Distinct Inflammatory and Oxidative Effects of Diabetes Mellitus and Hypothyroidism in the Lacrimal Functional Unit
Abstract
:1. Introduction
2. Results
2.1. Functional and Laboratory In Vivo Findings
2.2. Histological Findings
2.3. Oxidative Stress and Antioxidant Enzymes
2.4. qPCR of Pro-Inflammatory and Pro-Mitotic Cytokines
3. Discussion
4. Material and Methods
4.1. Animals and Study Design
4.2. Behavioral Studies
4.3. Clinical Evaluation
- Tear film Osmolarity: tear samples were harvested from the animals without stimulation or need for eye drops, with the approximation of a delicate collector, and the measurements were made using Osmometer Tearlab® osmolarity system (San Diego, CA, USA).
- Corneal fluorescein staining: an eye drop of 1% sodium fluorescein (Allergan Produtos farmacêuticos LTDA, Guarulhos, Sao Paulo, Brazil) was applied in the right eye to identify the areas and categorize the intensity of the keratitis, with grades from 0 to 15.
- Phenol red thread test was applied to measure the tear flow (TF) in millimeters for 30 s, as previously described (Showa Yakuhin Kako Co., Ltd., Tokyo, Japan and Menicon USA Inc., Clovis, CA, USA) [35].
- Blood Osmolarity was determined by measuring the freezing point of the blood plasma solution (Advanced instruments—Two Technology Way, Norwood, MA, USA).
4.4. Histological Evaluation
4.5. Anti-Oxidant Enzymes and Oxidative Stress Products
4.6. Quantitative Real-Time PCR
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dana, R.; Bradley, J.L.; Guerin, A.; Pivneva, I.; Stillman, I.Ö.; Evans, A.M.; Schaumberg, D.A. Estimated Prevalence and Incidence of Dry Eye Disease Based on Coding Analysis of a Large, All-age United States Health Care System. Am. J. Ophthalmol. 2019, 202, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.-S.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef]
- Alves, M.; Reinach, P.S.; Paula, J.S.; e Cruz, A.A.V.; Bachette, L.; Faustino, J.; Aranha, F.P.; Vigorito, A.; De Souza, C.A.; Rocha, E.M. Comparison of diagnostic tests in distinct well-defined conditions related to dry eye disease. PLoS ONE 2014, 9, e97921. [Google Scholar]
- Bron, A.J.; Tomlinson, A.; Foulks, G.N.; Pepose, J.S.; Baudouin, C.; Geerling, G.; Nichols, K.K.; Lemp, M.A. Rethinking dry eye disease: A perspective on clinical implications. Ocul. Surf. 2014, 12, S1–S31. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Wei, W. Identified risk factors for dry eye syndrome: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0271267. [Google Scholar]
- Stern, M.E.; Gao, J.; Siemasko, K.F.; Beuerman, R.W.; Pflugfelder, S.C. The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp. Eye Res. 2004, 78, 409–416. [Google Scholar] [CrossRef]
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2011, 8, 228–236. [Google Scholar] [CrossRef]
- Alves, M.; Calegari, V.C.; Cunha, D.A.; Saad, M.J.A.; Velloso, L.A.; Rocha, E.M. Increased expression of advanced glycation end-products and their receptor, and activation of nuclear factor kappa-B in lacrimal glands of diabetic rats. Diabetologia 2005, 48, 2675–2681. [Google Scholar] [CrossRef] [Green Version]
- Módulo, C.M.; Jorge, A.G.; Dias, A.C.; Braz, A.M.; Bertazolli-Filho, R.; Jordão, A.A., Jr.; Marchini, J.S.; Rocha, E.M. Influence of insulin treatment on the lacrimal gland and ocular surface of diabetic rats. Endocrine 2009, 36, 161–168. [Google Scholar] [CrossRef]
