Cholinergic Antagonists and Behavioral Disturbances in Neurodegenerative Diseases
Abstract
:1. Background
2. Anticholinergic Burden and Behavioral Disturbances in Neurodegenerative Diseases
2.1. Alzheimer’s Disease
2.2. Lewy Body Dementia/Parkinson’s Disease Related Dementia
2.3. Frontotemporal Dementia
2.4. Vascular Dementia
3. How Can We Lessen the Impact of AB on BPSD?
4. Further Considerations/Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Auterhoff, H. Nobel lectures-physiology or medicine 1942–1962. Herausgegeben von der Nobel-Stiftung. 840 Seiten. Elsevier Publishing Co, Amsterdam—London—New York 1964. Preis etwa DM 90,—. Arch. Pharm. Pharm. Med. Chem. 1965, 298, 77–78. [Google Scholar] [CrossRef]
- Davies, P.; Maloney, A.J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976, 2, 1403. [Google Scholar] [CrossRef] [PubMed]
- Perry, E.K.; Perry, R.H.; Blessed, G.; Tomlinson, B.E. Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1977, 1, 189. [Google Scholar] [CrossRef]
- Spillane, J.A.; White, P.; Goodhardt, M.J.; Flack, R.H.A.; Bowen, D.M.; Davison, A.N. Selective vulnerability of neurones in organic dementia. Nature 1977, 266, 558–559. [Google Scholar] [CrossRef]
- White, P.; Goodhardt, M.J.; Keet, J.P.; Hiley, C.R.; Carrasco, L.H.; Williams, I.E.I.; Bowen, D.M. Neocortical Cholinergic Neurons in Elderly People. Lancet 1977, 309, 668–671. [Google Scholar] [CrossRef]
- Arendt, T.; Bigl, V.; Arendt, A.; Tennstedt, A. Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s Disease. Acta Neuropathol. 1983, 61, 101–108. [Google Scholar] [CrossRef]
- Whitehouse, P.J.; Price, D.L.; Struble, R.G.; Clark, A.W.; Coyle, J.T.; Delon, M.R. Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain. Science 1982, 215, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Drachman, D.A.; Leavitt, J. Human memory and the cholinergic system. A relationship to aging? Arch. Neurol. 1974, 30, 113–121. [Google Scholar] [CrossRef]
- Bartus, R.T.; Dean, R.L., 3rd; Beer, B.; Lippa, A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982, 217, 408–414. [Google Scholar] [CrossRef]
- Gotti, C.; Moretti, M.; Gaimarri, A.; Zanardi, A.; Clementi, F.; Zoli, M. Heterogeneity and complexity of native brain nicotinic receptors. Biochem. Pharmacol. 2007, 74, 1102–1111. [Google Scholar] [CrossRef]
- Leiser, S.C.; Bowlby, M.R.; Comery, T.A.; Dunlop, J. A cog in cognition: How the α7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol. Ther. 2009, 122, 302–311. [Google Scholar] [CrossRef]
- Picciotto, M.R.; Caldarone, B.J.; Brunzell, D.H.; Zachariou, V.; Stevens, T.R.; King, S.L. Neuronal nicotinic acetylcholine receptor subunit knockout mice: Physiological and behavioral phenotypes and possible clinical implications. Pharmacol. Ther. 2001, 92, 89–108. [Google Scholar] [CrossRef]
- Jones, B.E. Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. Prog. Brain Res. 2004, 145, 157–169. [Google Scholar] [PubMed]
- Bürli, T.; Baer, K.; Ewers, H.; Sidler, C.; Fuhrer, C.; Fritschy, J.-M. Single Particle Tracking of α7 Nicotinic AChR in Hippocampal Neurons Reveals Regulated Confinement at Glutamatergic and GABAergic Perisynaptic Sites. PLoS ONE 2010, 5, e11507. [Google Scholar] [CrossRef] [PubMed]
- Volpicelli, L.A.; Levey, A.I. Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog. Brain Res. 2004, 145, 59–66. [Google Scholar] [PubMed]
- Gautam, D.; Han, S.-J.; Hamdan, F.F.; Jeon, J.; Li, B.; Li, J.H.; Cui, Y.; Mears, D.; Lu, H.; Deng, C.; et al. A critical role for β cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab. 2006, 3, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Wess, J.; Eglen, R.M.; Gautam, D. Muscarinic acetylcholine receptors: Mutant mice provide new insights for drug development. Nat. Rev. Drug Discov. 2007, 6, 721–733. [Google Scholar] [CrossRef]
- Levey, A.I. Muscarinic acetylcholine receptor expression in memory circuits: Implications for treatment of Alzheimer disease. Proc. Natl. Acad. Sci. USA 1996, 93, 13541–13546. [Google Scholar] [CrossRef] [Green Version]
- Tune, L.E. Anticholinergic effects of medication in elderly patients. J. Clin. Psychiatry 2001, 62 (Suppl. S21), 11–14. [Google Scholar]
- Tune, L.; Carr, S.; Hoag, E.; Cooper, T. Anticholinergic effects of drugs commonly prescribed for the elderly: Potential means for assessing risk of delirium. Am. J. Psychiatry 1992, 149, 1393–1394. [Google Scholar]
- de Leon, J. Paying attention to pharmacokinetic and pharmacodynamic mechanisms to progress in the area of anticholinergic use in geriatric patients. Curr. Drug Metab. 2011, 12, 635–646. [Google Scholar] [CrossRef]
