Rational In Silico Design of Molecularly Imprinted Polymers: Current Challenges and Future Potential
Abstract
:1. Introduction
2. Computational Modelling during Polymerization
- Appropriate monomer(s) selection;
- Monomer-to-template ratio optimization;
- Monomers, template, and additional polymerization conditions/agents analyzed at different solvent conditions;
- Structural polymer establishment and optimization;
- Polymer-template interactions (generic);
- Polymer-template interactions in a target solvent and binding to structural analogues for evaluating selectivity.
Method Used | Steps Explored | Monomers Used/Screened | Computational Technique | Template | MIP Performance | References |
---|---|---|---|---|---|---|
QM | 1,2 | Pyrrole, 3,4-ethylenedioxythiophene and m-phenylenediamine | Semi-empirical PM3, DFT method at B3LYP/6-31+G level | Sulfamethizole | IF: 8.4 LOD ~ 1.7 nM | [38] |
2,3 | MAA | DFT method at B3LYP/6-311G (d) level; PCM for solvent effect | Naltrexone | Q: 11.60 mg/g, IF: 2.27 | [39] | |
2,3 | Pyrrole | DFT method at B3LYP/6-311+G*; PCM for solvent | Dopamine | LOD ~ 10 nM | [22] | |
1,2,3 | AA, MAA, AAM, MMA, TFMAA, p-VBA, N-vinyl pyridine, allyl alcohol, 1-vinylimidazole | Semi-empirical PM3, DFT method at B3LYP/6-31G(d,p); PCM for solvent effect | Metaproterenol | LOD ~ 0.01 µg/mL; IF: 5.2 | [40] | |
1,2,3 | AA, MAA, MAAM, 2-VP, STY, allylamine | DFT method at B3LYP/6-31G+ (d, p) level; PCM for solvent effect | (S)-warfarin | IF: 25.7; Recovery ~ 90% | [41] | |
1,2,3 | AA, MAA, AAM, MAAM, MMA,4-VP | HF 6-311G** basis set, DFT method at B3LYP/3-21G level PCM for solvent effect | Metformin | LOD ~ 0.005 ng/mL; Recovery ~ 99% | [42] | |
1,2,3 | AA, MAA, AAM, 4-VP, 1-vinylimidazole, 4-vinylimidazole | DFT method at B3LYP/6-311G (d,p) level; PCM for solvent effect | Cannabinoids | – | [43] | |
1,2,3 | AA, MAA, TFMAA | DFT method at B3LYP/6-31G (d,p) level; PCM for solvent effect | Tramadol | – | [44] | |
1,2,3 | AA, MAA, AAM, MAAM, TFMAA, ITA, p-VBA, 2-VP, 4-VP, acrolein | DFT method at B3LYP/6-31++G (d,p) level (also, second-order Møller–Plesset (MP2)); PCM for solvent effect | L-Serine | – | [23] | |
1,2,3 | MAA, AAM, ITA, VP | DFT method at different levels: B3LYP, BHandHLYP, M062X, and ωB97xD and basis sets: 6-31G(d,p), 6-31++G (d,p) (Comparative study); PCM for solvent effect | 2,3,7,8-tetra-chlorodibenzo-p-dioxin | Q: 3.7 mg/g, IF: 2.371 | [25] | |
1,2,3 | AA, MAA, TFMAA, p-VBA | DFT method at B3LYP/6-311G (d,p) level; PCM for solvent effect | Dinotefuran | Recovery: 89.87 ± 4.64% | [45] | |
1,2,3 | MAA, AAM, vinyl benzene | DFT method at B3LYP/6-311++G (d,p) level; PCM for solvent effect | 3-hydroxy-2-methyl quinoline-4(1H)-one (HMQ), dummy template | Q: 5.21 mg/g, IF: 6.43 | [46] | |
2,3,4,5 6 | MAA | Semi-empirical PM3, DFT method at B3LYP/6-31G level | Hydroxyzine, cetirizine | – | [47] | |
MD | 2,3 | MAA, MMA | Amber99, GAFF | Bupivacaine | – | [35,48,49] |
2,3 | 4-VP | COMPASS | 4-nitrophenol | IF: ~1.4 | [50] | |
1,2,3 | MAA | Amber99, GAFF | 17-β-estradiol | – | [51] | |
1,2,3 | MAA, poly (ethylene glycol) ethyl ether methacrylate | Amber ff14SB, GAFF | MMP9 protein | IF: 1.3 | [52] | |
4,5,6 | MAA | OPLS-AA | Cholesterol | – | [53] | |
1,2,3,4, 5,6 | MAA, AAM, N,N′-methyl- enebisacrylamide and 2- (dimethylamino)ethyl methacrylate | MARTINI ff, OPLS-AA, coarse-grained (CG) lattice, Monte Carlo (MC) simulations | Lysozyme and cytochrome c | IF: ~1.2 | [54] | |
QM-MD | 1,2,3 | MMA, MAAM, 2-VP, 4-VP | DFT method at B3LYP/6-31+G (d,p) level; PCM for solvent effect; COMPASS | 5-(3,5-Dichloro- 2-hydroxybenzyl amino)-2-hydroxybenzoic acid | – | [55] |
1,2,3 | 1-(triethoxysilylpropyl)-3 -(trimethoxysilylpropyl)-4,5-dihydroimidazolium iodide; 4-(2-(trimethoxysilyl)ethyl)pyridine; 1-(3-(trimethoxysilyl)propyl)urea | DFT method at B3LYP/6-311+G(2d,2p)//HF/6-31 G* level; (also tested (B3LYP, CAM-B3LYP, LC-wPBE) with different basis sets (6-31++G(d,p), 6-311++G(2d,2p), cc-pVTZ); PCM for solvent effect; OPLS-aa | Naproxen | – | [56] | |
1,2,3 | N-allyl thiourea, N-Benzoyl thiourea, (2, 6-difluorophenyl) thiourea, 1- (3-carboxyphenyl)—2-thiourea, 1-Benzoyl-3-(2-Pyridyl)− 2-Thiourea | DFT method at B3LYP/6-31+G (d,p) level; PCM for solvent effect; universal force field (Material studio) | H3AsO3 (Heavy metal) | – | [57] | |
2,3,4 | Cyt-S4: cytosine-bis(2,2′-bithienyl)-(4-carboxyphenyl)methane ester | DFT method at the B3LYP/3-21G* level; PCM for solvent effect; OPLS | 6-Thioguanine | IF:2.9; LOD: 10 µM | [58] | |
4,5,6 | MAAM | HF/PM3; GAFF | 17-β-estradiol | – | [37] | |
MM-MD | 1,2,3 | 28 monomers including 2-hydroxyethyl methacrylate, MAA, ITA | SYBL PACKAGE | Curcumin, ephedrine | IF: 1.3–2.0 | [59,60] |
1,2 | AA, MAA, AAM, MAAM, 2-VP, 4-VP | CHARMm and MMFF94 | Amlodipine | Q: 53.77 µg/mg; IF: 2 | [61] | |
2,3,4,5 | MAA | PCFF, Monte Carlo (CMC) simulations | Caffeine, theophylline | – | [62] | |
1,2,3 | AA, MAA, TFMAA, ITA, 2-VP, 4-VP, STY, 2-acrylamido-2-methyl-1-propanesulfonic acid, allylamine, 1-vinylimidazole, N,N-diethylamino ethyl methacrylate acrylamide, 2-hydroxyethyl methacrylate | SYBL; AMBER99sb force | Melamine | IF: 1.39 | [63] | |
1,3 | MAA, ITA, NIPAM, N-hydroxyethyl acrylamide, N-phenylacrylamide, 2-acrylamido-2-methyl-1-propanesulfonic acid | GAFF, GROMOS96 | SARS-CoV-2 spike protein epitopes | – | [64] | |
QM-MM | 1,2,3,4,5 | AA, MAA, TFMAA, 4-VP, allylamine, 1-vinylimidazole, 2-hydroxyethyl methacrylate | DFT method at the B3LYP/6-311+G(d,p) level; PCM for solvent effect; CHARMm | 1-(2,4-Difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone | Q: 0.333 µmol/g | [65] |
