S.; Zhang, B.; Schmidt, S.; Alkahtani, S.; Alarifi, S.; Lang, F.; Stournaras, C.; Föller, M. Fibroblast growth factor (Fgf) 23 gene transcription depends on actin cytoskeleton reorganization. FEBS Lett. 2016, 590, 705–715. [Google Scholar] [CrossRef]
- Zhang, B.; Yan, J.; Umbach, A.T.; Fakhri, H.; Fajol, A.; Schmidt, S.; Salker, M.S.; Chen, H.; Alexander, D.; Spichtig, D.; et al. NFkBsensitive Orai1 expression in the regulation of FGF23 release. J. Mol. Med. 2016, 94, 557–566. [Google Scholar] [CrossRef]
- Fernández-Real, J.M.; Puig, J.; Serrano, M.; Sabater, M.; Rubió, A.; Moreno-Navarrete, J.M.; Fontan, M.; Casamitjana, R.; Xifra, G.; Ortega, F.J.; et al. Iron and obesity status-associated insulin resistance influence circulating fibroblast- growth factor-23 concentrations. PLoS ONE 2013, 8, e58961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojcik, M.; Janus, D.; Dolezal-Oltarzewska, K.; Drozdz, D.; Sztefko, K.; Starzyk, J.B. The association of FGF23 levels in obese adolescents with insulin sensitivity. J. Pediatr. Endocrinol. Metab. 2012, 25, 687–690. [Google Scholar] [CrossRef]
- Tuñón, J.; Cristóbal, C.; Tarín, N.; Aceña, Á.; González-Casaus, M.L.; Huelmos, A.; Alonso, J.; Lorenzo, Ó.; González-Parra, E.; Mahíllo-Fernández, I.; et al. Coexistence of low vitamin D and high fibroblast growth factor-23 plasma levels predicts an adverse outcome in patients with coronary artery disease. PLoS ONE 2014, 9, e95402. [Google Scholar] [CrossRef] [Green Version]
- Ky, B.; Shults, J.; Keane, M.G.; Sutton, M.S.; Wolf, M.; Feldman, H.I.; Reese, P.P.; Anderson, C.A.; Townsend, R.R.; Deo, R.; et al. FGF23 modifies the relationship between vitamin D and cardiac remodeling. Circ. Heart Fail. 2013, 6, 817–824. [Google Scholar] [CrossRef] [Green Version]
- Kamelian, T.; Saki, F.; Jeddi, M.; Dabbaghmanesh, M.H.; Omrani, G.H.R. Effect of cholecalciferol therapy on serum FGF23 in vitamin D deficient patients, a randomized clinical trial. J. Endocrinol. Investig. 2018, 41, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Rujirachun, P.; Holick, M.F.; Ungprasert, P. Oral vitamin D3 supplementation increases serum fibroblast growth factor 23 concentration in vitamin D-deficient patients, a systematic review and meta-analysis. Osteoporos. Int. 2019, 30, 2183–2193. [Google Scholar] [CrossRef] [PubMed]
- Trummer, C.; Schwetz, V.; Pandis, M.; Grübler, M.R.; Verheyen, N.; Gaksch, M.; Zittermann, A.; März, W.; Aberer, F.; Steinkellner, J.; et al. Effects of vitamin D supplementation on FGF23, a randomized-controlled trial. Eur. J. Nutr. 2019, 58, 697–703. [Google Scholar] [CrossRef]
- Bhagatwala, J.; Zhu, H.; Parikh, S.J.; Guo, D.H.; Kotak, I.; Huang, Y.; Havens, R.; Pham, M.; Afari, E.; Kim, S.; et al. Dose and time responses of vitamin D biomarkers to monthly vitamin D3 supplementation in overweight/ obese African Americans with suboptimal vitamin d status, a placebo controlled randomized clinical trial. BMC Obes. 2015, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Iglesias, Á.; López, J.M.; Santos, F. Growth plate alterations in chronic kidney disease. Pediatr. Nephrol. 2020, 35, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.; Díaz-Anadón, L.; Ordóñez, F.A.; Haffner, D. Bone disease in CKD in children. Calcif. Tissue Int. 2021, 108, 423–428. [Google Scholar] [CrossRef]
- Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.A.; Toussaint, N.D.; et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update, what′s changed and why it matters. Kidney Int. 2017, 92, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Rees, L.; Mak, R.H. Nutrition and growth in children with chronic kidney disease. Nat. Rev. Nephrol. 2011, 7, 615–623. [Google Scholar] [CrossRef]
- Larsson, T.; Nisbeth, U.; Ljunggren, O.; Jüppner, H.; Jonsson, K.B. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 2003, 64, 2272–2279. [Google Scholar] [CrossRef] [Green Version]
- Wesseling-Perry, K.; Pereira, R.C.; Wang, H.; Elashoff, R.M.; Sahney, S.; Gales, B.; Jüppner, H.; Salusky, I.B. Relationship between plasma fibroblast growth factor-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J. Clin. Endocrinol. Metab. 2009, 94, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, J.; Dubourg, L.; Harambat, J.; Ranchin, B.; Abou-Jaoude, P.; Arnaud, S.; Carlier, M.C.; Richard, M.; Cochat, P. The influence of glomerular filtration rate and age on fibroblast growth factor 23 serum levels in pediatric chronic kidney disease. J. Clin. Endocrinol. Metab. 2010, 95, 1741–1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, T.; Urakawa, I.; Isakova, T.; Yamazaki, Y.; Epstein, M.; Wesseling-Perry, K.; Wolf, M.; Salusky, I.B.; Jüppner, H. Circulating fibroblast growth factor 23 in patients with end-stage renal disease treated by peritoneal dialysis is intact and biologically active. J. Clin. Endocrinol. Metab. 2010, 95, 578–585. [Google Scholar] [CrossRef] [Green Version]
- Wesseling-Perry, K.; Pereira, R.C.; Tseng, C.H.; Elashoff, R.; Zaritsky, J.J.; Yadin, O.; Sahney, S.; Gales, B.; Jüppner, H.; Salusky, I.B. Early skeletal and biochemical alterations in pediatric chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2012, 7, 146–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnusson, P.; Hansson, S.; Swolin-Eide, D. A prospective study of fibroblast growth factor-23 in children with chronic kidney disease. Scand. J. Clin. Lab. Investig. 2010, 70, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Smith, C.; Shah, V.; Gullet, A.; Wells, D.; Rees, L.; Shroff, R. Fibroblast growth factor 23 and soluble klotho in children with chronic kidney disease. Nephrol. Dial. Transplant. 2013, 28, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Portale, A.A.; Wolf, M.; Jüppner, H.; Messinger, S.; Kumar, J.; Wesseling-Perry, K.; Schwartz, G.J.; Furth, S.L.; Warady, B.A.; Salusky, I.B. Disordered FGF23 and mineral metabolism in children with CKD. Clin. J. Am. Soc. Nephrol. 2014, 9, 344–353. [Google Scholar] [CrossRef] [Green Version]