- Bostock, C.V.; Soiza, R.L.; Mangoni, A.A. Association between prescribing of antimuscarinic drugs and antimuscarinic adverse effects in older people. Expert Rev. Clin. Pharmacol. 2010, 3, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Lavrador, M.; Cabral, A.C.; Veríssimo, M.T.; Fernandez-Llimos, F.; Figueiredo, I.V.; Castel-Branco, M.M. A Universal Pharmacological-Based List of Drugs with Anticholinergic Activity. Pharmaceutics 2023, 15, 230. [Google Scholar] [CrossRef] [PubMed]
- Golds, P.R.; Przyslo, F.R.; Strange, P.G. The binding of some antidepressant drugs to brain muscarinic acetylcholine receptors. Br. J. Pharmacol. 1980, 68, 541–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tune, L.; Coyle, J.T. Serum Levels of Anticholinergic Drugs in Treatment of Acute Extrapyramidal Side Effects. Arch. Gen. Psychiatry 1980, 37, 293–297. [Google Scholar] [CrossRef]
- Tohgi, H.; Abe, T.; Hashiguchi, K.; Saheki, M.; Takahashi, S. Remarkable reduction in acetylcholine concentration in the cerebrospinal fluid from patients with Alzheimer type dementia. Neurosci. Lett. 1994, 177, 139–142. [Google Scholar] [CrossRef]
- Tohgi, H.; Abe, T.; Kimura, M.; Saheki, M.; Takahashi, S. Cerebrospinal fluid acetylcholine and choline in vascular dementia of Binswanger and multiple small infarct types as compared with Alzheimer-type dementia. J. Neural Transm. (Vienna) 1996, 103, 1211–1220. [Google Scholar] [CrossRef]
- Welsh, T.J.; van der Wardt, V.; Ojo, G.; Gordon, A.L.; Gladman, J.R.F. Anticholinergic Drug Burden Tools/Scales and Adverse Outcomes in Different Clinical Settings: A Systematic Review of Reviews. Drugs Aging 2018, 35, 523–538. [Google Scholar] [CrossRef]
- Lisibach, A.; Benelli, V.; Ceppi, M.G.; Waldner-Knogler, K.; Csajka, C.; Lutters, M. Quality of anticholinergic burden scales and their impact on clinical outcomes: A systematic review. Eur. J. Clin. Pharmacol. 2021, 77, 147–162. [Google Scholar] [CrossRef]
- Salahudeen, M.S.; Duffull, S.B.; Nishtala, P.S. Anticholinergic burden quantified by anticholinergic risk scales and adverse outcomes in older people: A systematic review. BMC Geriatr. 2015, 15, 31. [Google Scholar] [CrossRef] [Green Version]
- Clerici, F.; Vanacore, N.; Elia, A.; Spila-Alegiani, S.; Pomati, S.; Da Cas, R.; Raschetti, R.; Mariani, C. Memantine effects on behaviour in moderately severe to severe Alzheimer’s disease: A post-marketing surveillance study. Neurol. Sci. 2012, 33, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Pasina, L.; Djade, C.D.; Lucca, U.; Nobili, A.; Tettamanti, M.; Franchi, C.; Salerno, F.; Corrao, S.; Marengoni, A.; Iorio, A.; et al. Association of anticholinergic burden with cognitive and functional status in a cohort of hospitalized elderly: Comparison of the anticholinergic cognitive burden scale and anticholinergic risk scale: Results from the REPOSI study. Drug Aging 2013, 30, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetrano, D.L.; La Carpia, D.; Grande, G.; Casucci, P.; Bacelli, T.; Bernabei, R.; Onder, G.; Agabiti, N.; Bartolini, C.; Bernabei, R.; et al. Anticholinergic Medication Burden and 5-Year Risk of Hospitalization and Death in Nursing Home Elderly Residents With Coronary Artery Disease. J. Am. Med. Dir. Assoc. 2016, 17, 1056–1059. [Google Scholar] [CrossRef] [PubMed]
- Kalisch Ellett, L.M.; Pratt, N.L.; Ramsay, E.N.; Barratt, J.D.; Roughead, E.E. Multiple Anticholinergic Medication Use and Risk of Hospital Admission for Confusion or Dementia. J. Am. Geriatr. Soc. 2014, 62, 1916–1922. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Fukatsu, T.; Kanemoto, K. Risk of hospitalization associated with anticholinergic medication for patients with dementia. Psychogeriatrics 2018, 18, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.C.K.; Eriksdotter, M.; Garcia-Ptacek, S.; Fastbom, J.; Johnell, K. Anticholinergic Burden and Risk of Stroke and Death in People with Different Types of Dementia. J. Alzheimers Dis. 2018, 65, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Lattanzio, F.; Corica, F.; Schepisi, R.; Amantea, D.; Bruno, F.; Cozza, A.; Onder, G.; Volpato, S.; Cherubini, A.; Ruggiero, C.; et al. Anticholinergic burden and 1-year mortality among older patients discharged from acute care hospital. J. Am. Med. Dir. Assoc. 2018, 18, 705–713. [Google Scholar] [CrossRef]
- Cross, A.J.; George, J.; Woodward, M.C.; Ames, D.; Brodaty, H.; Wolfe, R.; Connors, M.H.; Elliott, R.A. Potentially Inappropriate Medication, Anticholinergic Burden, and Mortality in People Attending Memory Clinics. J. Alzheimers Dis. 2017, 60, 349–358. [Google Scholar] [CrossRef]
