Efflux Pumps and Different Genetic Contexts of tet(X4) Contribute to High Tigecycline Resistance in Escherichia fergusonii from Pigs
Abstract
:1. Introduction
2. Results
2.1. Identification of E. fergusonii and Minimal Inhibitory Concentration (MIC) Values of Tigecycline
2.2. General Features of the E. fergusonii Genomes
2.3. Genetic Context of Tigecycline Resistance Gene
2.4. Efflux Pumps’ Activity
2.5. Conjugation
2.6. Phylogenetic Analysis
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolation and Identification
4.2. Antimicrobial Susceptibility Testing
4.3. Whole-Genome Sequencing and Annotation
4.4. Effect of CCCP on Tigecycline MIC
4.5. Phylogenetic Analysis of the Genomic Sequences
4.6. Conjugation Experiments
4.7. Nucleotide Sequence Accession Numbers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Laxminarayan, R.; Sridhar, D.; Blaser, M.; Wang, M.; Woolhouse, M. Achieving global targets for antimicrobial resistance. Science 2016, 353, 874–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, T.; Wang, R.; Liu, D.; Walsh, T.R.; Zhang, R.; Lv, Y.; Ke, Y.; Ji, Q.; Wei, R.; Liu, Z.; et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat. Microbiol. 2019, 4, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Cai, Y.; Liu, X.; Bai, N.; Liang, B.; Wang, R. The emergence of clinical resistance to tigecycline. Int. J. Antimicrob. Agents 2013, 41, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Pournaras, S.; Koumaki, V.; Gennimata, V.; Kouskouni, E.; Tsakris, A. In vitro activity of tigecycline against Acinetobacter baumannii: Global epidemiology and resistance mechanisms. In Advances in Microbiology, Infectious Diseases and Public Health; Springer: Cham, Switzerland, 2015; Volume 1, pp. 1–14. [Google Scholar]
- Pournaras, S.; Koumaki, V.; Spanakis, N.; Gennimata, V.; Tsakris, A. Current perspectives on tigecycline resistance in Enterobacteriaceae: Susceptibility testing issues and mechanisms of resistance. Int. J. Antimicrob. Agents 2016, 48, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Sun, L.; Chen, X.; Du, F.; Shi, H.; Chen, C.; Chen, Z.J. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013, 339, 826–830. [Google Scholar] [CrossRef] [Green Version]
- Hentschke, M.; Christner, M.; Sobottka, I.; Aepfelbacher, M.; Rohde, H. Combined ramR mutation and presence of a Tn1721-associated tet(A) variant in a clinical isolate of Salmonella enterica serovar Hadar resistant to tigecycline. Antimicrob. Agents Chemother. 2010, 54, 1319–1322. [Google Scholar] [CrossRef] [Green Version]
- Keeney, D.; Ruzin, A.; Bradford, P.A. RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microb. Drug. Resist. 2007, 13, 1–6. [Google Scholar] [CrossRef]
- Lv, L.; Wan, M.; Wang, C.; Gao, X.; Yang, Q.; Partridge, S.R.; Wang, Y.; Zong, Z.; Doi, Y.; Shen, J.; et al. Emergence of a plasmid-encoded resistance-nodulation-division efflux pump conferring resistance to multiple drugs, including tigecycline, in Klebsiella pneumoniae. mBio 2020, 11, e02930-19. [Google Scholar] [CrossRef] [Green Version]