- Shroff, R.; Aitkenhead, H.; Costa, N.; Trivelli, A.; Litwin, M.; Picca, S.; Anarat, A.; Sallay, P.; Ozaltin, F.; Zurowska, A.; et al. Normal 25-hydroxyvitamin D levels are associated with less proteinuria and attenuate renal failure progression in children with CKD. J. Am. Soc. Nephrol. 2016, 27, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Yasin, A.; Liu, D.; Chau, L.; Madrenas, J.; Filler, G. Fibroblast growth factor-23 and calcium phosphate product in young chronic kidney disease patients, a cross-sectional study. BMC Nephrol. 2013, 14, 39. [Google Scholar] [CrossRef] [Green Version]
- Cano, F.J.; Freundlich, M.; Ceballos, M.L.; Rojo, A.P.; Azocar, M.A.; Delgado, I.O.; Ibacache, M.J.; Delucchi, M.A.; Lillo, A.M.; Irarrázabal, C.E.; et al. Longitudinal FGF23 and Klotho axis characterization in children treated with chronic peritoneal dialysis. Clin. Kidney J. 2014, 7, 457–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portale, A.A.; Wolf, M.S.; Messinger, S.; Perwad, F.; Jüppner, H.; Warady, B.A.; Furth, S.L.; Salusky, I.B. Fibroblast growth factor 23 and risk of CKD progression in children. Clin. J. Am. Soc. Nephrol. 2016, 11, 1989–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, J.; McDermott, K.; Abraham, A.G.; Friedman, L.A.; Johnson, V.L.; Kaskel, F.J.; Furth, S.L.; Warady, B.A.; Portale, A.A.; Melamed, M.L. Prevalence and correlates of 25-hydroxyvitamin D deficiency in the Chronic Kidney Disease in Children (CKiD) cohort. Pediatr. Nephrol. 2016, 31, 121–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Alvarez-Elías, A.C.; Wile, B.; Belostotsky, V.; Filler, G. Deviations from the expected relationship between serum FGF23 and other markers in children with CKD, a cross-sectional study. BMC Nephrol. 2017, 18, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerch, C.; Shroff, R.; Wan, M.; Rees, L.; Aitkenhead, H.; Kaplan Bulut, I.; Thurn, D.; Karabay Bayazit, A.; Niemirska, A.; Canpolat, N.; et al. Effects of nutritional vitamin D supplementation on markers of bone and mineral metabolism in children with chronic kidney disease. Nephrol. Dial. Transplant. 2018, 33, 2208–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aurelle, M.; Basmaison, O.; Ranchin, B.; Kassai-Koupai, B.; Sellier-Leclerc, A.L.; Bertholet-Thomas, A.; Bacchetta, J. Intermittent cholecalciferol supplementation in children and teenagers followed in pediatric nephrology, data from a prospective single-center single-arm open trial. Eur. J. Pediatr. 2020, 179, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, A.; Mathew, G.; Sinha, A.; Hari, S.; Gupta, N.; Ramakrishnan, L.; Hari, P.; Bagga, A. Short-term effects of cholecalciferol supplementation on cFGF23 levels in children with chronic kidney disease and vitamin D Insufficiency. Indian J. Pediatr. 2022, 89, 1037–1039. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.C.; Juppner, H.; Azucena-Serrano, C.E.; Yadin, O.; Salusky, I.B.; Wesseling-Perry, K. Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone 2009, 45, 1161–1168. [Google Scholar] [CrossRef] [Green Version]
- Sinha, M.D.; Turner, C.; Dalton, R.N.; Rasmussen, P.; Waller, S.; Booth, C.J.; Goldsmith, D.J. Investigating FGF-23 concentrations and its relationship with declining renal function in paediatric patients with pre-dialysis CKD Stages 3–5. Nephrol. Dial. Transplant. 2012, 27, 4361–4368. [Google Scholar] [CrossRef] [Green Version]
- de Seigneux, S.; Courbebaisse, M.; Rutkowski, J.M.; Wilhelm-Bals, A.; Metzger, M.; Khodo, S.N.; Hasler, U.; Chehade, H.; Dizin, E.; Daryadel, A.; et al. Proteinuria increases plasma phosphate by altering its tubular handling. J. Am. Soc. Nephrol. 2015, 26, 1608–1618. [Google Scholar] [CrossRef] [Green Version]
- Filler, G.; Liu, D.; Sharma, A.P.; Grimmer, J. Are fibroblast growth factor 23 concentrations in renal transplant patients different from non-transplanted chronic kidney disease patients? Pediatr. Transplant. 2012, 16, 73–77. [Google Scholar] [CrossRef]
- Faul, C.; Amaral, A.P.; Oskouei, B.; Hu, M.C.; Sloan, A.; Isakova, T.; Gutiérrez, O.M.; Aguillon-Prada, R.; Lincoln, J.; Hare, J.M.; et al. FGF23 induces left ventricular hypertrophy. J. Clin. Investig. 2011, 121, 4393–4408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freundlich, M.; Gamba, G.; Rodriguez-Iturbe, B. Fibroblast growth factor 23-Klotho and hypertension, experimental and clinical mechanisms. Pediatr. Nephrol. 2021, 36, 3007–3022. [Google Scholar] [CrossRef] [PubMed]
- Seeherunvong, W.; Abitbol, C.L.; Chandar, J.; Rusconi, P.; Zilleruelo, G.E.; Freundlich, M. Fibroblast growth factor 23 and left ventricular hypertrophy in children on dialysis. Pediatr. Nephrol. 2012, 27, 2129–2136. [Google Scholar] [CrossRef] [PubMed]
- Leifheit-Nestler, M.; Große Siemer, R.; Flasbart, K.; Richter, B.; Kirchhoff, F.; Ziegler, W.H.; Klintschar, M.; Becker, J.U.; Erbersdobler, A.; Aufricht, C.; et al. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol. Dial. Transplant. 2016, 31, 1088–1099. [Google Scholar] [CrossRef] [Green Version]
- Sinha, M.D.; Turner, C.; Booth, C.J.; Waller, S.; Rasmussen, P.; Goldsmith, D.J.; Simpson, J.M. Relationship of FGF23 to indexed left ventricular mass in children with non-dialysis stages of chronic kidney disease. Pediatr. Nephrol. 2015, 30, 1843–1852. [Google Scholar] [CrossRef]
- Mitsnefes, M.M.; Betoko, A.; Schneider, M.F.; Salusky, I.B.; Wolf, M.S.; Jüppner, H.; Warady, B.A.; Furth, S.L.; Portale, A.A. FGF23 and left ventricular hypertrophy in children with CKD. Clin. J. Am. Soc. Nephrol. 2018, 13, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Marthi, A.; Donovan, K.; Haynes, R.; Wheeler, D.C.; Baigent, C.; Rooney, C.M.; Landray, M.J.; Moe, S.M.; Yang, J.; Holland, L.; et al. Fibroblast growth factor-23 and risks of cardiovascular and noncardiovascular diseases, a meta-analysis. J. Am. Soc. Nephrol. 2018, 29, 2015–2027. [Google Scholar] [CrossRef] [Green Version]