2,3,4,5,6 | MAA | DFT method at the B3LYP/6-311+G(d,p) level; PCM for solvent effect; CHARMm | Tyramine | IF: 4.27; Recovery: ~95% | [66] | |
2,3,4,5,6 | MAA | Semi-empirical PM3; conductor-like screening model (COSMO) for solvent effect; GAFF | Histamine, l-histidine and d-histidine; theophylline, caffeine, and theobromine | – | [67] | |
1,2,3 | MAA, AAM, MMA | HF/6–31G(d); PCM for solvent effect; MMFF94x | 6-mercaptopurine | Q: 0.822 mg/g, IF: 3.99 | [68] | |
QM-MM-MD | 1,2,3,4,5,6 | AA, MAA, AAM, TFMAA, ITA, 4-VP, isopropenylbenzene, 2-hydroxyethyl methacrylate, 2-(diethylamino)ethyl methacrylate, allylamine | DFT method at the B3LYP/6-311+G(d,p) level; CHARMm | Octopamine | IF: 6.37 | [69] |
3. In Silico Monomer Selection
4. In Silico Template Modelling and Selection
5. In Silico Solvent Modelling
6. In Silico Polymer Modelling
7. In Silico Polymer Performance Evaluation
8. Machine Learning for MIPs
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersson, L.; Sellergren, B.; Mosbach, K. Imprinting of Amino Acid Derivatives in Macroporous Polymers. Tetrahedron Lett. 1984, 25, 5211–5214. [Google Scholar] [CrossRef]
- Takeuchi, T.; Sunayama, H. Molecularly Imprinted Polymers. In Encyclopedia of Polymeric Nanomaterials; Kobayashi, S., Müllen, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–5. [Google Scholar]
- Nicholls, I.A.; Golker, K.; Olsson, G.D.; Suriyanarayanan, S.; Wiklander, J.G. The Use of Computational Methods for the Development of Molecularly Imprinted Polymers. Polymers 2021, 13, 2841. [Google Scholar] [CrossRef] [PubMed]
- Saad, E.M.; el Gohary, N.A.; Abdel-Halim, M.; Handoussa, H.; Mohamed El Nashar, R.; Mizaikoff, B. Molecularly Imprinted Polymers for Selective Extraction of Rosmarinic Acid from Rosmarinus Officinalis L. Food Chem. 2021, 335, 127644. [Google Scholar] [CrossRef] [PubMed]
- Rajpal, S.; Bhakta, S.; Mishra, P. Biomarker Imprinted Magnetic Core–Shell Nanoparticles for Rapid, Culture Free Detection of Pathogenic Bacteria. J. Mater. Chem. B 2021, 9, 2436–2446. [Google Scholar] [CrossRef]
- Altintas, Z.; Gittens, M.; Guerreiro, A.; Thompson, K.A.; Walker, J.; Piletsky, S.; Tothill, I.E. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers. Anal. Chem. 2015, 87, 6801–6807. [Google Scholar] [CrossRef]
- Mourão, C.A.; Bokeloh, F.; Xu, J.; Prost, E.; Duma, L.; Merlier, F.; Bueno, S.M.A.; Haupt, K.; Tse Sum Bui, B. Dual-Oriented Solid-Phase Molecular Imprinting: Toward Selective Artificial Receptors for Recognition of Nucleotides in Water. Macromolecules 2017, 50, 7484–7490. [Google Scholar] [CrossRef]
- Canfarotta, F.; Waters, A.; Sadler, R.; McGill, P.; Guerreiro, A.; Papkovsky, D.; Haupt, K.; Piletsky, S. Biocompatibility and Internalization of Molecularly Imprinted Nanoparticles. Nano Res. 2016, 9, 3463–3477. [Google Scholar] [CrossRef]
- Chen, C.; Luo, J.; Li, C.; Ma, M.; Yu, W.; Shen, J.; Wang, Z. Molecularly Imprinted Polymer as an Antibody Substitution in Pseudo-Immunoassays for Chemical Contaminants in Food and Environmental Samples. J. Agric. Food Chem. 2018, 66, 2561–2571. [Google Scholar] [CrossRef]
- Lin, Z.T.; Demarr, V.; Bao, J.; Wu, T. Molecularly Imprinted Polymer-Based Biosensors: For the Early, Rapid Detection of Pathogens, Biomarkers, and Toxins in Clinical, Environmental, or Food Samples. IEEE Nanotechnol. Mag. 2018, 12, 6–13. [Google Scholar] [CrossRef]
- Bhakta, S.; Mishra, P. Molecularly Imprinted Polymer-Based Sensors for Cancer Biomarker Detection. Sens. Actuators Rep. 2021, 3, 100061. [Google Scholar] [CrossRef]
- Goyal, G.; Bhakta, S.; Mishra, P. Surface Molecularly-Imprinted Biomimetic Magnetic Nanoparticles for Enantioseparation. ACS Appl. Nano Mater. 2019, 2, 6747–6756. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Boroznjak, R.; Öpik, A.; Syritski, V. Molecularly Imprinted Poly(Meta-Phenylenediamine) Based QCM Sensor for Detecting Amoxicillin. Sens. Actuators B Chem. 2018, 258, 766–774. [Google Scholar] [CrossRef]
- Nicholls, I.A.; Andersson, H.S.; Golker, K.; Henschel, H.; Karlsson, B.C.G.; Olsson, G.D.; Rosengren, A.M.; Shoravi, S.; Suriyanarayanan, S.; Wiklander, J.G.; et al. Rational Design of Biomimetic Molecularly Imprinted Materials: Theoretical and Computational Strategies for Guiding Nanoscale Structured Polymer Development. Anal. Bioanal. Chem. 2011, 400, 1771–1786. [Google Scholar] [CrossRef]
- Suryana, S.; Mutakin; Rosandi, Y.; Hasanah, A.N. An Update on Molecularly Imprinted Polymer Design through a Computational Approach to Produce Molecular Recognition Material with Enhanced Analytical Performance. Molecules 2021, 26, 1891. [Google Scholar] [CrossRef]
- Cowen, T.; Karim, K.; Piletsky, S. Computational Approaches in the Design of Synthetic Receptors—A Review. Anal. Chim. Acta 2016, 936, 62–74. [Google Scholar] [CrossRef]
- Belbruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef]
- Subrahmanyam, S.; Piletsky, S.A. Computational Design of Molecularly Imprinted Polymers. In Combinatorial Methods for Chemical and Biological Sensors; Springer: New York, NY, USA, 2009; pp. 135–172. [Google Scholar]
- Williams, D.H.; Stephens, E.; O’Brien, D.P.; Zhou, M. Understanding Noncovalent Interactions: Ligand Binding Energy and Catalytic Efficiency from Ligand-Induced Reductions in Motion within Receptors and Enzymes. Angew. Chem. Int. Ed. 2004, 43, 6596–6616. [Google Scholar] [CrossRef]