- Pinto, T.; Lanctôt, K.L.; Herrmann, N. Revisiting the cholinergic hypothesis of behavioral and psychological symptoms in dementia of the Alzheimer’s type. Ageing Res. Rev. 2011, 10, 404–412. [Google Scholar] [CrossRef]
- Francis, P.T.; Perry, E.K. Cholinergic and other neurotransmitter mechanisms in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies. Mov. Diord. 2007, 22 (Suppl. S17), S351–S357. [Google Scholar] [CrossRef]
- Cummings, J.L.; Back, C. The cholinergic hypothesis of neuropsychiatric symptoms in Alzheimer’s disease. Am. J. Psychiatry 1998, 6 (Suppl. S1), S64–S78. [Google Scholar] [CrossRef]
- Steinberg, M.; Shao, H.; Zandi, P.; Lyketsos, C.G.; Welsh-Bohmer, K.A.; Norton, M.C.; Breitner, J.C.; Steffens, D.C.; Tschanz, J.T.; Cache County, I. Point and 5-year period prevalence of neuropsychiatric symptoms in dementia: The Cache County Study. Int. J. Geriatr. Psychiatry 2008, 23, 170–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkel, S.I.; Costa e Silva, J.; Cohen, G.; Miller, S.; Sartorius, N. Behavioral and psychological signs and symptoms of dementia: A consensus statement on current knowledge and implications for research and treatment. Int. Psychogeriatr. 1996, 8 (Suppl. S3), 497–500. [Google Scholar] [CrossRef] [PubMed]
- McKeith, I.; Cummings, J. Behavioural changes and psychological symptoms in dementia disorders. Lancet Neurol. 2005, 4, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.C.; Kasper, J.D.; Black, B.S.; Rabins, P.V. Presence of behavioral and psychological symptoms predicts nursing home placement in community-dwelling elders with cognitive impairment in univariate but not multivariate analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2003, 58, 548–554. [Google Scholar] [CrossRef] [Green Version]
- van der Lee, J.; Bakker, T.J.E.M.; Duivenvoorden, H.J.; Dröes, R.-M. Multivariate models of subjective caregiver burden in dementia: A systematic review. Ageing Res. Rev. 2014, 15, 76–93. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.E.; Rosenberg, P.B.; Steinberg, M.; Norton, M.C.; Welsh-Bohmer, K.A.; Hayden, K.M.; Breitner, J.; Tschanz, J.T.; Lyketsos, C.G. Neuropsychiatric Symptoms as Risk Factors for Progression From CIND to Dementia: The Cache County Study. Am. J. Geritar. Psychiatry 2013, 21, 1116–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kales, H.C.; Lyketsos, C.G.; Miller, E.M.; Ballard, C. Management of behavioral and psychological symptoms in people with Alzheimer’s disease: An international Delphi consensus. Intl. Psychogeriatr. 2019, 31, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 1991, 12, 383–388. [Google Scholar] [CrossRef]
- Bancher, C.; Brunner, C.; Lassmann, H.; Budka, H.; Jellinger, K.; Wiche, G.; Seitelberger, F.; Grundke-Iqbal, I.; Iqbal, K.; Wisniewski, H.M. Accumulation of abnormally phosphorylated τ precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res. 1989, 477, 90–99. [Google Scholar] [CrossRef]
- Halpern, R.; Seare, J.; Tong, J.; Hartry, A.; Olaoye, A.; Aigbogun, M.S. Using electronic health records to estimate the prevalence of agitation in Alzheimer disease/dementia. Int. J. Geriatr. Psychiatry 2019, 34, 420–431. [Google Scholar] [CrossRef]
- Zhao, Q.F.; Tan, L.; Wang, H.F.; Jiang, T.; Tan, M.S.; Tan, L.; Xu, W.; Li, J.Q.; Wang, J.; Lai, T.J.; et al. The prevalence of neuropsychiatric symptoms in Alzheimer’s disease: Systematic review and meta-analysis. J. Affect. Disord. 2016, 190, 264–271. [Google Scholar] [CrossRef]
- Kaup, A.R.; Byers, A.L.; Falvey, C.; Simonsick, E.M.; Satterfield, S.; Ayonayon, H.N.; Smagula, S.F.; Rubin, S.M.; Yaffe, K. Trajectories of Depressive Symptoms in Older Adults and Risk of Dementia. JAMA Psychiatry 2016, 73, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, M.; Stomrud, E.; Lindberg, O.; Westman, E.; Johansson, P.M.; van Westen, D.; Mattsson, N.; Hansson, O. Apathy and anxiety are early markers of Alzheimer’s disease. Neurobiol. Aging 2020, 85, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Vik-Mo, A.O.; Giil, L.M.; Borda, M.G.; Ballard, C.; Aarsland, D. The individual course of neuropsychiatric symptoms in people with Alzheimer’s and Lewy body dementia: 12-year longitudinal cohort study. Br. J. Psychiatry 2020, 216, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Boustani, M.; Campbell, N.; Munger, S.; Maidment, I.; Fox, C. Impact of anticholinergics on the aging brain: A review and practical application. Aging Health 2008, 4, 411–420. [Google Scholar] [CrossRef]