- Seifert, M.E.; Ashoor, I.F.; Chiang, M.L.; Chishti, A.S.; Dietzen, D.J.; Gipson, D.S.; Janjua, H.S.; Selewski, D.T.; Hruska, K.A. Fibroblast growth factor-23 and chronic allograft injury in pediatric renal transplant recipients, a Midwest Pediatric Nephrology Consortium study. Pediatr. Transplant. 2016, 20, 378–387. [Google Scholar] [CrossRef] [Green Version]
- Wesseling-Perry, K.; Tsai, E.W.; Ettenger, R.B.; Jüppner, H.; Salusky, I.B. Mineral abnormalities and long-term graft function in pediatric renal transplant recipients, a role for FGF-23? Nephrol. Dial. Transplant. 2011, 26, 3779–3784. [Google Scholar] [CrossRef] [Green Version]
- Bacchetta, J.; Cochat, P.; Salusky, I.B.; Wesseling-Perry, K. Uric acid and IGF1 as possible determinants of FGF23 metabolism in children with normal renal function. Pediatr. Nephrol. 2012, 27, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Fuente, R.; Gil-Peña, H.; Claramunt-Taberner, D.; Hernández-Frías, O.; Fernández-Iglesias, Á.; Alonso-Durán, L.; Rodríguez-Rubio, E.; Hermida-Prado, F.; Anes-González, G.; Rubio-Aliaga, I.; et al. MAPK inhibition and growth hormone, a promising therapy in XLH. FASEB J. 2019, 33, 8349–8362. [Google Scholar] [CrossRef]
- Bitzan, M.; Goodyer, P.R. Hypophosphatemic rickets. Pediatr. Clin. N. Am. 2019, 66, 179–207. [Google Scholar] [CrossRef] [PubMed]
- Haffner, D.; Leifheit-Nestler, M.; Grund, A.; Schnabel, D. Rickets guidance, part I-diagnostic workup. Pediatr. Nephrol. 2022, 37, 2013–2036. [Google Scholar] [CrossRef] [PubMed]
- Tiosano, D.; Hochberg, Z. Hypophosphatemia, the common denominator of all rickets. J. Bone Miner. Metab. 2009, 27, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Kritmetapak, K.; Kumar, R. Phosphatonins, from discovery to therapeutics. Endocr. Pract. 2023, 29, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Bergwitz, C.; Miyamoto, K.I. Hereditary hypophosphatemic rickets with hypercalciuria, pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch. 2019, 471, 149–163. [Google Scholar] [CrossRef]
- Giralt, M.; Chocron, S.; Ferrer, R.; Ariceta, G. Plasma intact fibroblast growth factor 23 level is a useful tool for diagnostic approach of renal hypophosphatemia. Pediatr. Nephrol. 2021, 36, 1025–1028. [Google Scholar] [CrossRef] [PubMed]
- Bosman, A.; Palermo, A.; Vanderhulst, J.; De Beur, S.M.J.; Fukumoto, S.; Minisola, S.; Xia, W.; Body, J.J.; Zillikens, M.C. Tumor-induced osteomalacia, a systematic clinical review of 895 cases. Calcif. Tissue Int. 2022, 111, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Endo, I.; Fukumoto, S.; Ozono, K.; Namba, N.; Tanaka, H.; Inoue, D.; Minagawa, M.; Sugimoto, T.; Yamauchi, M.; Michigami, T.; et al. Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients, Proposal of diagnostic criteria using FGF23 measurement. Bone 2008, 42, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Hartley, I.R.; Gafni, R.I.; Roszko, K.L.; Brown, S.M.; de Castro, L.F.; Saikali, A.; Ferreira, C.R.; Gahl, W.A.; Pacak, K.; Blau, J.E.; et al. Determination of FGF23 levels for the diagnosis of FGF23-mediated hypophosphatemia. J. Bone Miner. Res. 2022, 37, 2174–2185. [Google Scholar] [CrossRef]
- Kido, S.; Kaneko, I.; Tatsumi, S.; Segawa, H.; Miyamoto, K. Vitamin D and type II sodium-dependent phosphate cotransporters. Contrib. Nephrol. 2013, 180, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, J.; Bardet, C.; Prié, D. Physiology of FGF23 and overview of genetic diseases associated with renal phosphate wasting. Metabolism 2020, 103S, 153865. [Google Scholar] [CrossRef]
- Beck-Nielsen, S.S.; Mughal, Z.; Haffner, D.; Nilsson, O.; Levtchenko, E.; Ariceta, G.; de Lucas Collantes, C.; Schnabel, D.; Jandhyala, R.; Mäkitie, O. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J. Rare Dis. 2019, 14, 58. [Google Scholar] [CrossRef]
- Santos Rodríguez, F. X-linked hypophosphataemic rickets and growth. Adv. Ther. 2020, 37 (Suppl. S2), 55–61. [Google Scholar] [CrossRef]
- Burnett, S.M.; Gunawardene, S.C.; Bringhurst, F.R.; Jüppner, H.; Lee, H.; Finkelstein, J.S. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J. Bone Miner. Res. 2006, 21, 1187–1196. [Google Scholar] [CrossRef]
- Carpenter, T.O.; Imel, E.A.; Holm, I.A.; Jan de Beur, S.M.; Insogna, K.L. A clinician’s guide to X linked hypophosphatemia. J. Bone Miner. Res. 2011, 26, 1381e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imel, E.A.; DiMeglio, L.A.; Hui, S.L.; Carpenter, T.O.; Econs, M.J. Treatment of X-linked hypophosphatemia with calcitriol and phosphate increases circulating fibroblast growth factor 23 concentrations. J. Clin. Endocrinol. Metab. 2010, 95, 1846–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, T.O.; Insogna, K.L.; Zhang, J.H.; Ellis, B.; Nieman, S.; Simpson, C.; Olear, E.; Gundberg, C.M. Circulating levels of soluble klotho and FGF23 in X-linked hypophosphatemia, circadian variance, effects of treatment, and relationship to parathyroid status. J. Clin. Endocrinol. Metab. 2010, 95, E352–E357. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rubio, E.; Gil-Peña, H.; Chocron, S.; Madariaga, L.; de la Cerda-Ojeda, F.; Fernández-Fernández, M.; de Lucas-Collantes, C.; Gil, M.; Luis-Yanes, M.I.; Vergara, I.; et al. Phenotypic characterization of X-linked hypophosphatemia in pediatric Spanish population. Orphanet J. Rare Dis. 2021, 16, 104. [Google Scholar] [CrossRef]