- Veleba, M.; De Majumdar, S.; Hornsey, M.; Woodford, N.; Schneiders, T. Genetic characterization of tigecycline resistance in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes. J. Antimicrob. Chemother. 2013, 68, 1011–1018. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Z.; Gao, X.; Yang, Q.W.; Lv, L.C.; Wan, M.; Yang, J.; Cai, Z.P.; Liu, J.H. A novel transferable resistance-nodulation-division pump gene cluster, tmexCD2-toprJ2, confers tigecycline resistance in Raoultella ornithinolytica. Antimicrob. Agents Chemother. 2021, 65, e02229-20. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Z.; Chen, Y.; Wang, W.; He, F. The plasmid-borne tet(A) gene is an important factor causing tigecycline resistance in ST11 carbapenem-resistant Klebsiella pneumoniae under selective pressure. Front. Microbiol. 2021, 12, 644949. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, H.; Zhang, Y.; Wang, Q.; Zhao, C.; Li, H.; He, W.; Zhang, F.; Wang, Z.; Li, S.; et al. Genetic characterisation of clinical Klebsiella pneumoniae isolates with reduced susceptibility to tigecycline: Role of the global regulator RamA and its local repressor RamR. Int. J. Antimicrob. Agents 2015, 45, 635–640. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Fu, Y.; Chen, Q.; Ruan, Z.; Hua, X.; Zhou, H.; Yu, Y. Tigecycline susceptibility and the role of efflux pumps in tigecycline resistance in KPC-producing Klebsiella pneumoniae. PLoS ONE 2015, 10, e0119064. [Google Scholar] [CrossRef] [PubMed]
- Pérez, A.; Poza, M.; Aranda, J.; Latasa, C.; Medrano, F.J.; Tomás, M.; Romero, A.; Lasa, I.; Bou, G. Effect of transcriptional activators SoxS, RobA, and RamA on expression of multidrug efflux pump AcrAB-TolC in Enterobacter cloacae. Antimicrob. Agents Chemother. 2012, 56, 6256–6266. [Google Scholar] [CrossRef] [Green Version]
- Ruzin, A.; Keeney, D.; Bradford, P.A. AcrAB efflux pump plays a role in decreased susceptibility to tigecycline in Morganella morganii. Antimicrob. Agents Chemother. 2005, 49, 791–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haim, M.S.; Di Gregorio, S.; Galanternik, L.; Lubovich, S.; Vázquez, M.; Bharat, A.; Zaheer, R.; Golding, G.R.; Graham, M.; Van Domselaar, G.; et al. First description of rpsJ and mepA mutations associated with tigecycline resistance in Staphylococcus aureus isolated from a cystic fibrosis patient during antibiotic therapy. Int. J. Antimicrob. Agents 2017, 50, 739–741. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, T.; Shao, D.; Song, H.; Zhai, W.; Sun, C.; Zhang, Y.; Zhang, M.; Fu, Y.; Zhang, R.; et al. Structural diversity of the ISCR2-mediated rolling-cycle transferable unit carrying tet(X4). Sci. Total Environ. 2022, 826, 154010. [Google Scholar] [CrossRef]
- Niebel, M.; Quick, J.; Prieto, A.M.; Hill, R.L.; Pike, R.; Huber, D.; David, M.; Hornsey, M.; Wareham, D.; Oppenheim, B.; et al. Deletions in a ribosomal protein-coding gene are associated with tigecycline resistance in Enterococcus faecium. Int. J. Antimicrob. Agents 2015, 46, 572–575. [Google Scholar] [CrossRef]
- Yang, Y.S.; Chen, H.Y.; Hsu, W.J.; Chou, Y.C.; Perng, C.L.; Shang, H.S.; Hsiao, Y.T.; Sun, J.R.; Chang, Y.Y.; Liu, Y.M. Overexpression of AdeABC efflux pump associated with tigecycline resistance in clinical Acinetobacter nosocomialis isolates. Clin. Microbiol. Infect. 2019, 25, 512-e1. [Google Scholar] [CrossRef] [Green Version]