- Williams, D.H.; Cox, J.P.L.; Doig, A.J.; Gardner, M.; Gerhard, U.; Kaye, P.T.; Lai, A.R.; Nicholls, I.A.; Salter, C.J.; Mitchell, R.C. Toward the Semiquantitative Estimation of Binding Constants. Guides for Peptide-Peptide Binding in Aqueous Solution. J. Am. Chem. Soc 1991, 113, 7020–7030. [Google Scholar] [CrossRef]
- Azenha, M.; Kathirvel, P.; Nogueira, P.; Fernando-Silva, A. The Requisite Level of Theory for the Computational Design of Molecularly Imprinted Silica Xerogels. Biosens. Bioelectron. 2008, 23, 1843–1849. [Google Scholar] [CrossRef]
- Maouche, N.; Ktari, N.; Bakas, I.; Fourati, N.; Zerrouki, C.; Seydou, M.; Maurel, F.; Chehimi, M.M. A Surface Acoustic Wave Sensor Functionalized with a Polypyrrole Molecularly Imprinted Polymer for Selective Dopamine Detection. J. Mol. Recognit. 2015, 28, 667–678. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, M. Designing L-Serine Targeted Molecularly Imprinted Polymer via Theoretical Investigation. J. Comput. Chem. 2016, 15, 1650041. [Google Scholar] [CrossRef]
- Mukawa, T.; Goto, T.; Nariai, H.; Aoki, Y.; Imamura, A.; Takeuchi, T. Novel Strategy for Molecular Imprinting of Phenolic Compounds Utilizing Disulfide Templates. J. Pharm. Biomed. Anal. 2003, 30, 1943–1947. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Pal, S. Quantum Mechanical Studies on Dioxin-Imprinted Polymer Precursor Composites: Fundamental Insights to Enhance the Binding Strength and Selectivity of Biomarkers. J. Mol. Recognit. 2018, 31, e2736. [Google Scholar] [CrossRef] [PubMed]
- Kryscio, D.R.; Shi, Y.; Ren, P.; Peppas, N.A. Molecular Docking Simulations for Macromolecularly Imprinted Polymers. Ind. Eng. Chem. Res. 2011, 50, 13877–13884. [Google Scholar] [CrossRef] [Green Version]
- Diñeiro, Y.; Menéndez, M.I.; Blanco-López, M.C.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Computational Approach to the Rational Design of Molecularly Imprinted Polymers for Voltammetric Sensing of Homovanillic Acid. Anal. Chem. 2005, 77, 6741–6746. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Martin, L.; Vulfson, E.N. Predicting the Selectivity of Imprinted Polymers. Chromatographia 1998, 47, 457–464. [Google Scholar] [CrossRef]
- Andersson, H.S.; Nicholls, I.A. Spectroscopic Evaluation of Molecular Imprinting Polymerization Systems. Bioorg. Chem. 1997, 25, 203–211. [Google Scholar] [CrossRef]
- Svenson, J.; Andersson, H.S.; Piletsky, S.A.; Nicholls, I.A. Spectroscopic Studies of the Molecular Imprinting Self-assembly Process. J. Mol. Recognit. 1998, 11, 83–86. [Google Scholar] [CrossRef]
- Molinelli, A.; Nolan, K.; Smyth, M.R.; Jakusch, M.; Mizaikoff, B. Analyzing the Mechanisms of Selectivity in Biomimetic Self-Assemblies via IR and NMR Spectroscopy of Prepolymerization Solutions and Molecular Dynamics Simulations. Int. J. Environ. Anal. Chem. 2002, 41, 5196–5204. [Google Scholar] [CrossRef]
- O’Mahony, J.; Karlsson, B.C.G.; Mizaikoff, B.; Nicholls, I.A. Correlated Theoretical, Spectroscopic and X-Ray Crystallographic Studies of a Non-Covalent Molecularly Imprinted Polymerisation System. Analyst 2007, 132, 1161–1168. [Google Scholar] [CrossRef]
- Subrahmanyam, S.; Piletsky, S.A.; Piletska, E.V.; Chen, B.; Karim, K.; Turner, A.P.F. ‘Bite-and-Switch’ Approach Using Computationally Designed Molecularly Imprinted Polymers for Sensing of Creatinine. Biosens. Bioelectron. 2001, 16, 631–637. [Google Scholar] [CrossRef]
- O’Mahony, J.; Wei, S.; Molinelli, A.; Mizaikoff, B. Imprinted Polymeric Materials. Insight into the Nature of Prepolymerization Complexes of Quercetin Imprinted Polymers. Anal. Chem. 2006, 78, 6187–6190. [Google Scholar] [CrossRef]
- Golker, K.; Karlsson, B.C.G.; Rosengren, A.M.; Nicholls, I.A. A Functional Monomer Is Not Enough: Principal Component Analysis of the Influence of Template Complexation in Pre-Polymerization Mixtures on Imprinted Polymer Recognition and Morphology. Int. J. Mol. Sci. 2014, 15, 20572–20584. [Google Scholar] [CrossRef] [Green Version]
- García, Y.; Úsuga, B.A.; Campos, C.H.; Alderete, J.B.; Jiménez, V.A. NanoMIPs Design for Fucose and Mannose Recognition: A Molecular Dynamics Approach. J. Chem. Inf. Model. 2021, 61, 2048–2061. [Google Scholar] [CrossRef]
- Zink, S.; Moura, F.A.; Autreto, P.A.D.S.; Galvão, D.S.; Mizaikoff, B. Virtually Imprinted Polymers (VIPs): Understanding Molecularly Templated Materials via Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2018, 20, 13145–13152. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Tretjakov, A.; Reut, J.; Boroznjak, R.; Öpik, A.; Rappich, J.; Furchner, A.; Hinrichs, K.; Syritski, V. Molecularly Imprinted Polymer Integrated with a Surface Acoustic Wave Technique for Detection of Sulfamethizole. Anal. Chem. 2016, 88, 1476–1484. [Google Scholar] [CrossRef]
- Rahmani, M.E.; Ansari, M.; Nateghi, M.; Kazemipour, M. Computation-Assisted Molecularly Imprinted Polymer Synthesis for Extraction of Naltrexone from Urine Using Experimental Design and Determination by UPLC-DAD. J. AOAC Int. 2017, 100, 700–711. [Google Scholar] [CrossRef]
- Ahmadi, F.; Karamian, E. Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode. Iran. J. Pharm. Res. 2014, 13, 417–429. [Google Scholar]
- Ahmadi, F.; Yawari, E.; Nikbakht, M. Computational Design of an Enantioselective Molecular Imprinted Polymer for the Solid Phase Extraction of S-Warfarin from Plasma. J. Chromatogr. A 2014, 1338, 9–16. [Google Scholar] [CrossRef]
- Roy, E.; Patra, S.; Madhuri, R.; Sharma, P.K. Gold Nanoparticle Mediated Designing of Non-Hydrolytic Sol–Gel Cross-Linked Metformin Imprinted Polymer Network: A Theoretical and Experimental Study. Talanta 2014, 120, 198–207. [Google Scholar] [CrossRef]