- Carpenter, T.O.; Olear, E.A.; Zhang, J.H.; Ellis, B.K.; Simpson, C.A.; Cheng, D.; Gundberg, C.M.; Insogna, K.L. Effect of paricalcitol on circulating parathyroid hormone in X-linked hypophosphatemia, a randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 2014, 99, 3103–3111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alon, U.S.; Levy-Olomucki, R.; Moore, W.V.; Stubbs, J.; Liu, S.; Quarles, L.D. Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin. J. Am. Soc. Nephrol. 2008, 3, 658–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, T.O.; Whyte, M.P.; Imel, E.A.; Boot, A.M.; Högler, W.; Linglart, A.; Padidela, R.; Van′t Hoff, W.; Mao, M.; Chen, C.Y.; et al. Burosumab therapy in children with X-linked hypophosphatemia. N. Engl. J. Med. 2018, 378, 1987–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whyte, M.P.; Carpenter, T.O.; Gottesman, G.S.; Mao, M.; Skrinar, A.; San Martin, J.; Imel, E.A. Efficacy and safety of burosumab in children aged 1-4 years with X-linked hypophosphataemia, a multicentre, open-label, phase 2 trial. Lancet Diabetes Endocrinol. 2019, 7, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Imel, E.A.; Glorieux, F.H.; Whyte, M.P.; Munns, C.F.; Ward, L.M.; Nilsson, O.; Simmons, J.H.; Padidela, R.; Namba, N.; Cheong, H.I.; et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia, a randomised, active-controlled, open-label, phase 3 trial. Lancet 2019, 393, 2416–2427. [Google Scholar] [CrossRef]
- Martín Ramos, S.; Gil-Calvo, M.; Roldán, V.; Castellano Martínez, A.; Santos, F. Positive response to one-year treatment with burosumab in pediatric patients with X-linked hypophosphatemia. Front. Pediatr. 2020, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Linglart, A.; Imel, E.A.; Whyte, M.P.; Portale, A.A.; Högler, W.; Boot, A.M.; Padidela, R.; Van′t Hoff, W.; Gottesman, G.S.; Chen, A.; et al. Sustained efficacy and safety of burosumab, a monoclonal antibody to FGF23, in children with X-linked hypophosphatemia. J. Clin. Endocrinol. Metab. 2022, 107, 813–824. [Google Scholar] [CrossRef]
- Lecoq, A.L.; Chaumet-Riffaud, P.; Blanchard, A.; Dupeux, M.; Rothenbuhler, A.; Lambert, B.; Durand, E.; Boros, E.; Briot, K.; Silve, C.; et al. Hyperparathyroidism in patients with X-linked hypophosphatemia. J. Bone Miner. Res. 2020, 35, 1263–1273. [Google Scholar] [CrossRef]
- Insogna, K.L.; Briot, K.; Imel, E.A.; Kamenický, P.; Ruppe, M.D.; Portale, A.A.; Weber, T.; Pitukcheewanont, P.; Cheong, H.I.; Jan de Beur, S.; et al. A randomized, double-blind, placebo-controlled, phase 3 trial evaluating the efficacy of burosumab, an anti-FGF23 antibody, in adults with X-linked hypophosphatemia, week 24 primary analysis. J. Bone Miner. Res. 2018, 33, 1383–1393. [Google Scholar] [CrossRef] [Green Version]
- Imel, E.A.; Hui, S.L.; Econs, M.J. FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. J. Bone Miner. Res. 2007, 22, 520–526. [Google Scholar] [CrossRef]
- Imel, E.A.; Peacock, M.; Gray, A.K.; Padgett, L.R.; Hui, S.L.; Econs, M.J. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J. Clin. Endocrinol. Metab. 2011, 96, 3541–3549. [Google Scholar] [CrossRef] [Green Version]
- Imel, E.A.; Liu, Z.; Coffman, M.; Acton, D.; Mehta, R.; Econs, M.J. Oral iron replacement normalizes fibroblast growth factor 23 in iron-deficient patients with autosomal dominant hypophosphatemic rickets. J. Bone Miner. Res. 2020, 35, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Levental, M.; Karaplis, A.C. Burosumab treatment for autosomal recessive hypophosphatemic rickets type 1 (ARHR1). J. Clin. Endocrinol. Metab. 2022, 107, 2777–2783. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Imanishi, Y.; Kinoshita, E.; Nakagomi, Y.; Shimizu, N.; Miyauchi, A.; Satomura, K.; Koshiyama, H.; Inaba, M.; Nishizawa, Y.; et al. The role of fibroblast growth factor 23 for hypophosphatemia and abnormal regulation of vitamin D metabolism in patients with McCune-Albright syndrome. J. Bone Miner. Metab. 2005, 23, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Florenzano, P.; Pan, K.S.; Brown, S.M.; Paul, S.M.; Kushner, H.; Guthrie, L.C.; de Castro, L.F.; Collins, M.T.; Boyce, A.M. Age-related changes and effects of bisphosphonates on bone turnover and disease progression in fibrous dysplasia of one. J. Bone Miner. Res. 2019, 34, 653–660. [Google Scholar] [CrossRef]
- Gladding, A.; Szymczuk, V.; Auble, B.A.; Boyce, A.M. Burosumab treatment for fibrous dysplasia. Bone 2021, 150, 116004. [Google Scholar] [CrossRef]
- Apperley, L.J.; Senniappan, S. Burosumab therapy in a paediatric patient with McCune-Albright Syndrome: A case report. Horm. Res. Paediatr. 2022. [Google Scholar] [CrossRef]
- Khadora, M.; Mughal, M.Z. Burosumab treatment in a child with cutaneous skeletal hypophosphatemia syndrome: A case report. Bone Rep. 2021, 15, 101138. [Google Scholar] [CrossRef] [PubMed]
- Merz, L.M.; Buerger, F.; Ziegelasch, N.; Zenker, M.; Wieland, I.; Lipek, T.; Wallborn, T.; Terliesner, N.; Prenzel, F.; Siekmeyer, M.; et al. A case report: First long-term treatment with burosumab in a patient with cutaneous-skeletal hypophosphatemia syndrome. Front. Endocrinol. 2022, 13, 86683. [Google Scholar] [CrossRef]
- Imanishi, Y.; Ito, N.; Rhee, Y.; Takeuchi, Y.; Shin, C.S.; Takahashi, Y.; Onuma, H.; Kojima, M.; Kanematsu, M.; Kanda, H.; et al. Interim analysis of a phase 2 open-label trial assessing burosumab efficacy and safety in patients with tumor-induced osteomalacia. J. Bone Miner. Res. 2021, 36, 262–270. [Google Scholar] [CrossRef]
- Jan de Beur, S.M.; Miller, P.D.; Weber, T.J.; Peacock, M.; Insogna, K.; Kumar, R.; Rauch, F.; Luca, D.; Cimms, T.; Roberts, M.S.; et al. Burosumab for the treatment of tumor-induced osteomalacia. J. Bone Miner. Res. 2021, 36, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Kremke, B.; Bergwitz, C.; Ahrens, W.; Schütt, S.; Schumacher, M.; Wagner, V.; Holterhus, P.M.; Jüppner, H.; Hiort, O. Hypophosphatemic rickets with hypercalciuria due to mutation in SLC34A3/NaPi-IIc can be masked by vitamin D deficiency and can be associated with renal calcifications. Exp. Clin. Endocrinol. Diabetes 2009, 117, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Sanderson, S.R.; Reyes, M.; Sharma, A.; Dunbar, N.; Srivastava, T.; Jüppner, H.; Bergwitz, C. Novel NaPi-IIc mutations causing HHRH and idiopathic hypercalciuria in several unrelated families, long-term follow-up in one kindred. Bone 2012, 50, 1100–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlingmann, K.P.; Ruminska, J.; Kaufmann, M.; Dursun, I.; Patti, M.; Kranz, B.; Pronicka, E.; Ciara, E.; Akcay, T.; Bulus, D.; et al. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J. Am. Soc. Nephrol. 2016, 27, 604–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, R.J.; Li, D.; Doyle, D.; Zaritsky, J.; Levine, M.A. Digenic heterozygous mutations in SLC34A3 and SLC34A1 cause dominant hypophosphatemic rickets with hypercalciuria. J. Clin. Endocrinol. Metab. 2020, 105, 2392–2400. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, E.; Levi, S.; Borovitz, Y.; Alfandary, H.; Ganon, L.; Dinour, D.; Davidovits, M. Childhood hypercalciuric hypercalcemia with elevated vitamin D and suppressed parathyroid hormone, long-term follow up. Front. Pediatr. 2021, 9, 752312. [Google Scholar] [CrossRef]