- Linkevicius, M.; Sandegren, L.; Andersson, D.I. Potential of tetracycline resistance proteins to evolve tigecycline resistance. Antimicrob. Agents Chemother. 2016, 60, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.; Zhu, M.H.; Li, J.J.; Bi, S.; Sheng, Z.K.; Hu, F.S.; Zhang, J.J.; Chen, W.; Xue, X.W.; Sheng, J.F. Molecular epidemiology and mechanisms of tigecycline resistance in clinical isolates of Acinetobacter baumannii from a Chinese university hospital. Antimicrob. Agents Chemother. 2014, 58, 297–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leski, T.A.; Bangura, U.; Jimmy, D.H.; Ansumana, R.; Lizewski, S.E.; Stenger, D.A.; Taitt, C.R.; Vora, G.J. Multidrug-resistant tet(X)-containing hospital isolates in Sierra Leone. Int. J. Antimicrob. Agents 2013, 42, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Moore, I.F.; Hughes, D.W.; Wright, G.D. Tigecycline is modified by the flavin-dependent monooxygenase TetX. Biochemistry 2005, 44, 11829–11835. [Google Scholar] [CrossRef]
- Martelli, F.; AbuOun, M.; Cawthraw, S.; Storey, N.; Turner, O.; Ellington, M.; Nair, S.; Painset, A.; Teale, C.; Anjum, M.F. Detection of the transferable tigecycline resistance gene tet(X4) in Escherichia coli from pigs in the United Kingdom. J. Antimicrob. Chemother. 2022, 77, 846–848. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chen, C.; Cui, C.Y.; Zhang, Y.; Liu, X.; Cui, Z.H.; Ma, X.Y.; Feng, Y.; Fang, L.X.; Lian, X.L.; et al. Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Nat. Microbiol. 2019, 4, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet. Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, C.; Tang, B.; Yang, H.; Ma, J.; Huang, Y.; Liu, C. Emergence of plasmid-mediated tigecycline resistance gene, tet(X4), in Escherichia fergusonii from pigs. J. Glob. Antimicrob. Resist. 2022, 30, 249–251. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Peng, K.; Liu, Y.; Li, R.; Wang, Z. Emergence of carbapenem-and tigecycline-resistant Proteus cibarius of animal origin. Front. Microbiol. 2020, 11, 1940. [Google Scholar] [CrossRef]
- Farmer, J.J., 3rd; Fanning, G.R.; Davis, B.R.; O’Hara, C.M.; Riddle, C.; Hickman-Brenner, F.W.; Asbury, M.A.; Lowery, V.A., 3rd; Brenner, D.J. Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiol. 1985, 21, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Saha, O.; Rakhi, N.N.; Hoque, M.N.; Sultana, M.; Hossain, M.A. Genome-wide genetic marker analysis and genotyping of Escherichia fergusonii strain OTSVEF-60. Braz. J. Microbiol. 2021, 52, 989–1004. [Google Scholar]
- Lagacé-Wiens, P.R.; Baudry, P.J.; Pang, P.; Hammond, G. First description of an extended-spectrum-β-lactamase-producing multidrug-resistant Escherichia fergusonii strain in a patient with cystitis. J. Clin. Microbiol. 2010, 48, 2301–2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, B.; Chang, J.; Chen, Y.; Lin, J.; Xiao, X.; Xia, X.; Lin, J.; Yang, H.; Zhao, G. Escherichia fergusonii, an underrated repository for antimicrobial resistance in food animals. Microbiol. Spectrum. 2022, 10, e01617-21. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Lu, X.; Munir, A.; Abdullah, S.; Liu, Y.; Xiao, X.; Wang, Z.; Mohsin, M. Widespread prevalence and molecular epidemiology of tet(X4) and mcr-1 harboring Escherichia coli isolated from chickens in Pakistan. Sci. Total Environ. 2022, 806, 150689. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Peng, K.; Li, Y.; Liu, Y.; Wang, Z. Exploring tet(X)-bearing tigecycline-resistant bacteria of swine farming environments. Sci. Total Environ. 2020, 733, 139306. [Google Scholar] [CrossRef]