- Fernandes, L.S.; Homem-De-Mello, P.; De Lima, E.C.; Honorio, K.M. Rational Design of Molecularly Imprinted Polymers for Recognition of Cannabinoids: A Structure-Property Relationship Study. Eur. Polym. J. 2015, 71, 364–371. [Google Scholar] [CrossRef]
- Fonseca, M.C.; Nascimento, C.S.; Borges, K.B. Theoretical Investigation on Functional Monomer and Solvent Selection for Molecular Imprinting of Tramadol. Chem. Phys. Lett. 2016, 645, 174–179. [Google Scholar] [CrossRef]
- Silva, C.F.; Borges, K.B.; do Nascimento, C.S. Rational Design of a Molecularly Imprinted Polymer for Dinotefuran: Theoretical and Experimental Studies Aimed at the Development of an Efficient Adsorbent for Microextraction by Packed Sorbent. Analyst 2018, 143, 149. [Google Scholar] [CrossRef] [PubMed]
- Tajani, A.S.; Soheili, V.; Moosavi, F.; Ghodsi, R.; Alizadeh, T.; Fazly Bazzaz, B.S. Ultra Selective and High-Capacity Dummy Template Molecular Imprinted Polymer to Control Quorum Sensing and Biofilm Formation of Pseudomonas aeruginosa. Anal. Chim. Acta 2022, 1199, 339574. [Google Scholar] [CrossRef]
- Azimi, A.; Javanbakht, M. Computational Prediction and Experimental Selectivity Coefficients for Hydroxyzine and Cetirizine Molecularly Imprinted Polymer Based Potentiometric Sensors. Anal. Chim. Acta 2014, 812, 184–190. [Google Scholar] [CrossRef]
- Golker, K.; Karlsson, B.C.G.; Wiklander, J.G.; Rosengren, A.M.; Nicholls, I.A. Hydrogen Bond Diversity in the Pre-Polymerization Stage Contributes to Morphology and MIP-Template Recognition—MAA versus MMA. Eur. Polym. J. 2015, 66, 558–568. [Google Scholar] [CrossRef]
- Golker, K.; Nicholls, I.A. The Effect of Crosslinking Density on Molecularly Imprinted Polymer Morphology and Recognition. Eur. Polym. J. 2016, 75, 423–430. [Google Scholar] [CrossRef]
- Meier, F.; Schott, B.; Riedel, D.; Mizaikoff, B. Computational and Experimental Study on the Influence of the Porogen on the Selectivity of 4-Nitrophenol Molecularly Imprinted Polymers. Anal. Chim. Acta 2012, 744, 68–74. [Google Scholar] [CrossRef]
- Wei, S.; Jakusch, M.; Mizaikoff, B. Investigating the Mechanisms of 17β-Estradiol Imprinting by Computational Prediction and Spectroscopic Analysis. Anal. Bioanal. Chem. 2007, 389, 423–431. [Google Scholar] [CrossRef]
- Villano, A.; Barcaro, G.; Monti, S.; Barbani, N.; Rizzo, A.; Rossin, D.; Rastaldo, R.; Giachino, C.; Cristallini, C. Molecularly Imprinted Nanoparticles towards MMP9 for Controlling Cardiac ECM after Myocardial Infarction: A Predictive Experimental-Computational Chemistry Investigation. Biomedicines 2022, 10, 2070. [Google Scholar] [CrossRef]
- Luo, D.; Zhao, Z.; Zhang, L.; Wang, Q.; Wang, J. On the Structure of Molecularly Imprinted Polymers by Modifying Charge on Functional Groups through Molecular Dynamics Simulations. Mol. Simul. 2014, 40, 431–438. [Google Scholar] [CrossRef]
- Zadok, I.; Srebnik, S. Coarse-Grained Simulation of Protein-Imprinted Hydrogels. J. Phys. Chem. B 2018, 122, 7091–7101. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, T.; Dai, P.; Jiang, N.; Li, F. Employment of Molecularly Imprinted Polymers to High-Throughput Screen NNOS-PSD-95 Interruptions: Structure and Dynamics Investigations on Monomer-Template Complexation. ChemPhysChem 2016, 17, 893–901. [Google Scholar] [CrossRef]
- Perez, M.; Concu, R.; Ornelas, M.; Natália, M.; Cordeiro, D.S.; Azenha, M.; Silva, A.F. Measurement Artifacts Identified in the UV-Vis Spectroscopic Study of Adduct Formation within the Context of Molecular Imprinting of Naproxen. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 153, 661–668. [Google Scholar] [CrossRef]
- Wu, X.; Shen, J.; Ye, T.; Cao, H.; Yuan, M.; Yin, F.; Hao, L.; Zhang, C.; Xu, F. Thiourea Derivatives Acting as Functional Monomers of As(Ш) Molecular Imprinted Polymers: A Theoretical and Experimental Study on Binding Mechanisms. J. Hazard. Mater. 2022, 430, 128508. [Google Scholar] [CrossRef]
- Huynh, T.P.; Wojnarowicz, A.; Sosnowska, M.; Srebnik, S.; Benincori, T.; Sannicolò, F.; D’Souza, F.; Kutner, W. Cytosine Derivatized Bis(2,2′-Bithienyl)Methane Molecularly Imprinted Polymer for Selective Recognition of 6-Thioguanine, an Antitumor Drug. Biosens. Bioelectron. 2015, 70, 153–160. [Google Scholar] [CrossRef]
- Piletska, E.V.; Abd, B.H.; Krakowiak, A.S.; Parmar, A.; Pink, D.L.; Wall, K.S.; Wharton, L.; Moczko, E.; Whitcombe, M.J.; Karim, K.; et al. Magnetic High Throughput Screening System for the Development of Nano-Sized Molecularly Imprinted Polymers for Controlled Delivery of Curcumin. Analyst 2015, 140, 3113. [Google Scholar] [CrossRef]
- Piletsky, S.A.; Karim, K.; Piletska, E.V.; Day, C.J.; Freebairn, K.W.; Legge, C.; Turner, A.P.F. Recognition of Ephedrine Enantiomers by Molecularly Imprinted Polymers Designed Using a Computational Approach. Analyst 2001, 126, 1826–1830. [Google Scholar] [CrossRef]
- Zhang, K.; Zou, W.; Zhao, H.; Dramou, P.; Pham-Huy, C.; He, J.; He, H. Adsorption Behavior of a Computer-Aid Designed Magnetic Molecularly Imprinted Polymer via Response Surface Methodology. RSC Adv. 2015, 5, 61161. [Google Scholar] [CrossRef]
- Schauperl, M.; Lewis, D.W. Probing the Structural and Binding Mechanism Heterogeneity of Molecularly Imprinted Polymers. J. Phys. Chem. B 2015, 119, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Bates, F.; Busato, M.; Piletska, E.; Whitcombe, M.J.; Karim, K.; Guerreiro, A.; Del Valle, M.; Giorgetti, A.; Piletsky, S. Computational Design of Molecularly Imprinted Polymer for Direct Detection of Melamine in Milk. Sep. Sci. Technol. 2017, 52, 1441–1453. [Google Scholar] [CrossRef] [Green Version]