- Dauphinot, V.; Mouchoux, C.; Veillard, S.; Delphin-Combe, F.; Krolak-Salmon, P. Anticholinergic drugs and functional, cognitive impairment and behavioral disturbances in patients from a memory clinic with subjective cognitive decline or neurocognitive disorders. Alzheimers Res. Ther. 2017, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Cancelli, I.; Valentinis, L.; Merlino, G.; Valente, M.; Gigli, G.L. Drugs with Anticholinergic Properties as a Risk Factor for Psychosis in Patients Affected by Alzheimer’s Disease. Clin. Pharmacol. Ther. 2008, 84, 63–68. [Google Scholar] [CrossRef]
- Hori, K.; Konishi, K.; Watanabe, K.; Uchida, H.; Tsuboi, T.; Moriyasu, M.; Tominaga, I.; Hachisu, M. Influence of anticholinergic activity in serum on clinical symptoms of Alzheimer’s disease. Neuropsychobiology 2011, 63, 147–153. [Google Scholar] [CrossRef]
- Sunderland, T.; Tariot, P.N.; Cohen, R.M.; Weingartner, H.; Mueller, E.A., III; Murphy, D.L. Anticholinergic Sensitivity in Patients With Dementia of the Alzheimer Type and Age-Matched Controls: A Dose-Response Study. Arch. Gen. Psychiatry 1987, 44, 418–426. [Google Scholar] [CrossRef]
- Jaïdi, Y.; Nonnonhou, V.; Kanagaratnam, L.; Bertholon, L.A.; Badr, S.; Noël, V.; Novella, J.-L.; Mahmoudi, R. Reduction of the Anticholinergic Burden Makes It Possible to Decrease Behavioral and Psychological Symptoms of Dementia. Am. J. Geriatr. Psychiatry 2018, 26, 280–288. [Google Scholar] [CrossRef]
- Carnahan, R.M.; Lund, B.C.; Perry, P.J.; Pollock, B.G.; Culp, K.R. The Anticholinergic Drug Scale as a measure of drug-related anticholinergic burden: Associations with serum anticholinergic activity. J. Clin. Pharmacol. 2006, 46, 1481–1486. [Google Scholar] [CrossRef]
- Jaïdi, Y.; Guilloteau, A.; Nonnonhou, V.; Bertholon, L.-A.; Badr, S.; Morrone, I.; Novella, J.-L.; Mahmoudi, R. Threshold for a Reduction in Anticholinergic Burden to Decrease Behavioral and Psychological Symptoms of Dementia. J. Am. Med. Dir. Assoc. 2019, 20, 159–164.e3. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-P.; Chien, W.-C.; Chung, C.-H.; Chang, H.-A.; Kao, Y.-C.; Tzeng, N.-S. Are Anticholinergic Medications Associated With Increased Risk of Dementia and Behavioral and Psychological Symptoms of Dementia? A Nationwide 15-Year Follow-Up Cohort Study in Taiwan. Front. Pharmacol. 2020, 11, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jewart, R.D.; Green, J.; Lu, C.J.; Cellar, J.; Tune, L.E. Cognitive, behavioral, and physiological changes in Alzheimer disease patients as a function of incontinence medications. Am. J. Geriatr. Psychiatry 2005, 13, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.L.; Kaufer, D. Neuropsychiatric aspects of Alzheimer’s disease. The cholinergic hypothesis revisited. Neurology 1996, 47, 876–883. [Google Scholar] [CrossRef]
- Minger, S.L.; Esiri, M.M.; McDonald, B.; Keene, J.; Carter, J.; Hope, T.; Francis, P.T. Cholinergic deficits contribute to behavioral disturbance in patients with dementia. Neurology 2000, 55, 1460–1467. [Google Scholar] [CrossRef]
- Garcia-Alloza, M.; Gil-Bea, F.J.; Diez-Ariza, M.; Chen, C.P.; Francis, P.T.; Lasheras, B.; Ramirez, M.J. Cholinergic-serotonergic imbalance contributes to cognitive and behavioral symptoms in Alzheimer’s disease. Neuropsychologia 2005, 43, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Carson, R.; Craig, D.; Hart, D.; Todd, S.; McGuinness, B.; Johnston, J.A.; O’Neill, F.A.; Ritchie, C.W.; Passmore, A.P. Genetic Variation in the α7 Nicotinic Acetylcholine Receptor is Associated with Delusional Symptoms in Alzheimer’s Disease. Neuromolecular Med. 2008, 10, 377–384. [Google Scholar] [CrossRef]
- Caton, M.; Ochoa, E.L.M.; Barrantes, F.J. The role of nicotinic cholinergic neurotransmission in delusional thinking. NPJ Schizophr. 2020, 6, 16. [Google Scholar] [CrossRef]
- Lai, M.K.; Lai, O.F.; Keene, J.; Esiri, M.M.; Francis, P.T.; Hope, T.; Chen, C.P. Psychosis of Alzheimer’s disease is associated with elevated muscarinic M2 binding in the cortex. Neurology 2001, 57, 805–811. [Google Scholar] [CrossRef]
- Wang, S.-Z.; Zhu, S.-Z.; Mash, D.C.; El-Fakahany, E.E. Comparison of the concentration of messenger RNA encoding four muscarinic receptor subtypes in control and Alzheimer brains. Brain Res. Mol. Brain Res. 1992, 16, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Tsang, S.W.; Francis, P.T.; Esiri, M.M.; Wong, P.T.; Chen, C.P.; Lai, M.K. Loss of [3H]4-DAMP binding to muscarinic receptors in the orbitofrontal cortex of Alzheimer’s disease patients with psychosis. Psychopharmacology 2008, 198, 251–259. [Google Scholar] [CrossRef] [PubMed]