- Ardehali, S.H.; Azimi, T.; Fallah, F.; Owrang, M.; Aghamohammadi, N.; Azimi, L. Role of efflux pumps in reduced susceptibility to tigecycline in Acinetobacter baumannii. New Microbes New Infect. 2019, 30, 100547. [Google Scholar] [CrossRef]
- Hobbs, E.C.; Yin, X.; Paul, B.J.; Astarita, J.L.; Storz, G. Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc. Natl. Acad. Sci. USA 2012, 109, 16696–16701. [Google Scholar] [CrossRef] [Green Version]
- Morita, Y.; Kodama, K.; Shiota, S.; Mine, T.; Kataoka, A.; Mizushima, T.; Tsuchiya, T. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob. Agents Chemother. 1998, 42, 1778–1782. [Google Scholar] [CrossRef] [Green Version]
- Alekshun, M.N.; Levy, S.B. Regulation of chromosomally mediated multiple antibiotic resistance: The mar regulon. Antimicrob. Agents Chemother. 1997, 41, 2067. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, T.M.; Levy, S.B. Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J. Bacteriol. 2000, 182, 3467–3474. [Google Scholar] [CrossRef] [Green Version]
- Chollet, R.; Chevalier, J.; Bollet, C.; Pages, J.M.; Davin-Regli, A. RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes. Antimicrob. Agents Chemother. 2004, 48, 2518–2523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keeney, D.; Ruzin, A.; McAleese, F.; Murphy, E.; Bradford, P.A. MarA-mediated overexpression of the AcrAB efflux pump results in decreased susceptibility to tigecycline in Escherichia coli. J. Antimicrob. Chemother. 2007, 61, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Olsen, R.H.; Wang, C.; Song, A.; Xiao, J.; Meng, H.; Ronco, T.; Shi, L. First report of two foodborne Salmonella enterica subsp. enterica serovar Bovismorbificans isolates carrying a novel mega-plasmid harboring blaDHA-1 and qnrB4 genes. Int. J. Food Microbiol. 2021, 360, 109439. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2021. [Google Scholar]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Jagadeesan, B.; Baert, L.; Wiedmann, M.; Orsi, R.H. Comparative analysis of tools and approaches for source tracking Listeria monocytogenes in a food facility using whole-genome sequence data. Front. Microbiol. 2019, 10, 947. [Google Scholar] [CrossRef] [Green Version]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Carattoli, A.; Hasman, H. PlasmidFinder and In Silico pMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). Methods Mol. Biol. 2020, 2075, 285–294. [Google Scholar]
- Zhou, Z.; Alikhan, N.F.; Mohamed, K.; Fan, Y.; Agama Study Group; Achtman, M. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef] [Green Version]
- Hammerum, A.M.; Hansen, F.; Nielsen, H.L.; Jakobsen, L.; Stegger, M.; Andersen, P.S.; Jensen, P.; Nielsen, T.K.; Hansen, L.H.; Hasman, H.; et al. Use of WGS data for investigation of a long-term NDM-1-producing Citrobacter freundii outbreak and secondary in vivo spread of blaNDM-1 to Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca. J. Antimicrob. Chemother. 2016, 71, 3117–3124. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, R.L.; Garcia-Toledo, L.; Fasulo, D.; Gladney, L.M.; Strockbine, N. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii. J. Microbiol. Methods 2017, 140, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ji, K.; Xu, Y.; Sun, J.; Huang, M.; Jia, X.; Jiang, C.; Feng, Y. Harnessing efficient multiplex PCR methods to detect the expanding tet(X) family of tigecycline resistance genes. Virulence 2020, 11, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain | MIC (mg/L) | MIC + CCCP (mg/L) | Plasmid Inc Group | TIG a | Other Resistance Determinants | Antibiotic Resistance b |