- Cubuk, H.; Ozbil, M.; Cakir Hatir, P. Computational Analysis of Functional Monomers Used in Molecular Imprinting for Promising COVID-19 Detection. Comput. Chem. 2021, 1199, 113215. [Google Scholar] [CrossRef] [PubMed]
- Sobiech, M.; Żołek, T.; Luliński, P.; Maciejewska, D. A Computational Exploration of Imprinted Polymer Affinity Based on Voriconazole Metabolites. Analyst 2014, 139, 1779–1788. [Google Scholar] [CrossRef] [PubMed]
- Luliński, P.; Sobiech, M.; Zołek, T.; Maciejewska, D. A Separation of Tyramine on a 2-(4-Methoxyphenyl)Ethylamine Imprinted Polymer: An Answer from Theoretical and Experimental Studies. Talanta 2014, 129, 155–164. [Google Scholar] [CrossRef]
- Terracina, J.J.; Bergkvist, M.; Sharfstein, S.T. Computational Investigation of Stoichiometric Effects, Binding Site Heterogeneities, and Selectivities of Molecularly Imprinted Polymers. J. Mol. Model. 2016, 22, 139. [Google Scholar] [CrossRef]
- Attallah, O.A.; Al-Ghobashy, M.A.; Ayoub, A.T.; Nebsen, M. Magnetic Molecularly Imprinted Polymer Nanoparticles for Simultaneous Extraction and Determination of 6-Mercaptopurine and Its Active Metabolite Thioguanine in Human Plasma. J. Chromatogr. A 2018, 1561, 28–38. [Google Scholar] [CrossRef]
- Sobiech, M.; Zołek, T.; Luliński, P.; Maciejewska, D. Separation of Octopamine Racemate on (R,S)-2-Amino-1-Phenylethanol Imprinted Polymer—Experimental and Computational Studies. Talanta 2016, 146, 556–567. [Google Scholar] [CrossRef]
- Chianella, I.; Lotierzo, M.; Piletsky, S.A.; Tothill, I.E.; Chen, B.; Karim, K.; Turner, A.P.F. Rational Design of a Polymer Specific for Microcystin-LR Using a Computational Approach. Anal. Chem. 2002, 74, 1288–1293. [Google Scholar] [CrossRef]
- Dong, C.; Li, X.; Guo, Z.; Qi, J. Development of a Model for the Rational Design of Molecular Imprinted Polymer: Computational Approach for Combined Molecular Dynamics/Quantum Mechanics Calculations. Anal. Chim. Acta 2009, 647, 117–124. [Google Scholar] [CrossRef]
- Khan, M.S.; Wate, P.S.; Krupadam, R.J. Combinatorial Screening of Polymer Precursors for Preparation of Benzo[α] Pyrene Imprinted Polymer: An Ab Initio Computational Approach. J. Mol. Model. 2012, 18, 1969–1981. [Google Scholar] [CrossRef]
- Tadi, K.K.; Motghare, R.V. Rational Synthesis of Pindolol Imprinted Polymer by Non-Covalent Protocol Based on Computational Approach. J. Mol. Model. 2013, 19, 3385–3396. [Google Scholar] [CrossRef]
- Khan, M.S.; Pal, S.; Krupadam, R.J. Computational Strategies for Understanding the Nature of Interaction in Dioxin Imprinted Nanoporous Trappers. J. Mol. Recognit. 2015, 28, 427–437. [Google Scholar] [CrossRef]
- Luo, X.; Li, C.; Duan, Y.; Zhang, H.; Zhang, D.; Zhang, C.; Sun, G.; Sun, X. Molecularly Imprinted Polymer Prepared by Pickering Emulsion Polymerization for Removal of Acephate Residues from Contaminated Waters. J. Appl. Polym. Sci. 2016, 133, 43126. [Google Scholar] [CrossRef]
- Wong, A.; Foguel, M.V.; Khan, S.; de Oliveira, F.M.; Tarley, C.R.T.; Sotomayor, M.D.P.T. Development of an Electrochemical Sensor Modified with MWCNT-COOH and MIP for Detection of Diuron. Electrochim. Acta 2015, 182, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Ayankojo, A.G.; Reut, J.; Ciocan, V.; Öpik, A.; Syritski, V. Molecularly Imprinted Polymer-Based Sensor for Electrochemical Detection of Erythromycin. Talanta 2020, 209, 120502. [Google Scholar] [CrossRef]
- Díaz-García, M.E.; Laíñ, R.B. Molecular Imprinting in Sol-Gel Materials: Recent Developments and Applications. Microchim. Acta 2005, 149, 19–36. [Google Scholar] [CrossRef]
- Batista, A.D.; Rajpal, S.; Keitel, B.; Dietl, S.; Fresco-Cala, B.; Dinc, M.; Groß, R.; Sobek, H.; Münch, J.; Mizaikoff, B. Plastic Antibodies Mimicking the ACE2 Receptor for Selective Binding of SARS-CoV-2 Spike. Adv. Mater. Interfaces 2022, 9, 2101925. [Google Scholar] [CrossRef]
- Qiu, C.; Xing, Y.; Yang, W.; Zhou, Z.; Wang, Y.; Liu, H.; Xu, W. Surface Molecular Imprinting on Hybrid SiO 2 -Coated CdTe Nanocrystals for Selective Optosensing of Bisphenol A and Its Optimal Design. Appl. Surf. Sci. 2015, 345, 405–417. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, N.; Ni, X.; Jiang, Q.; Yang, W.; Huang, W.; Xu, W. A Core-Shell CdTe Quantum Dots Molecularly Imprinted Polymer for Recognizing and Detecting p-Nitrophenol Based on Computer Simulation. RSC Adv. 2015, 5, 73424–73433. [Google Scholar] [CrossRef]
- Mojica, E.-R.E. Screening of Different Computational Models for the Preparation of Sol-Gel Imprinted Materials. J. Mol. Model. 2013, 19, 3911–3923. [Google Scholar] [CrossRef]
- Issa, A.A.; El-Azazy, M.; Luyt, A.S. Kinetics of Alkoxysilanes Hydrolysis: An Empirical Approach. Sci. Rep. 2019, 9, 17624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karim, K.; Cowen, T.; Guerreiro, A.; Piletska, E.; Whitcombe, M. A Protocol for the Computational Design of High Affi Nity Molecularly Imprinted Polymer Synthetic Receptors. Glob. J. Biotechnol. Biomater. Sci. 2017, 3, 001–007. [Google Scholar] [CrossRef] [Green Version]
- Busato, M.; Distefano, R.; Bates, F.; Karim, K.; Bossi, A.M.; López Vilariño, J.M.; Piletsky, S.; Bombieri, N.; Giorgetti, A. MIRATE: MIps RATional DEsign Science Gateway. J. Integr. Bioinform. 2018, 15, 20170075. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.V.; Dennison, S.R.; Archontis, G.; Reddy, S.M.; Hayes, J.M. Toward Rational Design of Selective Molecularly Imprinted Polymers (MIPs) for Proteins: Computational and Experimental Studies of Acrylamide Based Polymers for Myoglobin. J. Phys. Chem. B 2019, 123, 5432–5443. [Google Scholar] [CrossRef] [PubMed]
