Once-Daily Subcutaneous Irisin Administration Mitigates Depression- and Anxiety-like Behavior in Young Mice
Abstract
:1. Introduction
2. Results
2.1. Short-Term Irisin Treatment Did Not Impact Mouse Locomotor Activities in the OFT
2.2. Short-Term Irisin Treatment Reduced Mouse Anxiety-like Behavior in the EPM
2.3. Short-Term Irisin Treatment Decreased Mouse Depressive-like Behavior in the TST and FST
2.4. Short-Term Irisin Treatment Produced Similar Effects on Mouse Spatial Working Memory in the YM
2.5. Irisin Treatment Influenced the Behavioral Parameters
2.6. Irisin Short-Term Administration Increased Serum Irisin Levels
2.7. Short-Term Systemic Administration of Irisin Enhanced the Gene Expression of Pgc-1α and Fndc5 in Both the Hippocampus and the PFC
3. Discussion
4. Limitations
5. Materials and Methods
5.1. Ethical Statement
5.2. Animals
5.3. Irisin Treatment
5.4. Behavioral Tests
5.4.1. OFT
5.4.2. EPM
5.4.3. TST
5.4.4. FST
5.4.5. YM
5.5. Enzyme-Linked Immunosorbent Assay (ELISA) for Serum Irisin Measurement
5.6. Gene Expression Analysis by qRT-PCR Assays
5.7. Data Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, C.J.; Lopez, A.D. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997, 349, 1498–1504. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates. 2017. Available online: https://apps.who.int/iris/handle/10665/254610 (accessed on 1 March 2023).
- Kessler, R.C.; Akiskal, H.S.; Ames, M.; Birnbaum, H.; Greenberg, P.; Hirschfeld, R.M.; Jin, R.; Merikangas, K.R.; Simon, G.E.; Wang, P.S. Prevalence and effects of mood disorders on work performance in a nationally representative sample of U.S. workers. Am. J. Psychiatry 2006, 163, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Seedat, S.; Scott, K.M.; Angermeyer, M.C.; Berglund, P.; Bromet, E.J.; Brugha, T.S.; Demyttenaere, K.; de Girolamo, G.; Haro, J.M.; Jin, R.; et al. Cross-national associations between gender and mental disorders in the WHO World Mental Health Surveys. Arch. Gen. Psychiatry 2009, 66, 785–795. [Google Scholar] [CrossRef]
- Bromet, E.; Andrade, L.H.; Hwang, I.; Sampson, N.A.; Alonso, J.; de Girolamo, G.; de Graaf, R.; Demyttenaere, K.; Hu, C.; Iwata, N.; et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 2011, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- King, R. Cognitive Therapy of Depression; Aaon, B., John, R., Brian, S., Gary, E., Eds.; Guilford: New York, NY, USA, 1979. [Google Scholar]
- Lépine, J.P.; Briley, M. The increasing burden of depression. Neuropsychiatr. Dis. Treat 2011, 7, 3–7. [Google Scholar] [PubMed] [Green Version]
- Walker, E.R.; McGee, R.E.; Druss, B.G. Mortality in mental disorders and global disease burden implications: A systematic review and meta-analysis. JAMA Psychiatry 2015, 72, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers 2016, 2, 16065. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.X.; Turner, D.; Generaal, E.; Bos, D.; Ikram, M.K.; Ikram, M.A.; Cuijpers, P.; Penninx, B.W.J.H. Exercise interventions for the prevention of depression: A systematic review of meta-analyses. BMC Public Health 2020, 20, 1255. [Google Scholar] [CrossRef]
- Gładka, A.; Zatoński, T.; Rymaszewska, J. Association between the long-term exposure to air pollution and depression. Adv. Clin. Exp. Med. 2022, 31, 1139–1152. [Google Scholar] [CrossRef]
- Torales, J.; O’Higgins, M.; Castaldelli-Maia, J.M.; Ventriglio, A. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int. J. Soc. Psychiatry 2020, 66, 317–320. [Google Scholar] [CrossRef] [Green Version]