- Christensen, S.; Tebben, P.J.; Sas, D.; Creo, A.L. Variable clinical presentation of children with hereditary hypophosphatemic rickets with hypercalciuria, a case series and review of the literature. Horm. Res. Paediatr. 2021, 94, 374–389. [Google Scholar] [CrossRef]
- Molin, A.; Lemoine, S.; Kaufmann, M.; Breton, P.; Nowoczyn, M.; Ballandonne, C.; Coudray, N.; Mittre, H.; Richard, N.; Ryckwaert, A.; et al. Overlapping phenotypes associated with CYP24A1, SLC34A1, and SLC34A3 mutations, a cohort study of patients with hypersensitivity to vitamin D. Front. Endocrinol. 2021, 12, 736240. [Google Scholar] [CrossRef]
- Magen, D.; Berger, L.; Coady, M.J.; Ilivitzki, A.; Militianu, D.; Tieder, M.; Selig, S.; Lapointe, J.Y.; Zelikovic, I.; Skorecki, K. A loss-of-function mutation in NaPi-IIa and renal Fanconi′s syndrome. N. Engl. J. Med. 2010, 362, 1102–1109. [Google Scholar] [CrossRef]
- Martin, A.; David, V.; Quarles, L.D. Regulation and function of the FGF23/klotho endocrine pathways. Physiol. Rev. 2012, 92, 131–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erben, R.G.; Andrukhova, O. FGF23-klotho signaling axis in the kidney. Bone 2017, 100, 62–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fakhar, M.; Rashid, S. Targeted inhibition of klotho binding to fibroblast growth factor 23 prevents hypophosphatemia. J. Mol. Graph. Model. 2017, 75, 9–19. [Google Scholar] [CrossRef] [PubMed]
Analyte | Units (SI) | First Author [Reference] | Gender | Age | No. of Samples | Reference Values | Lab Instrument | |
---|---|---|---|---|---|---|---|---|
Lower Limit (95% Confidence Interval) | Upper Limit (95% Confidence Interval) | |||||||
Calcium | mmol/L | Colantonio DA [13] | Females & males | 0 to <1 Year | 259 | 2.13 (2.10–2.17) | 2.74 (2.70–2.78) | Abbott ARCHITECT c8000 |
1 to <19 Years | 897 | 2.29 (2.28–2.30) | 2.63 (2.62–2.64) | |||||
Tahmasebi H [14] | 0 to <2 Years | 44 | 2.38 (2.31–2.44) | 2.87 (2.82–2.92) | Siemens ADVIA XPT/1800 | |||
2 to <5 Years | 65 | 2.37 (2.35–2.40) | 2.69 (2.67–2.72) | |||||
5 to <19 Years | 409 | 2.28 (2.28–2.30) | 2.55 (2.53–2.55) | |||||
Tahmasebi H [14] | 0 to <2 Years | 42 | 2.18 (2.09–2.24) | 2.63 (2.59–2.67) | Siemens Dimension EXL | |||
2 to <19 Years | 494 | 2.13 (2.13–2.15) | 2.43 (2.40–2.43) | |||||
Phosphate | mmol/L | Colantonio DA [13] | Females | 0 to <15 Days | 204 | 1.80 (1.73–1.90) | 3.40 (3.29–3.47) | Abbott ARCHITECT c8000 |
15 Days to <1 Year | 144 | 1.54 (1.35–1.63) | 2.72 (2.62–2.79) | |||||
1 to <5 Years | 184 | 1.38 (1.29–1.45) | 2.19 (2.11–2.39) | |||||
5 to <13 Years | 352 | 1.33 (1.31–1.35) | 1.92 (1.89–1.95) | |||||
13 to <16 Years | 95 | 1.02 (0.98–1.06) | 1.79 (1.73–1.84) | |||||
16 to <19 Years | 187 | 0.95 (0.87–1.01) | 1.62 (1.58–1.82) | |||||
Males | 0 to <15 Days | 204 | 1.80 (1.73–1.90) | 3.40 (3.29–3.47) | ||||
15 Days to <1 Year | 144 | 1.54 (1.35–1.63) | 2.72 (2.62–2.79) | |||||
1 to <5 Years | 184 | 1.38 (1.29–1.45) | 2.19 (2.11–2.39) | |||||
5 to <13 Years | 352 | 1.33 (1.31–1.35) | 1.92 (1.89–1.95) | |||||
13 to <16 Years | 95 | 1.14 (1.10–1.17) | 1.99 (1.93–2.04) | |||||
16 to <19 Years | 187 | 0.95 (0.87–1.01) | 1.62 (1.58–1.82) | |||||
Phosphate | mmol/L | Tahmasebi H [14] | Females | 0 to <1 Year | 125 | 1.36 (1.29–1.49) | 2.49 (2.23–2.52) | Siemens ADVIA XPT/1800 |
1 to <5 Years | 86 | 1.42 (1.38–1.47) | 1.99 (1.95–2.03) | |||||
5 to <13 Years | 233 | 1.29 (1.23–1.32) | 1.84 (1.81–1.94) | |||||
13 to <16 Years | 56 | 1.05 (1.00–1.10) | 1.68 (1.62–1.75) | |||||
16 to <19 Years | 118 | 0.87 (0.82–0.92) | 1.57 (1.53–1.61) | |||||
Males | 0 to <1 Year | 125 | 1.36 (1.29–1.49) | 2.49 (2.23–2.52) | ||||
1 to <5 Years | 86 | 1.42 (1.38–1.47) | 1.99 (1.95–2.03) | |||||
5 to <13 Years | 233 | 1.29 (1.23–1.32) | 1.84 (1.81–1.94) | |||||
13 to <16 Years | 56 | 1.05 (0.95–1.13) | 1.82 (1.77–1.89) | |||||
16 to <19 Years | 118 | 0.87 (0.82–0.92) | 1.57 (1.53–1.61) | |||||
Tahmasebi H [14] | Females | 0 to <1 Year | 135 | 1.39 (1.39–1.55) | 2.36 (2.23–2.36) | Siemens Dimension EXL | ||
1 to <5 Years | 82 | 1.57 (1.53–1.60) | 2.09 (2.05–2.14) | |||||
5 to <13 Years | 202 | 1.49 (1.49–1.49) | 2.00 (1.91–2.07) | |||||
13 to <16 Years | 56 | 1.14 (1.10–1.18) | 1.77 (1.69–1.84) | |||||
16 to <19 Years | 116 | 0.93 (0.88–0.97) | 1.64 (1.59–1.68) | |||||
Males | 0 to <1 Year | 135 | 1.39 (1.39–1.55) | 2.36 (2.23–2.36) | ||||
1 to <5 Years | 82 | 1.57 (1.53–1.60) | 2.09 (2.05–2.14) | |||||
5 to <13 Years | 202 | 1.49 (1.49–1.49) | 2.00 (1.91–2.07) | |||||
13 to <16 Years | 56 | 1.08 (0.94–1.19) | 1.86 (1.80–1.92) | |||||
16 to <19 Years | 116 | 0.93 (0.88–0.97) | 1.64 (1.59–1.68) | |||||
1,25(OH)2D | pmol/L | Higgins V [15] | Females & males | 0 to <1 Year | 105 83 185 | 77 (61–91) | 471 (402–464) | DiaSorin LIAISON XL |
1 to <3 Years | 113 (109–117) | 363 (331–398) | ||||||
3 to <19 Years | 108 (104–110) | 246 (225–355) | ||||||
PTH | pmol/L | Bailey D [16] | Females & males | 6 Days to <1 Year | 172 | 0.68 (0.42–0.91) | 9.39 (7.93–15.48) | Abbott ARCHITECT i2000 |
1 to <9 Years | 221 | 1.72 (1.41–1.83) | 6.68 (6.29–7.72) | |||||
9 to <17 Years | 534 | 2.32 (2.18–2.40) | 9.28 (8.52–9.82) | |||||
17 to <19 Years | 104 | 1.7 (1.59–1.84) | 6.4 (6.15–6.75) | |||||
Karbasy K [17] | 0 to <1 Year | 55 | 0.77 (0.58–0.98) | 6.14 (5.57–6.86) | Beckman Dxl 800 | |||
1 to <8 Years | 194 | 1.25 (1.05–1.30) | 5.80 (5.35–7.11) | |||||