- Boroznjak, R.; Reut, J.; Tretjakov, A.; Lomaka, A.; Öpik, A.; Syritski, V. A Computational Approach to Study Functional Monomer-Protein Molecular Interactions to Optimize Protein Molecular Imprinting. J. Mol. Recognit. 2017, 30, e2635. [Google Scholar] [CrossRef]
- Chen, J.; Lewis, C.; Balamurugan, D.; Yang, Z.; Ai, L.; Cai, D. Theoretical Analysis of a High Performance Protein Imprint on a Nanosensor. Sens. Biosens. Res. 2016, 7, 12–19. [Google Scholar] [CrossRef]
- Fresco-Cala, B.; Rajpal, S.; Rudolf, T.; Keitel, B.; Groß, R.; Münch, J.; Batista, A.D.; Mizaikoff, B. Development and Characterization of Magnetic Sars-Cov-2 Peptide-Imprinted Polymers. Nanomaterials 2021, 11, 2985. [Google Scholar] [CrossRef]
- Rajpal, S.; Mizaikoff, B. An in silico Predictive Method to Select Multi-Monomer Combinations for Peptide Imprinting. J. Mater. Chem. B 2022, 10, 6618–6626. [Google Scholar] [CrossRef]
- Rajpal, S.; Mishra, P. Next Generation Biosensors Employing Molecularly Imprinted Polymers as Sensing Elements for in Vitro Diagnostics. Biosens. Bioelectron. X 2022, 11, 100201. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, R.; Huang, H.; Zhu, Q. Vinblastine-Loaded Nanoparticles with Enhanced Tumor-Targeting Efficiency and Decreasing Toxicity: Developed by One-Step Molecular Imprinting Process. Mol. Pharm. 2019, 16, 2675–2689. [Google Scholar] [CrossRef]
- Ostovan, A.; Ghaedi, M.; Arabi, M.; Yang, Q.; Li, J.; Chen, L. Hydrophilic Multitemplate Molecularly Imprinted Biopolymers Based on a Green Synthesis Strategy for Determination of B-Family Vitamins. ACS Appl. Mater. Interfaces 2018, 10, 4140–4150. [Google Scholar] [CrossRef]
- Arabi, M.; Ostovan, A.; Li, J.; Wang, X.; Zhang, Z.; Choo, J.; Chen, L. Molecular Imprinting: Green Perspectives and Strategies. Adv. Mater. 2021, 33, 2100543. [Google Scholar] [CrossRef]
- Li, S.; Yang, K.; Zhao, B.; Li, X.; Liu, L.; Chen, Y.; Zhang, L.; Zhang, Y. Epitope Imprinting Enhanced IMAC (EI-IMAC) for Highly Selective Purification of His-Tagged Protein. J. Mater. Chem. B 2016, 4, 1960–1967. [Google Scholar] [CrossRef]
- Liu, J.; Yang, K.; Deng, Q.; Li, Q.; Zhang, L.; Liang, Z.; Zhang, Y. Preparation of a New Type of Affinity Materials Combining Metal Coordination with Molecular Imprinting. Chem. Commun. 2011, 47, 3969–3971. [Google Scholar] [CrossRef]
- Li, S.; Yang, K.; Liu, J.; Jiang, B.; Zhang, L.; Zhang, Y. Surface-Imprinted Nanoparticles Prepared with a His-Tag-Anchored Epitope as the Template. Anal. Chem. 2015, 87, 4617–4620. [Google Scholar] [CrossRef]
- Deng, H.; Wei, Z.; Wang, X.N. Enhanced Adsorption of Active Brilliant Red X-3B Dye on Chitosan Molecularly Imprinted Polymer Functionalized with Ti(IV) as Lewis Acid. Carbohydr. Polym. 2017, 157, 1190–1197. [Google Scholar] [CrossRef]
- Turner, N.W.; Jeans, C.W.; Brain, K.R.; Allender, C.J.; Hlady, V.; Britt, D.W. From 3D to 2D: A Review of the Molecular Imprinting of Proteins. Biotechnol. Prog. 2006, 22, 1474. [Google Scholar] [CrossRef]
- Culver, H.R.; Peppas, N.A. Protein-Imprinted Polymers: The Shape of Things to Come? Chem. Mater. 2017, 29, 5753. [Google Scholar] [CrossRef]
- Bhakta, S.; Seraji, M.S.I.; Suib, S.L.; Rusling, J.F. Antibody-like Biorecognition Sites for Proteins from Surface Imprinting on Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 28197–28206. [Google Scholar] [CrossRef] [Green Version]
- Bedwell, T.S.; Anjum, N.; Ma, Y.; Czulak, J.; Poma, A.; Piletska, E.; Whitcombe, M.J.; Piletsky, S.A. New Protocol for Optimisation of Polymer Composition for Imprinting of Peptides and Proteins. RSC Adv. 2019, 9, 27849–27855. [Google Scholar] [CrossRef] [Green Version]
- Gast, M.; Sobek, H.; Mizaikoff, B. Selective Virus Capture via Hexon Imprinting. Mater. Sci. Eng. C 2019, 99, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Fresco-Cala, B.; Mizaikoff, B. Surrogate Imprinting Strategies: Molecular Imprints via Fragments and Dummies. ACS Appl. Polym. Mater. 2020, 2, 3714–3741. [Google Scholar] [CrossRef]
- Khumsap, T.; Corpuz, A.; Nguyen, L.T. Epitope-Imprinted Polymers: Applications in Protein Recognition and Separation. RSC Adv. 2021, 11, 11403–11414. [Google Scholar] [CrossRef] [PubMed]
- Altintas, Z.; Takiden, A.; Utesch, T.; Mroginski, M.A.; Schmid, B.; Scheller, F.W.; Süssmuth, R.D. Integrated Approaches Toward High-Affinity Artificial Protein Binders Obtained via Computationally Simulated Epitopes for Protein Recognition. Adv. Funct. Mater. 2019, 29, 1807332. [Google Scholar] [CrossRef]
- Wyszomirski, M.; Prus, W. Molecular Modelling of a Template Substitute and Monomers Used in Molecular Imprinting for Aflatoxin B1 Micro-HPLC Analysis. Mol. Simul. 2012, 38, 892–895. [Google Scholar] [CrossRef]
- Schirhagl, R.; Hall, E.W.; Fuereder, I.; Zare, R.N. Separation of Bacteria with Imprinted Polymeric Films. Analyst 2012, 137, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Van Grinsven, B.; Eersels, K.; Akkermans, O.; Ellermann, S.; Kordek, A.; Peeters, M.; Deschaume, O.; Bartic, C.; Diliën, H.; Steen Redeker, E.; et al. Label-Free Detection of Escherichia Coli Based on Thermal Transport through Surface Imprinted Polymers. ACS Sens. 2016, 1, 1140–1147. [Google Scholar] [CrossRef] [Green Version]
- Jenik, M.; Schirhagl, R.; Schirk, C.; Hayden, O.; Lieberzeit, P.; Blaas, D.; Paul, G.; Dickert, F.L. Sensing Picornaviruses Using Molecular Imprinting Techniques on a Quartz Crystal Microbalance. Anal. Chem. 2009, 81, 5320–5326. [Google Scholar] [CrossRef]
- Dickert, F.L.; Hayden, O. Bioimprinting of Polymers and Sol−Gel Phases. Selective Detection of Yeasts with Imprinted Polymers. Anal. Chem. 2002, 74, 1302–1306. [Google Scholar] [CrossRef]