- McCann, H.; Stevens, C.H.; Cartwright, H.; Halliday, G.M. α-Synucleinopathy phenotypes. Park. Relat. Disord. 2014, 20 (Suppl. S1), S62–S67. [Google Scholar] [CrossRef] [Green Version]
- Borroni, B.; Agosti, C.; Padovani, A. Behavioral and psychological symptoms in dementia with Lewy-bodies (DLB): Frequency and relationship with disease severity and motor impairment. Arch. Gerontol. Geriatr. 2008, 46, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Manford, M.; Andermann, F. Complex visual hallucinations. Clinical and neurobiological insights. Brain 1998, 121, 1819–1840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hori, K.; Konishi, K.; Hosoi, M.; Tomioka, H.; Tani, M.; Kitajima, Y.; Hachisu, M. Mini Review: Anticholinergic Activity as a Behavioral Pathology of Lewy Body Disease and Proposal of the Concept of “Anticholinergic Spectrum Disorders”. Park. Dis. 2016, 2016, 5380202. [Google Scholar] [CrossRef] [Green Version]
- Perry, E.; Walker, M.; Grace, J.; Perry, R. Acetylcholine in mind: A neurotransmitter correlate of consciousness? Trends Neurosci. 1999, 22, 273–280. [Google Scholar] [CrossRef]
- Teaktong, T.; Piggott, M.A.; McKeith, I.G.; Perry, R.H.; Ballard, C.G.; Perry, E.K. Muscarinic M2 and M4 receptors in anterior cingulate cortex: Relation to neuropsychiatric symptoms in dementia with Lewy bodies. Behav. Brain Res. 2005, 161, 299–305. [Google Scholar] [CrossRef]
- Colloby, S.J.; Pakrasi, S.; Firbank, M.J.; Perry, E.K.; Piggott, M.A.; Owens, J.; Wyper, D.J.; McKeith, I.G.; Burn, D.J.; Williams, E.D.; et al. In vivo SPECT imaging of muscarinic acetylcholine receptors using (R,R) 123I-QNB in dementia with Lewy bodies and Parkinson’s disease dementia. NeuroImage 2006, 33, 423–429. [Google Scholar] [CrossRef]
- Shiozaki, K.; Iseki, E.; Uchiyama, H.; Watanabe, Y.; Haga, T.; Kameyama, K.; Ikeda, T.; Yamamoto, T.; Kosaka, K. Alterations of muscarinic acetylcholine receptor subtypes in diffuse lewy body disease: Relation to Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 1999, 67, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Perry, E.K.; Perry, R.H. Acetylcholine and hallucinations: Disease-related compared to drug-induced alterations in human consciousness. Brain Cogn. 1995, 28, 240–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballard, C.; Piggott, M.; Johnson, M.; Cairns, N.; Perry, R.; McKeith, I.; Jaros, E.; O’Brien, J.; Holmes, C.; Perry, E. Delusions associated with elevated muscarinic binding in dementia with Lewy bodies. Ann. Neurol. 2000, 48, 868–876. [Google Scholar] [CrossRef]
- Kurz, A.; Kurz, C.; Ellis, K.; Lautenschlager, N.T. What is frontotemporal dementia? Maturitas 2014, 79, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Johnen, A.; Bertoux, M. Psychological and Cognitive Markers of Behavioral Variant Frontotemporal Dementia-A Clinical Neuropsychologist’s View on Diagnostic Criteria and Beyond. Front. Neurol. 2019, 10, 594. [Google Scholar] [CrossRef] [Green Version]
- Hansen, L.A.; Deteresa, R.; Tobias, H.; Alford, M.; Terry, R.D. Neocortical morphometry and cholinergic neurochemistry in Pick’s disease. Am. J. Pathol. 1988, 131, 507–518. [Google Scholar]
- Yates, C.M.; Simpson, J.; Maloney, A.F.; Gordon, A. Neurochemical observations in a case of Pick’s disease. J. Neurol. Sci. 1980, 48, 257–263. [Google Scholar] [CrossRef]
- Skrobot, O.A.; O’Brien, J.; Black, S.; Chen, C.; DeCarli, C.; Erkinjuntti, T.; Ford, G.A.; Kalaria, R.N.; Pantoni, L.; Pasquier, F.; et al. The Vascular Impairment of Cognition Classification Consensus Study. Alzheimers Dement. 2017, 13, 624–633. [Google Scholar] [CrossRef] [Green Version]
- Sep, Y.C.P.; Leeuwis, A.E.; Exalto, L.G.; Boomsma, J.M.; Prins, N.D.; Verwer, J.H.; Scheltens, P.; van der Flier, W.M.; Biessels, G.J. Neuropsychiatric Symptoms as Predictor of Poor Clinical Outcome in Patients With Vascular Cognitive Impairment. Am. J. Geriatr. Psychiatry 2022, 30, 813–824. [Google Scholar] [CrossRef]
- Swartz, R.H.; Sahlas, D.J.; Black, S.E. Strategic involvement of cholinergic pathways and executive dysfunction: Does location of white matter signal hyperintensities matter? J. Stroke Cerebrovasc. Dis. 2003, 12, 29–36. [Google Scholar] [CrossRef]
- Mesulam, M.; Siddique, T.; Cohen, B. Cholinergic denervation in a pure multi-infarct state: Observations on CADASIL. Neurology 2003, 60, 1183–1185. [Google Scholar] [CrossRef]
- Wallin, A.; Sjögren, M.; Blennow, K.; Davidsson, P. Decreased Cerebrospinal Fluid Acetylcholinesterase in Patients with Subcortical Ischemic Vascular Dementia. Dement. Geriatr. Cogn. Disord. 2003, 16, 200–207. [Google Scholar] [CrossRef]