8 to <19 Years | 306 | 1.28 (1.06–1.39) | 7.53 (7.13–8.56) | |||||
Higgins V [18] | Females | 0 to <2 Weeks | 45 | 0.57 (0.47–0.79) | 11.50 (9.30–13.2) | Ortho Vitros 5600 | ||
2 Weeks to <9 Years | 203 | 1.23 (1.10–1.43) | 7.14 (6.44–7.96) | |||||
9 to <15 Years | 269 | 1.90 (1.72–1.94) | 12.90 (10.10–13.90) | |||||
15 to <19 Years | 84 | 1.44 (1.30–1.67) | 6.67 (5.64–7.49) | |||||
Males | 0 to <2 Weeks | 45 | 0.57 (0.47–0.79) | 11.50 (9.30–13.2) | ||||
2 Weeks to <9 Years | 203 | 1.23 (1.10–1.43) | 7.14 (6.44–7.96) | |||||
9 to <15 Years | 269 | 1.90 (1.72–1.94) | 12.90 (10.10–13.90) | |||||
15 to <19 Years | 84 | 1.66 (1.52–1.77) | 8.41 (7.60–9.18) | |||||
Bohn MK [19] | Females & males | 0 to <1Month | 50 | 0.7 (0.5–0.9) | 6.3 (5.5–7.1) | Roche cobas 8000 e602 | ||
1 to <12 Months | 91 | 0.9 (0.8–1.1) | 6.5 (5.7–7.3) | |||||
1 to <11 Years | 199 | 1.2 (1.2–1.4) | 6.3 (5.3–7.4) | |||||
11 to <19 Years | 299 | 1.6 (1.3–1.7) | 7.2 (6.7–8.8) | |||||
cFGF23 | RU/mL | Gkentzi D [20] | Females | 8.4 (3.2–16.7) Years + | 77 | 53.36 ± 12.19 * | ELISA assay (Immutopics International) | |
Males | 8.3 (2.5–18) Years + | 82 | 49 ± 13.06 * | |||||
iFGF23 | pg/mL | Koyama S [21] | Females | 12–13 Years | 106 | 45.1 ± 21.2 * | ELISA assay | |
Males | 72 | 38.9 ± 31.6 * | ||||||
Gkentzi D [20] | Females | 8.4 (3.2–16.7) Years + | 77 | 36.8 (8.8–120) + | ELISA assay (Kainos Laboratories) | |||
Males | 8.3 (2.5–18) Years + | 82 | 33.15 (12.7–98.1) + | |||||
Brescia V [22] | Females & Males | 10 (1–18) Years + | 115 | 61.21 (58.63–63.71) ** | DiaSorin LIAISON XL | |||
Klotho | pg/mL | Gkentzi D [20] | Females | 8.4 (3.2–16.7) Years + | 77 | 2487 (964–5866) + | ELISA assay (IBL America) | |
Males | 8.3 (2.5–18) Years + | 82 | 1692 (372–5694) + |
Case Reports in Humans | |||
---|---|---|---|
Disease/Cause | Presentation | Age at Diagnosis | First Author & Year |
Hereditary hyperphosphatemic calcinosis (FGF23 deficiency) | Calcified mass | 18 days | Slavin RE, 2012 [30] Polykandriotis EP, 2004 [31] |
X-linked hypophosphatemic rickets caused by mutations in the PHEX gene (excess of FGF23) |
| 9 days | Moncrieff MW, 1982 [32] |
Animal Models | |||
Cause | Presentation | Age at Diagnosis | First Author & Year |
Mice lacking FGF23 or its co-receptor Klotho |
| 4–5 days | |
Phex-null mice (Excess of FGF23) |
| 12 h |
Craniotabes (soft skull bones) | |
Delayed closure of the fontanelles Parietal and frontal bossing. Caput cuadratum | |
Enlargement of the costochondral junction: “rachitic rosary” | |
Softened lower ribs, tractioned by the diaphragmatic attachments: Harrison’s sulcus | |
Widening of the wrist and bowing of the distal radius and ulna | |
Incurvations of long bones: varus, valgus genum and windswept deformity | |
Kyphosis | |
Pelvic deformities: narrowing |
Age | Dose (IU) */Day for 3 Months | Single Dose (IU) | Maintenance Dose/Day (IU) |
---|---|---|---|
<3 months | 2000 | Not available | 400 |
3 months–1 year | 2000 | 50,000 | 400 |
1–12 years | 3000–6000 | 150,000 | 600 |
>12 years | 6000 | 300,000 | 600 |
Publication 1st Author, Year [Reference] | Number of Studies and of Included Individuals | Age of Participants (Years) | Disease and Analyzed Variable | Findings and Conclusions |
---|---|---|---|---|
Barbarawi, 2019 [52] | 21 83,291 | Adults | Cardiovascular disease (CVD) events and all-cause mortality | VD supplementation did not reduce major CVD events, individual CVD endpoints (myocardial infarction, stroke, CVD mortality), or all-cause mortality. VD supplementation did not confer cardiovascular protection and is not indicated for this purpose. |
Manson, 2019 [53] | 1 25,871 | ≥50 | Cancer and CVD | VD supplementation did not result in a lower incidence of invasive cancer or CVD events than placebo. |
Zhang, 2019 [54] | 50 74,655 | Adults | Global mortality and cancer death | VD supplementation alone was not associated with decrease in all cause mortality compared with placebo or no treatment. VD supplementation reduced the risk of cancer death by 15%. |
Zheng, 2019 [55] | 5 490 | Adults | Systemic lupus erythematosus (SLE) | VD supplementation increased serum 25OHD levels, improved fatigue, and was well-tolerated. However, it did not have significant effects in decreasing the positivity of anti-dsDNA and disease activity. |
Pittas, 2019 [56] | 1 2423 | ≥30 | Type 2 diabetes | Among persons at high risk for type 2 diabetes not selected for VD insufficiency, VD supplementation at a dose of 4000 IU per day did not result in significantly lower risk of diabetes than placebo. |
Arihiro, 2019 [57] | 1 223 | 18–80 | Influenza and upper respiratory infections in patients with inflammatory bowel disease | VD supplementation may have a preventive effect against upper respiratory infection in patients with inflammatory bowel disease, but may worsen the symptoms of ulcerative colitis. |
De Boer, 2019 [58] | 1 1312 | Adults | Kidney function in type 2 diabetes. | The findings do not support the use of VD or omega-3 fatty acid supplementation for preserving kidney function in patients with type 2 diabetes. |
Ganmaa, 2020 [59] | 1 8851 | 6–13 | Tuberculosis (TB) | VD supplementation did not result in a lower risk of TB infection, TB disease, or ARI than placebo among VD–deficient school children. |
Rawat, 2021 [60] | 3 467 | Adults | COVID-19 | VD supplementation did not reduce major health related outcomes like mortality, ICU admission rates and mechanical ventilation. |
Bassatne, 2021 [61] | 3 356 | Adults | COVID-19 | The evidence available to-date is insufficient to make any recommendations for high doses of VD to either prevent or treat COVID-19 complications. |
Jolliffe, 2021 [62] | 46 75,541 | 0–95 | Acute respiratory infections (ARI) | VD supplementation was safe and overall reduced the risk of ARI compared with placebo, although the risk reduction was small. |
Theodoridis, 2021 [63] | 4 252 | 18–84 | Psoriasis | A favorable effect of oral VD supplementation in patients with psoriasis could not be verified. |