- Dias, A.C.; Batista, T.M.; Roma, L.P.; Módulo, C.M.; Malki, L.T.; Dias, L.C.; Alves, M.; Reinach, P.S.; Carneiro, E.M.; Rocha, E.M. Insulin replacement restores the vesicular secretory apparatus in the diabetic rat lacrimal gland. Arq. Bras. Oftalmol. 2015, 78, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Dias, A.C.; Módulo, C.M.; Jorge, A.G.; Braz, A.M.; Jordão, A.A.; Filho, R.B.; de Paula, J.S.; Rocha, E.M. Influence of Thyroid Hormone on Thyroid Hormone Receptor β-1 Expression and Lacrimal Gland and Ocular Surface Morphology. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3038–3042. [Google Scholar] [CrossRef]
- Rocha, E.M.; Mantelli, F.; Nominato, L.F.; Bonini, S. Hormones and dry eye syndrome: An update on what we do and don’t know. Curr. Opin. Ophthalmol. 2013, 24, 348–355. [Google Scholar] [CrossRef]
- Sullivan, D.A.; Rocha, E.M.; Aragona, P.; Clayton, J.A.; Ding, J.; Golebiowski, B.; Hampel, U.; McDermott, A.M.; Schaumberg, D.A.; Srinivasan, S.; et al. TFOS DEWS II Sex, Gender, and Hormones Report. Ocul. Surf. 2017, 15, 284–333. [Google Scholar] [CrossRef]
- Nielsen, N.V.; Lund, F.S. Diabetic polyneuropathy. Corneal sensitivity, vibratory perception and Achilles tendon reflex in diabetics. Acta Neurol. Scand. 1979, 59, 15–22. [Google Scholar] [CrossRef]
- Jorge, A.G.; Módulo, C.M.; Dias, A.C.; Braz, A.M.; Filho, R.B.; Jordão, A.A., Jr.; de Paula, J.S.; Rocha, E.M. Aspirin prevents diabetic oxidative changes in rat lacrimal gland structure and function. Endocrine 2009, 35, 189–197. [Google Scholar] [CrossRef]
- Cousen, P.; Cackett, P.; Bennett, H.; Swa, K.; Dhillon, B. Tear production and corneal sensitivity in diabetes. J. Diabetes Complicat. 2007, 21, 371–373. [Google Scholar] [CrossRef]
- Chen, D.K.; Frizzi, K.E.; Guernsey, L.S.; Ladt, K.; Mizisin, A.P.; Calcutt, N.A. Repeated monitoring of corneal nerves by confocal microscopy as an index of peripheral neuropathy in type-1 diabetic rodents and the effects of topical insulin. J. Peripher. Nerv. Syst. 2013, 18, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Lv, H.; Li, A.; Zhang, X.; Xu, M.; Qiao, Y.; Zhang, J.; Yu, L. Meta-analysis and review on the changes of tear function and corneal sensitivity in diabetic patients. Acta Ophthalmol. 2014, 92, e96–e104. [Google Scholar] [CrossRef] [Green Version]
- Leppin, K.; Behrendt, A.-K.; Reichard, M.; Stachs, O.; Guthoff, R.F.; Baltrusch, S.; Eule, J.C.; Vollmar, B. Diabetes mellitus leads to accumulation of dendritic cells and nerve fiber damage of the subbasal nerve plexus in the cornea. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3603–3615. [Google Scholar] [CrossRef]
- Ramos-Remus, C.; Suarez-Almazor, M.; Russell, A.S. Low tear production in patients with diabetes mellitus is not due to Sjögren’s syndrome. Clin. Exp. Rheumatol. 1994, 12, 375–380. [Google Scholar]
- Davidson, E.P.; Coppey, L.J.; Yorek, M.A. Early loss of innervation of cornea epithelium in streptozotocin-induced type 1 diabetic rats: Improvement with ilepatril treatment. Investig. Ophthalmol. Vis. Sci. 2012, 53, 8067–8074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, E.P.; Coppey, L.J.; Kardon, R.H.; Yorek, M.A. Differences and similarities in development of corneal nerve damage and peripheral neuropathy and in diet-induced obesity and type 2 diabetic rats. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Atli, T.; Keven, K.; Avci, A.; Kutlay, S.; Turkcapar, N.; Varli, M.; Aras, S.; Ertug, E.; Canbolat, O. Oxidative stress and antioxidant status in elderly diabetes mellitus and glucose intolerance patients. Arch. Gerontol. Geriatr. 2004, 39, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Deconte, S.R.; Oliveira, R.J.d.S.; Calábria, L.K.; de Oliveira, V.N.; de Gouveia, N.M.; Moraes, A.d.S.; Espindola, F.S. Alterations of antioxidant biomarkers and type I collagen deposition in the parotid gland of streptozotocin-induced diabetic rats. Arch. Oral. Biol. 2011, 56, 744–751. [Google Scholar] [CrossRef]