- Vindegaard, N.; Benros, M.E. COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. Brain Behav. Immun. 2020, 89, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.C.P.; Antunes, G.F.; Matsumoto, M.; Pagano, R.L.; Martinez, R.C.R. Neuroinflammation, Pain and Depression: An Overview of the Main Findings. Front. Psychol. 2020, 11, 1825. [Google Scholar] [CrossRef] [PubMed]
- Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; et al. Neuroinflammation and depression: A review. Eur. J. Neurosci. 2021, 53, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Carrera-González, M.D.P.; Cantón-Habas, V.; Rich-Ruiz, M. Aging, depression and dementia: The inflammatory process. Adv. Clin. Exp. Med. 2022, 31, 469–473. [Google Scholar] [CrossRef]
- McAllister-Williams, R.H.; Arango, C.; Blier, P.; Demyttenaere, K.; Falkai, P.; Gorwood, P.; Hopwood, M.; Javed, A.; Kasper, S.; Malhi, G.S.; et al. The identification, assessment and management of difficult-to-treat depression: An international consensus statement. J. Affect Disord. 2020, 267, 264–282. [Google Scholar] [CrossRef]
- Al-Harbi, K.S. Treatment-resistant depression: Therapeutic trends, challenges, and future directions. Patient Prefer. Adherence 2012, 6, 369–388. [Google Scholar] [CrossRef] [Green Version]
- Bschor, T.; Adli, M. Treatment of depressive disorders. Dtsch. Ärzteblatt Int. 2008, 105, 782–792. [Google Scholar] [CrossRef]
- Tanaka, M.; Schally, A.V.; Telegdy, G. Neurotransmission of the antidepressant-like effects of the growth hormone-releasing hormone antagonist MZ-4-71. Behav. Brain Res. 2012, 228, 388–391. [Google Scholar] [CrossRef]
- Tanaka, M.; Telegdy, G. Neurotransmissions of antidepressant-like effects of neuromedin U-23 in mice. Behav. Brain Res. 2014, 259, 196–199. [Google Scholar] [CrossRef]
- Smagin, D.A.; Kovalenko, I.L.; Galyamina, A.G.; Belozertseva, I.V.; Tamkovich, N.V.; Baranov, K.O.; Kudryavtseva, N.N. Chronic Lithium Treatment Affects Anxious Behaviors and the Expression of Serotonergic Genes in Midbrain Raphe Nuclei of Defeated Male Mice. Biomedicines 2021, 9, 1293. [Google Scholar] [CrossRef]
- Tanaka, M.; Török, N.; Vécsei, L. Novel Pharmaceutical Approaches in Dementia. In NeuroPsychopharmacotherapy; Riederer, P., Laux, G., Nagatsu, T., Le, W., Riederer, C., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–18. [Google Scholar]
- Gonçalves, R.A.; Sudo, F.K.; Lourenco, M.V.; Drummond, C.; Assunção, N.; Vanderborght, B.; Ferreira, D.D.P.; Ribeiro, F.C.; Pamplona, F.A.; Tovar-Moll, F.; et al. Cerebrospinal fluid irisin and lipoxin A4 are reduced in elderly Brazilian individuals with depression: Insight into shared mechanisms between depression and dementia. Alzheimer’s Dement. 2022. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siteneski, A.; Cunha, M.P.; Lieberknecht, V.; Pazini, F.L.; Gruhn, K.; Brocardo, P.S.; Rodrigues, A.L.S. Central irisin administration affords antidepressant-like effect and modulates neuroplasticity-related genes in the hippocampus and prefrontal cortex of mice. Prog. Neuropsychopharmacol Biol. Psychiatry 2018, 84, 294–303. [Google Scholar] [CrossRef]