- Nakham, A.; Myint, P.K.; Bond, C.M.; Newlands, R.; Loke, Y.K.; Cruickshank, M. Interventions to Reduce Anticholinergic Burden in Adults Aged 65 and Older: A Systematic Review. J. Am. Med. Dir. Assoc. 2020, 21, 172–180.e5. [Google Scholar] [CrossRef] [PubMed]
- Ailabouni, N.; Mangin, D.; Nishtala, P.S. DEFEAT-polypharmacy: Deprescribing anticholinergic and sedative medicines feasibility trial in residential aged care facilities. Int. J. Clin. Pharm. 2019, 41, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Jester, D.J.; Molinari, V.; Zgibor, J.C.; Volicer, L. Prevalence of psychotropic polypharmacy in nursing home residents with dementia: A meta-analysis. Int. Psychogeriatr. 2021, 33, 1083–1098. [Google Scholar] [CrossRef] [PubMed]
- Maust, D.T.; Strominger, J.; Kim, H.M.; Langa, K.M.; Bynum, J.P.W.; Chang, C.-H.; Kales, H.C.; Zivin, K.; Solway, E.; Marcus, S.C. Prevalence of Central Nervous System–Active Polypharmacy Among Older Adults With Dementia in the US. JAMA 2021, 325, 952–961. [Google Scholar] [CrossRef]
- Toto, S.; Hefner, G.; Hahn, M.; Hiemke, C.; Roll, S.C.; Wolff, J.; Klimke, A. Current use of anticholinergic medications in a large naturalistic sample of psychiatric patients. J. Neural. Transm. (Vienna) 2021, 128, 263–272. [Google Scholar] [CrossRef]
- López-Álvarez, J.; Sevilla-Llewellyn-Jones, J.; Agüera-Ortiz, L. Anticholinergic Drugs in Geriatric Psychopharmacology. Front. Neurosci. 2019, 13, 1309. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, J.L.; Salow, M.J.; Angelini, M.C.; McGlinchey, R.E. The anticholinergic risk scale and anticholinergic adverse effects in older persons. Arch. Inter. Med. 2008, 168, 508–513. [Google Scholar] [CrossRef] [Green Version]
- Taylor-Rowan, M.; Kraia, O.; Kolliopoulou, C.; Noel-Storr, A.H.; Alharthi, A.A.; Cross, A.J.; Stewart, C.; Myint, P.K.; McCleery, J.; Quinn, T.J. Anticholinergic burden for prediction of cognitive decline or neuropsychiatric symptoms in older adults with mild cognitive impairment or dementia. Cochrane Database Syst. Rev. 2022, 8, CD015196. [Google Scholar]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018, 141, 1917–1933. [Google Scholar] [CrossRef]
- Campbell, N.; Ayub, A.; Boustani, M.A.; Fox, C.; Farlow, M.; Maidment, I.; Howards, R. Impact of cholinesterase inhibitors on behavioral and psychological symptoms of Alzheimer’s disease: A meta-analysis. Clin. Interv. Aging 2008, 3, 719–728. [Google Scholar]
- Kertesz, A.; Morlog, D.; Light, M.; Blair, M.; Davidson, W.; Jesso, S.; Brashear, R. Galantamine in frontotemporal dementia and primary progressive aphasia. Dement. Geriatr. Cogn. Disord. 2008, 25, 178–185. [Google Scholar] [CrossRef]
- Mendez, M.F.; Shapira, J.S.; McMurtray, A.; Licht, E. Preliminary findings: Behavioral worsening on donepezil in patients with frontotemporal dementia. Am. J. Geriatr. Psychiatry 2007, 15, 84–87. [Google Scholar] [CrossRef]
- Grossberg, G.T.; Pejović, V.; Miller, M.L.; Graham, S.M. Memantine therapy of behavioral symptoms in community-dwelling patients with moderate to severe Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2009, 27, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Chan, P.T.; Chu, H.; Lin, Y.C.; Chang, P.C.; Chen, C.Y.; Chou, K.R. Treatment effects between monotherapy of donepezil versus combination with memantine for Alzheimer disease: A meta-analysis. PLoS ONE 2017, 12, e0183586. [Google Scholar] [CrossRef]
- Maidment, I.D.; Fox, C.G.; Boustani, M.; Rodriguez, J.; Brown, R.C.; Katona, C.L. Efficacy of memantine on behavioral and psychological symptoms related to dementia: A systematic meta-analysis. Ann. Pharmacother. 2008, 42, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, I.; Shinno, H.; Ando, N.; Mori, T.; Nakamura, Y. The effect of memantine on sleep architecture and psychiatric symptoms in patients with Alzheimer’s disease. Acta Neuropsychiatr. 2016, 28, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Moran, S.P.; Maksymetz, J.; Conn, P.J. Targeting Muscarinic Acetylcholine Receptors for the Treatment of Psychiatric and Neurological Disorders. Trends Pharmacol. Sci. 2019, 40, 1006–1020. [Google Scholar] [CrossRef]
- Scarpa, M.; Hesse, S.; Bradley, S.J. Chapter Ten—M1 muscarinic acetylcholine receptors: A therapeutic strategy for symptomatic and disease-modifying effects in Alzheimer’s disease? Adv. Pharmacol. 2020, 88, 277–310. [Google Scholar]