---|---|---|---|---|---|---|
2022GZP273 | 16 | 8 | IncFIA(HI1), IncFIB, IncHI1A, IncHI1B(R27), IncX1, IncY | tet(X4) | aadA1, aadA2, aadA22, aadA24, aph(3′)-Ia, aph(3″)-Ib, aph(6)-Id, blaTEM-1B, cmlA1, dfrA12, erm(42), floR, lnu(G), mef(B), qacL, qnrS1, qnrS2, sul3, tet(B) | AMIs, BETs, DISs, FLUs, MLS, PHEs, SULs, TETs, TRIs |
2022GZP491 | 32 | 8 | IncX1, IncY | tet(X4) | aadA1, aadA2, blaTEM-1B, cmlA1, dfrA12, erm(42), floR, qacL, qnrS1, sul2, sul3, tet(A), tet(M) | AMIs, BETs, DISs, FLUs, MLS, PHEs, SULs, TETs, TRIs |
2022GZP462 | 32 | 16 | IncX1, IncY | tet(X4) | aadA1, aadA2, blaTEM-1B, cmlA1, dfrA12, erm(42), floR, qacL, qnrS1, sul2, sul3, tet(A), tet(M) | AMIs, BETs, DISs, FLUs, MLS, PHEs, SULs, TETs, TRIs |
2022GZP331 | 32 | 16 | IncFIB, IncX1, IncY | tet(X4) | aadA1, aadA2, blaTEM-1B, cmlA1, dfrA12, erm(42), floR, qacL, qnrS1, sul2, sul3, tet(A), tet(M) | AMIs, BETs, DISs, FLUs, MLS, PHEs, SULs, TETs, TRIs |
2022GZP221 | 16 | 8 | IncFIB, IncX1, IncY | tet(X4) | aadA1, aadA2, blaTEM-1B, cmlA1, dfrA12, erm(42), floR, qacL, qnrS1, sul2, sul3, tet(A), tet(M) | AMIs, BETs, DISs, FLUs, MLS, PHEs, SULs, TETs, TRIs |
2022GZP175 | 32 | 16 | IncFIB, IncX1, IncY | tet(X4) | aadA1, aadA2, blaTEM-1B, cmlA1, dfrA12, erm(42), floR, qacL, qnrS1, sul2, sul3, tet(A), tet(M) | AMIs, BETs, DISs, FLUs, MLS, PHEs, SULs, TETs, TRIs |
Strain | MIC of Tigcycline (mg/L) | Conjugation Rates |
---|---|---|
E. coli J53 | 0.25 | |
2022GZP273 | 16 | |
2022GZP491 | 32 | |
2022GZP462 | 32 | |
2022GZP331 | 32 | |
2022GZP221 | 16 | |
2022GZP175 | 32 | |
2022GZP273 transconjugant | 8 | 2.6 × 10−6 ± 0.4 |
2022GZP491 transconjugant | 8 | 5.5 × 10−7 ± 0.5 |
2022GZP462 transconjugant | 8 | 3.4 × 10−7 ± 0.3 |
2022GZP331 transconjugant | 8 | 6.7 × 10−7 ± 0.4 |
2022GZP221 transconjugant | 8 | 5.3 × 10−7 ± 0.6 |
2022GZP175 transconjugant | 8 | 7.4 × 10−7 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wan, X.; Meng, H.; Olsen, R.H.; Chen, X.; Li, L. Efflux Pumps and Different Genetic Contexts of tet(X4) Contribute to High Tigecycline Resistance in Escherichia fergusonii from Pigs. Int. J. Mol. Sci. 2023, 24, 6923. https://doi.org/10.3390/ijms24086923
Wang J, Wan X, Meng H, Olsen RH, Chen X, Li L. Efflux Pumps and Different Genetic Contexts of tet(X4) Contribute to High Tigecycline Resistance in Escherichia fergusonii from Pigs. International Journal of Molecular Sciences. 2023; 24(8):6923. https://doi.org/10.3390/ijms24086923
Chicago/Turabian StyleWang, Junlin, Xiulin Wan, Hecheng Meng, Rikke Heidemann Olsen, Xun Chen, and Lili Li. 2023. "Efflux Pumps and Different Genetic Contexts of tet(X4) Contribute to High Tigecycline Resistance in Escherichia fergusonii from Pigs" International Journal of Molecular Sciences 24, no. 8: 6923. https://doi.org/10.3390/ijms24086923
APA StyleWang, J., Wan, X., Meng, H., Olsen, R. H., Chen, X., & Li, L. (2023). Efflux Pumps and Different Genetic Contexts of tet(X4) Contribute to High Tigecycline Resistance in Escherichia fergusonii from Pigs. International Journal of Molecular Sciences, 24(8), 6923. https://doi.org/10.3390/ijms24086923