- Wang, S.; Pan, J. Irisin ameliorates depressive-like behaviors in rats by regulating energy metabolism. Biochem. Biophys. Res. Commun. 2016, 474, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Pignataro, P.; Dicarlo, M.; Zerlotin, R.; Storlino, G.; Oranger, A.; Sanesi, L.; Lovero, R.; Buccoliero, C.; Mori, G.; Colaianni, G.; et al. Antidepressant Effect of Intermittent Long-Term Systemic Administration of Irisin in Mice. Int. J. Mol. Sci. 2022, 23, 7596. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; David, H.A.; Arthur, S.; Birgitte, B.S.; Grazyna, R.; Craig, A.S.; James, C.O.; Herbert, Y.M.; George, J.J.; Lisa, C.K.; et al. Gene expression profiling in postmortem prefrontal cortex of major depressive disorder. J. Neurosci. 2007, 27, 13329–13340. [Google Scholar] [CrossRef] [Green Version]
- Schmaal, L.; Veltman, D.; van Erp, T.; Sämann, P.G.; Frodl, T.; Jahanshad, N.; Loehrer, E.; Tiemeier, H.; Hofman, A.; Niessen, W.J.; et al. Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder working group. Mol. Psychiatry 2016, 21, 806–812. [Google Scholar] [CrossRef] [Green Version]
- Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology 1985, 85, 367–370. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Le Pichon, M.; Jalfre, M. Depression: A new animal model sensitive to antidepressant treatments. Nature 1977, 266, 730–732. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 1977, 229, 327–336. [Google Scholar]
- Bartolomucci, A.; Leopardi, R. Stress and depression: Preclinical research and clinical implications. PLoS ONE 2009, 4, e4265. [Google Scholar] [CrossRef] [Green Version]
- Can, A.; Dao, D.T.; Terrillion, C.E.; Piantadosi, S.C.; Bhat, S.; Gould, T.D. The tail suspension test. J. Vis. Exp. 2012, 59, e3769. [Google Scholar] [CrossRef]
- Yankelevitch-Yahav, R.; Franko, M.; Huly, A.; Doron, R. The forced swim test as a model of depressive-like behavior. J. Vis. Exp. 2015, 97, 52587. [Google Scholar]
- Chatterjee, M.; Jaiswal, M.; Palit, G. Comparative evaluation of forced swim test and tail suspension test as models of negative symptom of schizophrenia in rodents. ISRN Psychiatry 2012, 12, 595141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, F.; Li, X.; Clay, M.; Lindstrom, T.; Skolnick, P. Intra-and interstrain differences in models of “behavioral despair”. Pharmacol. Biochem. Behav. 2001, 70, 187–192. [Google Scholar] [CrossRef]
- Cryan, J.F.; Mombereau, C.; Vassout, A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 2005, 29, 571–625. [Google Scholar] [CrossRef]
- O’Leary, O.F.; Cryan, J.F. Mood and Anxiety Related Phenotypes in Mice; Gould, T.D., Ed.; Humana Press: Totowa, NJ, USA, 2009; Volume 42, pp. 119–137. [Google Scholar]
- Prut, L.; Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. Eur. J. Pharmacol. 2003, 463, 3–33. [Google Scholar] [CrossRef]
- Seibenhener, M.L.; Wooten, M.C. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J. Vis. Exp. 2015, 96, e52434. [Google Scholar]
- Zimcikova, E.; Simko, J.; Karesova, I.; Kremlacek, J.; Malakova, J. Behavioral effects of antiepileptic drugs in rats: Are the effects on mood and behavior detectable in open-field test? Seizure 2017, 52, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Tiller, J.W. Depression and anxiety. Med. J. Aust. 2013, 199, S28–S31. [Google Scholar] [CrossRef]
- Lister, R.G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 1987, 92, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Kraeuter, A.K.; Guest, P.C.; Sarnyai, Z. The Elevated Plus Maze Test for Measuring Anxiety-Like Behavior in Rodents. Methods Mol. Biol. 2019, 1916, 69–74. [Google Scholar] [PubMed]