Juhász, 2021 [64] | 8 301 | Children and adults | Cystic fibrosis | The intervention group had significantly higher serum 25OHD levels, but there were no significant differences found in the quantitative synthesis of clinical outcomes. |
Hahn, 2022 [65] | 1 25,871 | Adults | Autoimmune disease (AD) risk | VD supplementation for 5 years, with or without omega 3 fatty acids, reduced AD by 22%, while omega 3 fatty acid supplementation with or without VD reduced the AD rate by 15% (not statistically significant). Both treatment arms showed better effects than placebo. |
Luo, 2022 [66] | 7 1948 | Adults and children ≤ 5 | Allergic diseases | VD supplementation in pregnant women or children from birth to 5 years of age did not have any effect on the primary prevention of allergic diseases. |
High Serum FGF23 | References |
---|---|
Intact and C-terminal FGF23 are elevated | [84] |
Wide range, no daytime variability | [83] |
Found in all stages of CKD | [83,85] |
Higher concentrations in advanced CKD stages | [86,87,88,89] |
Chronologically precedes hyperphosphatemia and hyperparathyroidism | [88] |
Occurs after reduction of serum klotho levels | [87] |
Correlation with other variables in serum or plasma: directly with phosphorus, PTH and calcium—phosphorus product; inversely with 1,25(OH)2D. No consistent correlation with calcium or 25OHD. | [90,91,92,93,94] |
Disorder (OMIM#) | Gene | Ca | Pi | ALP | UCa/Cr | UP/Cr | FGF23 | PTH | 25OHD | 1,25 (OH)2D | Pathogenesis |
---|---|---|---|---|---|---|---|---|---|---|---|
Rickets with High PTH Levels | |||||||||||
Nutritional rickets | NA | N, ↓ | N, ↓ | ↑↑↑ | ↓ | Varies | N, ↓ | ↑↑↑ | ↓↓, N | Varies | Vitamin D deficiency |
Vitamin-D-dependent rickets type 1A (OMIM#264700) | CYP27B1 | ↓ | N, ↓ | ↑↑↑ | ↓ | Varies | N, ↓ | ↑↑↑ | N | ↓ | Impaired synthesis of 1,25(OH)2D |
Vitamin-D-dependent rickets type 1B (OMIM#600081) | CYP2R1 | ↓ | N, ↓ | ↑↑↑ | ↓ | Varies | N, ↓ | ↑↑↑ | ↓↓ | Varies | Impaired synthesis of 25OHD |
Vitamin-D-dependent rickets type 2A (OMIM#277440) | VDR | ↓ | N, ↓ | ↑↑↑ | ↓ | Varies | N, ↓ | ↑↑↑ | N | ↑↑ | Impaired signalling of the VDR |
Vitamin-D-dependent rickets type 2B (OMIM#600785) | HNRNPC | ↓ | N, ↓ | ↑↑↑ | ↓ | Varies | N, ↓ | ↑↑↑ | N | ↑↑ | Impaired signalling of the VDR |
Vitamin-D-dependent rickets type 3 (OMIM#619073) | CYP3A4 | ↓ | N, ↓ | ↑↑↑ | ↓ | Varies | ? | ↑↑↑ | ↓ | ↓ | ↑ Inactivation of 1,25(OH)2D |
Rickets due to phosphate deficiency | |||||||||||
Dietary deficiency or impaired bioavailability | NA | N, ↑ | ↓ | ↑, ↑↑ | ? | ↓ | N, ↓ | N | N | N, ↑ | Phosphate deficiency |
Rickets with renal tubular phosphate wasting due to elevated FGF23 levels and/or signalling | |||||||||||
X-linked hypophosphatemia (OMIM#307800) | PHEX | N | ↓ | ↑, ↑↑ | ↓ | ↑ | ↑, N | N, ↑ | N | N, ↓ | ↑ FGF23 expression in bone |
Autosomal dominant hypophosphatemic rickets (OMIM#193100) | FGF23 | N | ↓ | ↑, ↑↑ | ↓ | ↑ | ↑, N | N, ↑ | N | N, ↓ | FGF23 protein resistant to degradation |
Autosomal recessive hypophosphatemic rickets 1 (OMIM#241520) | DMP1 | N | ↓ | ↑, ↑↑ | ↓ | ↑ | ↑, N | N, ↑ | N | N, ↓ | ↑ FGF23 expression in bone |
Autosomal recessive hypophosphatemic rickets 2 (OMIM#613312) | ENPP1 | N | ↓ | ↑, ↑↑ | ↓ | ↑ | ↑, N | N, ↑ | N | N, ↓ | ↑ FGF23 expression in bone |
Raine syndrome associated (OMIM#259775) | FAM20C | N | ↓ | ↑, ↑↑ | ? | ↑ | ↑, N | N, ↑ | N | N, ↓ | ↑ FGF23 expression in bone |
McCune-Albright syndrome (OMIM#174800) | GNAS | N, ↓ | ↓ | ↑, ↑↑ | ↓ | ↑ | N, ↑ | N, ↑ | N | N, ↓ | ↑ FGF23 expression in bone |
Tumor-induced osteomalacia | NA | N, ↓ | ↓ | ↑, ↑↑ | ↓ | ↑ | N, ↑ | N, ↑ | N | N, ↓ | ↑ FGF23 expression in tumoral cells |
Cutaneous skeletal hypophosphatemia syndrome (OMIM#163200) | RAS | N, ↓ | ↓ | ↑, ↑↑ | ↓ | ↑ | N, ↑ | N, ↑ | N | N, ↓ | Unknown |
Osteoglophonic dysplasia (OMIM#166250) | FGFR1 | N | ↓ | ↑, N | N | ↑ | N | N, ↑ | N | N, ↓ | ↑ FGF23 expression in bone |
Hypophosphatemic rickets and hyperparathyroidism (OMIM#612089) | KLOTHO | ↑ | ↓ | ↑, ↑↑ | N | ↑ | ↑ | ↑↑ | N | N, ↓ | Unknown |
Rickets due to primary renal tubular phosphate wasting | |||||||||||
Hereditary hypophosphatemic rickets with hypercalciuria (OMIM#241530) | SLC34A3 | N, ↑ | ↓ | ↑, ↑↑ | N, ↑ | ↑ | ↓ | N, ↓ | N | N, ↑ | Loss of function of NaPi2c in the proximal tubule |
X-linked recessive hypophosphatemic rickets (OMIM#300554) | CLCN5 | N | ↓ | ↑, ↑↑ | N, ↑ | ↑ | Varies | Varies | N | Varies | Loss of function of CLCN5 in the proximal tubule |
Hypophosphatemia and nephrocalcinosis (OMIM#612286), Fanconi reno-tubular syndrome 2 (OMIM#613388) and Hypercalcemia infantile 2 (OMIM# #616963) | SLC34A1 | N, ↑ | ↓ | ↑, ↑↑ | N, ↑ | ↑ | ↓ | N, ↓ | N | N, ↑ | Loss of function of NaPi2a in the proximal tubule |
Cystinosis (OMIM#219800) and other hereditary forms of Fanconi syndrome | CTNS | N, ↓ | ↓ | ↑, ↑↑ | N, ↑ | ↑ | Varies | Varies | N | Varies | Cysteine accumulation in the proximal tubule |
Iatrogenic proximal tubulopathy | NA | N, ↑ | ↓ | ↑, ↑↑ | Varies | ↑ | ↓ | Varies | N | N, ↑ | Drug toxicity |
Reference | Treatment | Age | Findings and Conclusions |
---|---|---|---|
X-linked hypophosphatemia | |||
Imel, 2010 [129] Carpenter, 2010 [130] Rodríguez-Rubio, 2021 [131] | Conventional therapy (phosphate and vitamin D derivatives) | 2–41 y 9–60 y 3 mo–8 y | Traditional treatment did not correct hypophosphatemia and was associated with a risk of hyperparathyroidism. FGF23 was greater in XLH than in controls and greater in treated XLH subjects compared with XLH subjects not receiving phosphate and calcitriol. Slightly lower fasting values for serum phosphate and 1,25(OH)2D were found in treated subjects compared with untreated subjects. Moreover, a strong positive correlation between FGF23 and PTH was also found in XLH subjects, suggesting aberrant PTH secretion. Serum klotho declined with age and had circadian variation but was normal in XLH. |