- Ren, K.; Zare, R.N. Chemical Recognition in Cell-Imprinted Polymers. ACS Nano 2012, 6, 4314–4318. [Google Scholar] [CrossRef]
- Idil, N.; Mattiasson, B. Imprinting of Microorganisms for Biosensor Applications. Sensors 2017, 17, 708. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Patel, D.S.; Park, S.; Slusky, J.; Klauda, J.B.; Widmalm, G.; Im, W. Bilayer Properties of Lipid A from Various Gram-Negative Bacteria. Biophys. J. 2016, 111, 1750–1760. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Gu, L.; Kong, G.; Zheng, Y.; Han, Y.; Li, Z.; Shi, J.; Peng, J. Comparative Analysis of Atrazine Molecularly Imprinted Polymers Using Acetonitrile and Toluene as Solvents. J. Appl. Polym. Sci. 2019, 136, 47190. [Google Scholar] [CrossRef]
- Norjmaa, G.; Ujaque, G.; Lledós, A. Beyond Continuum Solvent Models in Computational Homogeneous Catalysis. Top. Catal. 2022, 65, 118–140. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Wu, T.; Wang, Q.; van der Spoel, D. Comparison of Implicit and Explicit Solvent Models for the Calculation of Solvation Free Energy in Organic Solvents. J. Chem. Theory Comput. 2017, 13, 1034–1043. [Google Scholar] [CrossRef]
- Larsson, P.; Lindahl, E. A High-Performance Parallel-Generalized Born Implementation Enabled by Tabulated Interaction Rescaling. J. Comput. Chem. 2010, 31, 2593–2600. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, T.; van der Spoel, D. Generalized Born and Explicit Solvent Models for Free Energy Calculations in Organic Solvents: Cyclodextrin Dimerization. J. Chem. Theory Comput. 2015, 11, 5103–5113. [Google Scholar] [CrossRef]
- Larsson, D.S.D.; van der Spoel, D. Screening for the Location of RNA Using the Chloride Ion Distribution in Simulations of Virus Capsids. J. Chem. Theory Comput. 2012, 8, 2474–2483. [Google Scholar] [CrossRef]
- Zin, L.C.; Silva, C.F.; Guimarães, L.; Nascimento, C.S. Oxybutynin-Imprinted Polymer: A Theoretical Investigation. Chem. Phys. Lett. 2022, 799, 139640. [Google Scholar] [CrossRef]
- Taylor, M.; Yu, H.; Ho, J. Predicting Solvent Effects on S N 2 Reaction Rates: Comparison of QM/MM, Implicit, and MM Explicit Solvent Models. J. Phys. Chem. B 2022, 2022, 9047–9058. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Ncube, S.; Nomngongo, P.N.; Pakade, V.E. Molecular Imprinting with Deep Eutectic Solvents: Synthesis, Applications, Their Significance, and Benefits. J. Mol. Liq. 2022, 362, 119696. [Google Scholar] [CrossRef]
- Viveiros, R.; Karim, K.; Piletsky, S.A.; Heggie, W.; Casimiro, T. Development of a Molecularly Imprinted Polymer for a Pharmaceutical Impurity in Supercritical CO2: Rational Design Using Computational Approach. J. Clean. Prod. 2017, 168, 1025–1031. [Google Scholar] [CrossRef]
- Tolmachev, D.; Lukasheva, N.; Ramazanov, R.; Nazarychev, V.; Borzdun, N.; Volgin, I.; Andreeva, M.; Glova, A.; Melnikova, S.; Dobrovskiy, A.; et al. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int. J. Mol. Sci. 2022, 23, 645. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Sun, B.; Li, Y.; Chang, W. Study Properties of Molecular Imprinting Polymer Using a Computational Approach. Analyst 2003, 128, 944–949. [Google Scholar] [CrossRef]
- Wu, L.; Li, Y. Study on the Recognition of Templates and Their Analogues on Molecularly Imprinted Polymer Using Computational and Conformational Analysis Approaches. J. Mol. Recognit. 2004, 17, 567–574. [Google Scholar] [CrossRef]
- Monti, S.; Cappelli, C.; Bronco, S.; Giusti, P.; Ciardelli, G. Towards the Design of Highly Selective Recognition Sites into Molecular Imprinting Polymers: A Computational Approach. Biosens. Bioelectron. 2006, 22, 153–163. [Google Scholar] [CrossRef]
- Gartner, T.E.; Jayaraman, A. Modeling and Simulations of Polymers: A Roadmap. Macromolecules 2019, 52, 755–786. [Google Scholar] [CrossRef] [Green Version]
- Stanzione, F.; Jayaraman, A. Hybrid Atomistic and Coarse-Grained Molecular Dynamics Simulations of Polyethylene Glycol (PEG) in Explicit Water. J. Phys. Chem. B 2016, 120, 4160–4173. [Google Scholar] [CrossRef]
- Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A.E.; Kolinski, A. Coarse-Grained Protein Models and Their Applications. Chem. Rev. 2016, 116, 7898–7936. [Google Scholar] [CrossRef] [Green Version]
- Srebnik, S.; Lev, O.; Avnir, D. Pore Size Distribution Induced by Microphase Separation: Effect of the Leaving Group during Polycondensation. Chem. Mater. 2001, 13, 811–816. [Google Scholar] [CrossRef]
- Yungerman, I.; Srebnik, S. Factors Contributing to Binding-Site Imperfections in Imprinted Polymers. Chem. Mater. 2006, 18, 657–663. [Google Scholar] [CrossRef]
- Srebnik, S. Theoretical Investigation of the Imprinting Efficiency of Molecularly Imprinted Polymers. Chem. Mater. 2004, 16, 883–888. [Google Scholar] [CrossRef]
- Srebnik, S.; Lev, O. Theoretical Investigation of Imprinted Crosslinked Silicates. J. Sol-Gel Sci. Technol. 2003, 26, 107–113. [Google Scholar] [CrossRef]
- Srebnik, S.; Lev, O. Toward Establishing Criteria for Polymer Imprinting Using Mean-Field Theory. J. Chem. Phys. 2002, 116, 10967. [Google Scholar] [CrossRef]
- Henthorn, D.B.; Peppas, N.A. Molecular Simulations of Recognitive Behavior of Molecularly Imprinted Intelligent Polymeric Networks. Ind. Eng. Chem. Res. 2007, 46, 6084–6091. [Google Scholar] [CrossRef]
- Dourado, E.M.A.; Sarkisov, L. Emergence of Molecular Recognition Phenomena in a Simple Model of Imprinted Porous Materials. J. Chem. Phys. 2009, 130, 214701. [Google Scholar] [CrossRef] [Green Version]