- Albrechet-Souza, L.; Cristina de Carvalho, M.; Rodrigues Franci, C.; Brandão, M.L. Increases in plasma corticosterone and stretched-attend postures in rats naive and previously exposed to the elevated plus-maze are sensitive to the anxiolytic-like effects of midazolam. Horm. Behav. 2007, 52, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Kaesermann, H.P. Stretched attend posture, a non-social form of ambivalence, is sensitive to a conflict-reducing drug action. Psychopharmacology 1986, 89, 31–37. [Google Scholar] [CrossRef]
- Molewijk, H.E.; van der Poel, A.M.; Olivier, B. The ambivalent behaviour “stretched approach posture” in the rat as a paradigm to characterize anxiolytic drugs. Psychopharmacology 1995, 121, 81–90. [Google Scholar] [CrossRef]
- Holly, K.S.; Orndorff, C.O.; Murray, T.A. MATSAP: An automated analysis of stretch-attend posture in rodent behavioral experiments. Sci. Rep. 2016, 6, 31286. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, Q.; Xu, T. Working memory function in patients with major depression disorder: A narrative review. Clin. Psychol. Psychother. 2022. Epub ahead of print. [Google Scholar] [CrossRef]
- Cantón-Habas, V.; Rich-Ruiz, M.; Romero-Saldaña, M.; Carrera-González, M.D.P. Depression as a Risk Factor for Dementia and Alzheimer’s Disease. Biomedicines 2020, 8, 457. [Google Scholar] [CrossRef]
- Dafsari, F.S.; Jessen, F. Depression-an underrecognized target for prevention of dementia in Alzheimer’s disease. Transl. Psychiatry 2020, 10, 160. [Google Scholar] [CrossRef]
- Lima-Filho, R.; Fortuna, J.S.; Cozachenco, D.; Isaac, A.R.; Lyra, E.; Silva, N.; Saldanha, A.; Santos, L.E.; Ferreira, S.T.; Lourenco, M.V.; et al. Brain FNDC5/Irisin Expression in Patients and Mouse Models of Major Depression. Eneuro 2023, 10, ENEURO.0256–22.2023. [Google Scholar] [CrossRef]
- Kraeuter, A.K.; Guest, P.C.; Sarnyai, Z. The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. Methods Mol. Biol. 2019, 1916, 105–111. [Google Scholar]
- Esquivel, N.; García, Y.; Lores, B.; Gutiérrez, M.; Rodríguez, C. Characterization of aged male BALB/ccenp mice as a model of dementia. Lab. Anim. Res. 2020, 36, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Xu, Y.; Zheng, L.; Pang, H.; Zhang, Q.; Lou, L.; Huang, X. Sex Difference in Global Burden of Major Depressive Disorder: Findings From the Global Burden of Disease Study 2019. Front. Psychiatry 2022, 13, 789305. [Google Scholar] [CrossRef] [PubMed]
- Serrano, E.; Warnock, J.; Jill, K. Depressive Disorders Related to Female Reproductive Transitions. J. Pharm. Pract. 2007, 20, 385–391. [Google Scholar] [CrossRef]
- Halbreich, U.; Kahn, L.S. Atypical depression, somatic depression and anxious depression in women: Are they gender-preferred phenotypes? J. Affect. Disord. 2007, 102, 245–258. [Google Scholar] [CrossRef]
- Wrann, C.D.; White, J.P.; Salogiannnis, J.; Laznik-Bogoslavski, D.; Wu, J.; Ma, D.; Lin, J.D.; Greenberg, M.E.; Spiegelman, B.M. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013, 18, 649–659. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Valaris, S.; Young, M.F.; Haley, E.B.; Luo, R.; Bond, S.F.; Mazuera, S.; Kitchen, R.R.; Caldarone, B.J.; Bettio, L.E.B.; et al. Exercise hormone irisin is a critical regulator of cognitive function. Nat. Metab. 2021, 3, 1058–1070. [Google Scholar] [CrossRef]
- Pignataro, P.; Dicarlo, M.; Zerlotin, R.; Zecca, C.; Dell’Abate, M.T.; Buccoliero, C.; Logroscino, G.; Colucci, S.; Grano, M. FNDC5/Irisin System in Neuroinflammation and Neurodegenerative Diseases: Update and Novel Perspective. Int. J. Mol. Sci. 2021, 22, 1605. [Google Scholar] [CrossRef]