- Levey, A.I.; Kitt, C.A.; Simonds, W.F.; Price, D.L.; Brann, M.R. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J. Neurosci. 1991, 11, 3218–3226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medeiros, R.; Kitazawa, M.; Caccamo, A.; Baglietto-Vargas, D.; Estrada-Hernandez, T.; Cribbs, D.H.; Fisher, A.; LaFerla, F.M. Loss of muscarinic M1 receptor exacerbates Alzheimer’s disease-like pathology and cognitive decline. Am. J. Pathol. 2011, 179, 980–991. [Google Scholar] [CrossRef] [PubMed]
- Bodick, N.C.; Offen, W.W.; Shannon, H.E.; Satterwhite, J.; Lucas, R.; van Lier, R.; Paul, S.M. The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 1997, 11 (Suppl. S4), S16–S22. [Google Scholar]
- Nathan, P.J.; Watson, J.; Lund, J.; Davies, C.H.; Peters, G.; Dodds, C.M.; Swirski, B.; Lawrence, P.; Bentley, G.D.; O’Neill, B.V.; et al. The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int. J. Neuropsychopharmacol. 2013, 16, 721–731. [Google Scholar] [CrossRef]
- Shirey, J.K.; Brady, A.E.; Jones, P.J.; Davis, A.A.; Bridges, T.M.; Kennedy, J.P.; Jadhav, S.B.; Menon, U.N.; Xiang, Z.; Watson, M.L.; et al. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J. Neurosci. 2009, 29, 14271–14286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davoren, J.E.; Lee, C.W.; Garnsey, M.; Brodney, M.A.; Cordes, J.; Dlugolenski, K.; Edgerton, J.R.; Harris, A.R.; Helal, C.J.; Jenkinson, S.; et al. Discovery of the Potent and Selective M1 PAM-Agonist N-[(3R,4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-5-methyl-4-[4-(1,3-thiazol-4-yl)benzyl]pyridine-2-carboxamide (PF-06767832): Evaluation of Efficacy and Cholinergic Side Effects. J. Med. Chem. 2016, 59, 6313–6328. [Google Scholar] [CrossRef]
- Rouse, S.T.; Thomas, T.M.; Levey, A.I. Muscarinic acetylcholine receptor subtype, m2: Diverse functional implications of differential synaptic localization. Life Sci. 1997, 60, 1031–1038. [Google Scholar] [CrossRef]
- Clader, J.W.; Wang, Y. Muscarinic receptor agonists and antagonists in the treatment of Alzheimer’s disease. Curr. Pharm. Des. 2005, 11, 3353–3361. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, A.; Tripathi, T.; Kumar, A. Muscarinic and nicotinic acetylcholine receptor agonists: Current scenario in Alzheimer’s disease therapy. J. Pharm. Pharmacol. 2018, 70, 985–993. [Google Scholar] [CrossRef] [Green Version]
- Poulin, B.; Butcher, A.; McWilliams, P.; Bourgognon, J.-M.; Pawlak, R.; Kong, K.C.; Bottrill, A.; Mistry, S.; Wess, J.; Rosethorne, E.M.; et al. The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc. Natl. Acad. Sci. USA 2010, 107, 9440. [Google Scholar] [CrossRef] [Green Version]
- Mao, L.M.; He, N.; Jin, D.Z.; Wang, J.Q. Regulation of Phosphorylation of AMPA Glutamate Receptors by Muscarinic M4 Receptors in the Striatum In vivo. Neuroscience 2018, 375, 84–93. [Google Scholar] [CrossRef]
- Tzavara, E.T.; Bymaster, F.P.; Davis, R.J.; Wade, M.R.; Perry, K.W.; Wess, J.; McKinzie, D.L.; Felder, C.; Nomikos, G.G. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: Relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J. 2004, 18, 1410–1412. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.Y.; McKinzie, D.L.; Bose, S.; Mitchell, S.N.; Witkin, J.M.; Thompson, R.C.; Christopoulos, A.; Lazareno, S.; Birdsall, N.J.M.; Bymaster, F.P.; et al. Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc. Natl. Acad. Sci. USA 2008, 105, 10978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, A.B.; Bussert, T.G.; Kreitzer, A.C.; Seal, R.P. Striatal Cholinergic Neurotransmission Requires VGLUT3. J. Neurosci. 2014, 34, 8772. [Google Scholar] [CrossRef] [Green Version]
- English, D.F.; Ibanez-Sandoval, O.; Stark, E.; Tecuapetla, F.; Buzsáki, G.; Deisseroth, K.; Tepper, J.M.; Koos, T. GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat. Neurosci. 2011, 15, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Court, J.A.; Ballard, C.G.; Piggott, M.A.; Johnson, M.; O’Brien, J.T.; Holmes, C.; Cairns, N.; Lantos, P.; Perry, R.H.; Jaros, E.; et al. Visual hallucinations are associated with lower alpha bungarotoxin binding in dementia with Lewy bodies. Pharmacol. Biochem Behavr. 2001, 70, 571–579. [Google Scholar] [CrossRef]
- Van Kampen, M.; Selbach, K.; Schneider, R.; Schiegel, E.; Boess, F.; Schreiber, R. AR-R 17779 improves social recognition in rats by activation of nicotinic alpha7 receptors. Psychopharmacology 2004, 172, 375–383. [Google Scholar] [CrossRef]
- Boess, F.G.; De Vry, J.; Erb, C.; Flessner, T.; Hendrix, M.; Luithle, J.; Methfessel, C.; Riedl, B.; Schnizler, K.; van der Staay, F.J.; et al. The novel alpha7 nicotinic acetylcholine receptor agonist N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-7-[2-(methoxy)phenyl]-1-benzofuran-2-carboxamide improves working and recognition memory in rodents. J. Pharmacol. Exp. Ther. 2007, 321, 716–725. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Type of Study | Anticholinergic Burden Assessment Tool, if Used | Outcome | |