Carpenter, 2014 [132] | Paricalcitol | 10–69 y | PTH decreased from baseline in subjects receiving paricalcitol and increased in subjects receiving placebo. FGF23 level also increased in paricalcitol-treated patients, despite which fasting serum phosphorus increased and phosphaturia decreased in the treatment group. 1,25(OH)2D did not change in subjects receiving paricalcitol. |
Alon, 2008 [133] | Cinacalcet | 6–19 y | Oral phosphate load increased serum phosphate and increased PTH. FGF23 significantly increased and 1,25(OH)2D decreased. The concomitant administration of phosphate and cinacalcet resulted in suppression of PTH, greater increase in serum phosphate and decrease in phosphaturia, presumably because of the greater suppression of PTH. Phosphaturia did not change in patients treated with combined phosphate and calcitriol. |
Carpenter 2018 [134] Whyte 2019 [135] Imel 2019 [136] Martin Ramos 2020 [137] Linglart 2022 [138] | Burosumab | 5–12 y 1–4 y 1–12 y 6–16 y 5–12 y | Burosumab increased the serum levels of inorganic phosphate and 1,25(OH)2D and reduced phosphaturia in the long-term, despite prior treatment with phosphate salts and activated forms of vitamin D. Moreover, burosumab was more effective than continuing conventional therapy. |
Lecoq, 2020 [139] | No treatment | Adults | Patients have increased PTH compared with healthy controls matched for sex, age, and vitamin D status, suggesting hyperparathyroidism in XLH is associated with disruption of the physiological regulation of PTH secretion, although no correlation between PTH and FGF23 was shown in this study. |
Insogna, 2018 [140] | Burosumab | Adults | Plasma PTH decreased in the burosumab group and increased in the placebo group. Administration of burosumab also increased serum 1,25(OH)2D. |
Autosomal dominant hypophosphatemic rickets | |||
Imel, 2007 [141] | Conventional therapy | 17–83 y | Elevated FGF23 concentrations were associated with hypophosphatemia in the patients, and resolution of the phenotype was associated with normalization of FGF23. |
Imel, 2011 [142] | No treatment | 14–85 y | Serum phosphate and 1,25(OH)2D correlated negatively with C-terminal FGF23 and intact FGF23 in patients. Low serum iron is associated with elevated FGF23 in ADHR. However, in controls, low serum iron was also associated with elevated C-terminal FGF23, but not intact FGF23, suggesting cleavage maintains homeostasis despite increased FGF23 expression. |
Imel, 2020 [143] | Oral iron supplements. Conventional therapy was allowed | Adults | Oral iron administration normalized FGF23 and phosphorus in iron-deficient ADHR subjects. |
Other disorders with elevated FGF23 | |||
Bai, 2022 [144] | Burosumab | Adults | In adults with ARHR1, burosumab resulted in normalization of serum phosphate and 1,25(OH)2D. PTH levels remained notably stable after an initial rise. |
Yamamoto, 2005 [145] Florenzano, 2019 [146] | Bisphosphonates | 2–80 y | Plasma FGF23 levels were significantly increased in patients with MAS compared to normal controls. Plasma FGF23 levels showed significant negative correlation with serum phosphate concentrations. Bisphosphonate treatment did not significantly impact the age-dependent decrease in bone turnover markers, including FGF23. |
Gladding, 2021 [147] Apperley, 2022 [148] | Burosumab | 5–8 y | Burosumab achieved sustained normalization of serum phosphorus and reduced PTH levels in patients with MAS. |
Khadora, 2021 [149] Merz, 2022 [150] | Burosumab | 3 y | In patients with CSHS, Burosumab led to normalization of serum phosphate and slight decline of PTH levels, without changes in 1,25(OH)2D. |
Imanishi, 2021 [151] Jan de Beur, 2021 [152] | Burosumab | Adults | In adults with TIO, burosumab was associated with increased serum levels of phosphate and 1,25(OH)2D, as well as reduced phosphaturia. |
Disorders with primary renal tubular phosphate wasting | |||
Kremke, 2009 [153] Yu 2012 [154] Schlingmann, 2016 [155] Gordon, 2020 [156] Gurevich, 2021 [157] Christensen, 2021 [158] Molin, 2021 [159] Magen, 2010 [160] | Phosphate supplements | 8–25 y 2–46 y 1 mo–1.5 y 14–68 1 mo–1 y8–13 y 1 day–81 y Adults | Overlapping phenotypes associated with SLC34A1, SLC34A3 and CYP24A1 mutations have been described, and that not all the patients showed improvements in hypercalciuria and nephrocalcinosis, despite improvement in hypercalcemia and 1,25(OH)2D levels. Most of these infants presented with severe hypercalcemia, profound renal phosphate-wasting and suppressed serum PTH, as well elevated serum 1,25(OH)2D during hipercalcemia. An attenuation of renal phosphate wasting with advancing age has been observed and vitamin D deficiency can mask some of the characteristic laboratory findings. Treatment with oral phosphate supplements restored serum levels of phosphate and FGF23 enabling a normalization of 1,25(OH)2D. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pons-Belda, O.D.; Alonso-Álvarez, M.A.; González-Rodríguez, J.D.; Mantecón-Fernández, L.; Santos-Rodríguez, F. Mineral Metabolism in Children: Interrelation between Vitamin D and FGF23. Int. J. Mol. Sci. 2023, 24, 6661. https://doi.org/10.3390/ijms24076661
Pons-Belda OD, Alonso-Álvarez MA, González-Rodríguez JD, Mantecón-Fernández L, Santos-Rodríguez F. Mineral Metabolism in Children: Interrelation between Vitamin D and FGF23. International Journal of Molecular Sciences. 2023; 24(7):6661. https://doi.org/10.3390/ijms24076661
Chicago/Turabian StylePons-Belda, Oscar D., Mª Agustina Alonso-Álvarez, Juan David González-Rodríguez, Laura Mantecón-Fernández, and Fernando Santos-Rodríguez. 2023. "Mineral Metabolism in Children: Interrelation between Vitamin D and FGF23" International Journal of Molecular Sciences 24, no. 7: 6661. https://doi.org/10.3390/ijms24076661
APA StylePons-Belda, O. D., Alonso-Álvarez, M. A., González-Rodríguez, J. D., Mantecón-Fernández, L., & Santos-Rodríguez, F. (2023). Mineral Metabolism in Children: Interrelation between Vitamin D and FGF23. International Journal of Molecular Sciences, 24(7), 6661. https://doi.org/10.3390/ijms24076661