Type of Treatment | Test | Parameter | Vehicle-Treated Mice (Mean ± SEM) | Irisin-Treated Mice (Mean ± SEM) | Percentage Change |
---|---|---|---|---|---|
Short-term irisin treatment | TST | Immobility (s) | 256.1 ± 12.02 | 220.5 ± 10.44 | −13.90% |
FST | Immobility (s) | 201.1 ± 6.323 | 149.2 ± 11.43 | −25.81% | |
Long-term irisin treatment [28] | TST | Immobility (s) | 217.80 ± 11.88 | 163.80 ± 14 | −24.79% |
FST | Immobility (s) | 162.33 ± 7.409 | 133.44 ± 10.39 | −17.81% |
Factors | ||||
---|---|---|---|---|
Behavioral Test | Parameter | Treatment | Sex | Treatment x Sex |
TST | Immobility | F (1.16) = 4.86; p = 0.042 | F (1.16) = 0.18; p = 0.677 | F (1.16) = 0.29; p = 0.592 |
FST | Immobility | F (1.20) = 13.60; p = 0.002 | F (1.20) = 0.07; p = 0.780 | F (1.20) = 0.19; p = 0.663 |
EPM | Entries in open arms | F (1.19) = 4.72; p = 0.043 | F (1.19) = 0.09; p = 0.759 | F (1.19) = 0.09; p = 0.759 |
Time in open arms | F (1.19) = 4.83; p = 0.041 | F (1.19) = 0.12; p = 0.725 | F (1.19) = 0.04; p = 0.845 | |
Entries in closed arms | F (1.19) = 1.70; p = 0.207 | F (1.19) = 3.47; p = 0.078 | F (1.19) = 4.91; p = 0.039 | |
Time in closed arms | F (1.19) = 1.41; p = 0.249 | F (1.19) = 0.06; p = 0.802 | F (1.19) = 1.05; p = 0.319 | |
Total stretched-attend posture | F (1.19) = 4.61; p = 0.045 | F (1.19) = 6.51; p = 0.019 | F (1.19) = 0.12; p = 0.729 | |
YM | Total entries | F (1.20) = 0.17; p = 0.685 | F (1.20) = 14.76; p = 0.001 | F (1.20) = 0.13; p = 0.724 |
Percent alternation | F (1.20) = 2.49; p = 0.130 | F (1.20) = 0.75; p = 0.396 | F (1.20) = 6.19; p = 0.022 |
Gene Name | Gene Bank Number | Primer Sequence (5′-3′) | Product Size (bp) | Annealing Temperature (°C) |
---|---|---|---|---|
Gapdh | NM_001289726.1 | Forward ACACCAGTAGACTCCACGACA Reverse ACGGCAAATTCAACGGCACAG | 145 | 60.48 62.59 |
Fndc5 | NM_027402.4 | Forward GTGCTGATCATTGTTGTGGTCC Reverse ATCATATCTTGCTGCGGAGGAG | 169 | 60.10 60.03 |
Pgc-1α | NM_008904.3 | Forward CCCTGCCATTGTTAAGACC Reverse TGCTGCTGTTCCTGTTTTC | 161 | 55.87 56.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pignataro, P.; Dicarlo, M.; Suriano, C.; Sanesi, L.; Zerlotin, R.; Storlino, G.; Oranger, A.; Zecca, C.; Dell’Abate, M.T.; Mori, G.; et al. Once-Daily Subcutaneous Irisin Administration Mitigates Depression- and Anxiety-like Behavior in Young Mice. Int. J. Mol. Sci. 2023, 24, 6715. https://doi.org/10.3390/ijms24076715
Pignataro P, Dicarlo M, Suriano C, Sanesi L, Zerlotin R, Storlino G, Oranger A, Zecca C, Dell’Abate MT, Mori G, et al. Once-Daily Subcutaneous Irisin Administration Mitigates Depression- and Anxiety-like Behavior in Young Mice. International Journal of Molecular Sciences. 2023; 24(7):6715. https://doi.org/10.3390/ijms24076715
Chicago/Turabian StylePignataro, Patrizia, Manuela Dicarlo, Clelia Suriano, Lorenzo Sanesi, Roberta Zerlotin, Giuseppina Storlino, Angela Oranger, Chiara Zecca, Maria Teresa Dell’Abate, Giorgio Mori, and et al. 2023. "Once-Daily Subcutaneous Irisin Administration Mitigates Depression- and Anxiety-like Behavior in Young Mice" International Journal of Molecular Sciences 24, no. 7: 6715. https://doi.org/10.3390/ijms24076715
APA StylePignataro, P., Dicarlo, M., Suriano, C., Sanesi, L., Zerlotin, R., Storlino, G., Oranger, A., Zecca, C., Dell’Abate, M. T., Mori, G., Grano, M., Colucci, S., & Colaianni, G. (2023). Once-Daily Subcutaneous Irisin Administration Mitigates Depression- and Anxiety-like Behavior in Young Mice. International Journal of Molecular Sciences, 24(7), 6715. https://doi.org/10.3390/ijms24076715