---|---|---|---|---|
Alzheimer’s disease | Dauphinot, 2017 [57] | Cross-sectional | ADS, ACB, ARS, Chew’s score, Han’s score | Higher NPI was associated with the Han’s score |
Cancelli, 2008 [58] | Cross-sectional | none | AD patients exposed to AB were more likely to have psychosis | |
Hori, 2011 [59] | Cross-sectional | SAA | Elevated SAA was linked to higher BEHAVE-AD * | |
Sunderland, 1987 [60] | Cross-sectional | none | After IV scopolamine 0.25 mg, AD patients showed anxiety, depression, and agitation | |
Jaïdi, 2018 [61] | Cross-sectional | ADS, ACB, ARS | Reducing AB by at least 20% enabled a significant decrease in BPSD | |
Liu, 2020 [64] | ACB | Anticholinergic usage was not associated with BPSD | ||
Jewart, 2005 [65] | Cross-sectional | SAA | No significant relationship was found | |
Lewy body dementia Parkinson Disease dementia | Jaïdi, 2018 [61] * | Cross-sectional | ADS, ACB, ARS | Reducing AB by at least 20% enabled a significant decrease in BPSD |
Fronto-temporal dementia | x | x | x | x |
Vascular dementia | Jaïdi, 2018 [61] *** | Cross-sectional | Reducing AB by at least 20% enabled a significant decrease in BPSD |
Receptor | Central Location | Mechanism of Action | Involvement in Cognition/BPSD | Therapeutic Target |
---|---|---|---|---|
Muscarinic | ||||
M | Cortex, hippocampus, striatum, and thalamus, post-synaptic [111] | Coupled with protein Gq (activates phospholipase C) | Memory Learning [112] | M1 agonists: -Xanomeline LY593093 improved cognitive function and reduced BPSD such as agitation, delusions, and hallucinations in patients with AD [113] -GSK1034702 is an allosteric M1 agonist in clinical development for the treatment of cognitive disorders in AD (NCT00743405) [114] -Heptares announced positive phase I results with the molecule HTL9936 (NCT02291783) Positive allosteric M1 modulators: -Benzyl quinolone carboxylic acid, BQCA, improved memory performance in patients with AD [115] -PF-06767832: poor gastro-intestinal and cardiovascular tolerance [116] |
M2 | Brainstem, thalamus, cortex, hippocampus and striatum [117] | Coupled with protein Gi/o (inhibits adenylyl cyclase and modules ion channels) | Memory Learning Delusions Hallucinations [71] | Selective and active M2 antagonists M2 currently being optimized [118] in view of their poor tolerance [119] |
M3 | Cortex and hippocampus [111] | Coupled with protein Gq (activates phospholipase C) | Memory Learning [120] | |
M4 | Striatum, cortex, Hippocampus [111] | Coupled with protein Gi/o (inhibits adenylyl cyclase and modules ion channels) | Regulation of ACh turnover [121,122] | M4 Agonists: -Heptares announced the development of selective M4 and mixed M1/M4 agonists Positive allosteric M4 Modulators: -LY2033298 [123] but has not yet entered clinical development [116] |
M5 | Locus niger [111] | Coupled with protein Gq (activates phospholipase C) | Delusions Hallucinations [73] | |
Nicotinic | Glutamateric and dopaminergic neurons; GABAergic and cholinergic interneurons [124,125] | Ionotropic | Delusions [70] Hallucinations [126] | -AR-R17779 improved social recognition by activation of α7 nicotinic receptor [127] -N-[128]oct-3-yl-7-[128]-1-benzofuran-2-carboxamide improves working memory and recognition [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoudi, R.; Novella, J.L.; Laurent-Badr, S.; Boulahrouz, S.; Tran, D.; Morrone, I.; Jaïdi, Y. Cholinergic Antagonists and Behavioral Disturbances in Neurodegenerative Diseases. Int. J. Mol. Sci. 2023, 24, 6921. https://doi.org/10.3390/ijms24086921
Mahmoudi R, Novella JL, Laurent-Badr S, Boulahrouz S, Tran D, Morrone I, Jaïdi Y. Cholinergic Antagonists and Behavioral Disturbances in Neurodegenerative Diseases. International Journal of Molecular Sciences. 2023; 24(8):6921. https://doi.org/10.3390/ijms24086921
Chicago/Turabian StyleMahmoudi, Rachid, Jean Luc Novella, Sarah Laurent-Badr, Sarah Boulahrouz, David Tran, Isabella Morrone, and Yacine Jaïdi. 2023. "Cholinergic Antagonists and Behavioral Disturbances in Neurodegenerative Diseases" International Journal of Molecular Sciences 24, no. 8: 6921. https://doi.org/10.3390/ijms24086921
APA StyleMahmoudi, R., Novella, J. L., Laurent-Badr, S., Boulahrouz, S., Tran, D., Morrone, I., & Jaïdi, Y. (2023). Cholinergic Antagonists and Behavioral Disturbances in Neurodegenerative Diseases. International Journal of Molecular Sciences, 24(8), 6921. https://doi.org/10.3390/ijms24086921