- Herdes, C.; Sarkisov, L. Computer Simulation of Volatile Organic Compound Adsorption in Atomistic Models of Molecularly Imprinted Polymers. Langmuir 2009, 25, 5352–5359. [Google Scholar] [CrossRef]
- Levi, L.; Srebnik, S. Simulation of Protein-Imprinted Polymers. 1. Imprinted Pore Properties. J. Phys. Chem. B 2010, 114, 107–114. [Google Scholar] [CrossRef]
- Raim, V.; Zadok, I.; Srebnik, S. Comparison of Descriptors for Predicting Selectivity of Protein-Imprinted Polymers. J. Mol. Recognit. 2016, 29, 391–400. [Google Scholar] [CrossRef]
- Levi, L.; Srebnik, S. Simulation of Protein-Imprinted Polymers. 2. Imprinting Efficiency. J. Phys. Chem. B 2010, 114, 16744–16751. [Google Scholar] [CrossRef]
- Hou, D.; Yu, J.; Wang, P. Molecular Dynamics Modeling of the Structure, Dynamics, Energetics and Mechanical Properties of Cement-Polymer Nanocomposite. Compos. B Eng. 2019, 162, 433–444. [Google Scholar] [CrossRef]
- Martin, T.B.; Mongcopa, K.I.S.; Ashkar, R.; Butler, P.; Krishnamoorti, R.; Jayaraman, A. Wetting-Dewetting and Dispersion-Aggregation Transitions Are Distinct for Polymer Grafted Nanoparticles in Chemically Dissimilar Polymer Matrix. J. Am. Chem. Soc. 2015, 137, 10624–10631. [Google Scholar] [CrossRef] [PubMed]
- Baggiani, C.; Anfossi, L.; Giovannoli, C.; Tozzi, C. Multivariate Analysis of the Selectivity for a Pentachlorophenol-Imprinted Polymer. J. Chromatogr. B 2004, 804, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Alenus, J.; Ethirajan, A.; Horemans, F.; Weustenraed, A.; Csipai, P.; Gruber, J.; Peeters, M.; Cleij, T.J.; Wagner, P. Molecularly Imprinted Polymers as Synthetic Receptors for the QCM-D-Based Detection of L-Nicotine in Diluted Saliva and Urine Samples. Anal. Bioanal. Chem. 2013, 405, 6479–6487. [Google Scholar] [CrossRef]
- Siavash Moakhar, R.; del Real Mata, C.; Jalali, M.; Shafique, H.; Sanati, A.; de Vries, J.; Strauss, J.; AbdElFatah, T.; Ghasemi, F.; McLean, M.; et al. A Versatile Biomimic Nanotemplating Fluidic Assay for Multiplex Quantitative Monitoring of Viral Respiratory Infections and Immune Responses in Saliva and Blood. Adv. Sci. 2022, 9, 2204246. [Google Scholar] [CrossRef]
- Parnianchi, F.; Kashanian, S.; Nazari, M.; Peacock, M.; Omidfar, K.; Varmira, K. Ultrasensitive Electrochemical Sensor Based on Molecular Imprinted Polymer and Ferromagnetic Nanocomposite for Bilirubin Analysis in the Saliva and Serum of Newborns. Microchem. J. 2022, 179, 107474. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Battal, D.; Yalcin, M.S.; Yavuz, H.; Denizli, A. Rapid and Sensitive Detection of Synthetic Cannabinoids JWH-018, JWH-073 and Their Metabolites Using Molecularly Imprinted Polymer-Coated QCM Nanosensor in Artificial Saliva. Microchem. J. 2020, 153, 104454. [Google Scholar] [CrossRef]
- Usha, S.P.; Shrivastav, A.M.; Gupta, B.D. A Contemporary Approach for Design and Characterization of Fiber-Optic-Cortisol Sensor Tailoring LMR and ZnO/PPY Molecularly Imprinted Film. Biosens. Bioelectron. 2017, 87, 178–186. [Google Scholar] [CrossRef]
- Ali, J.; Bong Lee, J.; Gittings, S.; Iachelini, A.; Bennett, J.; Cram, A.; Garnett, M.; Roberts, C.J.; Gershkovich, P. Development and Optimisation of Simulated Salivary Fluid for Biorelevant Oral Cavity Dissolution. Eur. J. Pharm. Biopharm. 2021, 160, 125–133. [Google Scholar] [CrossRef]
- Gittings, S.; Turnbull, N.; Henry, B.; Roberts, C.J.; Gershkovich, P. Characterisation of Human Saliva as a Platform for Oral Dissolution Medium Development. Eur. J. Pharm. Biopharm. 2015, 91, 16–24. [Google Scholar] [CrossRef]
- Wu, S.; Kondo, Y.; Kakimoto, M.A.; Yang, B.; Yamada, H.; Kuwajima, I.; Lambard, G.; Hongo, K.; Xu, Y.; Shiomi, J.; et al. Machine-Learning-Assisted Discovery of Polymers with High Thermal Conductivity Using a Molecular Design Algorithm. NPJ Comput. Mater. 2019, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Lowdon, J.W.; Ishikura, H.; Kvernenes, M.K.; Caldara, M.; Cleij, T.J.; van Grinsven, B.; Eersels, K.; Diliën, H. Identifying Potential Machine Learning Algorithms for the Simulation of Binding Affinities to Molecularly Imprinted Polymers. Computation 2021, 9, 103. [Google Scholar] [CrossRef]
- Sha, W.; Li, Y.; Tang, S.; Tian, J.; Zhao, Y.; Guo, Y.; Zhang, W.; Zhang, X.; Lu, S.; Cao, Y.C.; et al. Machine Learning in Polymer Informatics. InfoMat 2021, 3, 353–361. [Google Scholar] [CrossRef]
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al. Improved Protein Structure Prediction Using Potentials from Deep Learning. Nature 2020, 577, 706–710. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajpal, S.; Mishra, P.; Mizaikoff, B. Rational In Silico Design of Molecularly Imprinted Polymers: Current Challenges and Future Potential. Int. J. Mol. Sci. 2023, 24, 6785. https://doi.org/10.3390/ijms24076785
Rajpal S, Mishra P, Mizaikoff B. Rational In Silico Design of Molecularly Imprinted Polymers: Current Challenges and Future Potential. International Journal of Molecular Sciences. 2023; 24(7):6785. https://doi.org/10.3390/ijms24076785
Chicago/Turabian StyleRajpal, Soumya, Prashant Mishra, and Boris Mizaikoff. 2023. "Rational In Silico Design of Molecularly Imprinted Polymers: Current Challenges and Future Potential" International Journal of Molecular Sciences 24, no. 7: 6785. https://doi.org/10.3390/ijms24076785
APA StyleRajpal, S., Mishra, P., & Mizaikoff, B. (2023). Rational In Silico Design of Molecularly Imprinted Polymers: Current Challenges and Future Potential. International Journal of Molecular Sciences, 24(7), 6785. https://doi.org/10.3390/ijms24076785