- Knaś, M.; Maciejczyk, M.; Daniszewska, I.; Klimiuk, A.; Matczuk, J.; Kołodziej, U.; Waszkiel, D.; Ładny, J.R.; Żendzian-Piotrowska, M.; Zalewska, A. Oxidative Damage to the Salivary Glands of Rats with Streptozotocin-Induced Diabetes-Temporal Study: Oxidative Stress and Diabetic Salivary Glands. J. Diabetes Res. 2016, 2016, 4583742. [Google Scholar] [CrossRef] [Green Version]
- Barabino, S.; Dana, M.R. Animal models of dry eye: A critical assessment of opportunities and limitations. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1641–1646. [Google Scholar] [CrossRef]
- Garcia, D.M.; de Oliveira, F.R.; Módulo, C.M.; Faustino, J.; Barbosa, A.P.; Alves, M.; Rocha, E.M. Is Sjögren’s syndrome dry eye similar to dry eye caused by other etiologies? Discriminating different diseases by dry eye tests. PLoS ONE 2018, 13, e0208420. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, T.; Fujimoto, C.; Suzuki, H.; Ono, M.; Iijima, O.; Takahashi, H.; Takahashi, H. Short-time exposure of hyperosmolarity triggers interleukin-6 expression in corneal epithelial cells. Cornea 2014, 33, 1342–1347. [Google Scholar] [CrossRef]
- Gupta, N.; Arora, M.; Sharma, R.; Arora, K.S. Peripheral and Central Nervous System Involvement in Recently Diagnosed Cases of Hypothyroidism: An Electrophysiological Study. Ann. Med. Health Sci. Res. 2016, 6, 261–266. [Google Scholar] [CrossRef]
- Sarandöl, E.; Taş, S.; Dirican, M.; Serdar, Z. Oxidative stress and serum paraoxonase activity in experimental hypothyroidism: Effect of vitamin E supplementation. Cell Biochem. Funct. 2005, 23, 1–8. [Google Scholar] [CrossRef]
- Voronov, D.; Gromova, A.; Liu, D.; Zoukhri, D.; Medvinsky, A.; Meech, R.; Makarenkova, H.P. Transcription factors Runx1 to 3 are expressed in the lacrimal gland epithelium and are involved in regulation of gland morphogenesis and regeneration. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3115–3125. [Google Scholar] [CrossRef] [Green Version]
- Zoukhri, D.; Fix, A.; Alroy, J.; Kublin, C.L. Mechanisms of murine lacrimal gland repair after experimentally induced inflammation. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4399–4406. [Google Scholar] [CrossRef]
- Zoukhri, D. Mechanisms involved in injury and repair of the murine lacrimal gland: Role of programmed cell death and mesenchymal stem cells. Ocul. Surf. 2010, 8, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Barabino, S.; Chen, W.; Dana, M.R. Tear film and ocular surface tests in animal models of dry eye: Uses and limitations. Exp. Eye Res. 2004, 79, 613–621. [Google Scholar] [CrossRef]
- Marques, D.L.; Alves, M.; Modulo, C.M.; da Silva, L.E.C.M.; Reinach, P. Lacrimal osmolarity and ocular surface in experimental model of dry eye caused by toxicity. Rev. Bras. Oftalmol. 2015, 74, 68–72. [Google Scholar] [CrossRef] [Green Version]
Experimental Groups | Control | DM | HT | * Values of p |
---|---|---|---|---|
Eye wipe test (movement/s) | 4.2 ± 3.3 | 6.4 ± 2.7 | 4.0 ± 3.0 | p > 0.05 |
Phenol red thread (mm/30 s) | 8.3 ± 4.1 | 4.7 ± 3.5 * | 6.4 ± 4.4 | p = 0.02 |
Tear osmolarity (mOsm/L) | 298.4 ± 17.3 | 321.8 ± 33.5 | 338.1 ± 13.5 * | p < 0.001 |
Blood osmolarity (mOsm/L) | 302.2 ± 5.8 | 341.2 ± 16.4 * | 321.5 ± 27.4 | p < 0.001 |
Epithelial thickness of cornea (μm) | 26.1 ± 1.9 | 27.3 ± 2.4 * | 24.7 ± 2.6 | p = 0.003 |
Catalase activity (mU/mL) | 63.8 ± 2.5 | 68.7 ± 2.0 * | 66.3 ± 1.9 ** | * p < 0.001 ** p = 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faustino-Barros, J.F.; Saranzo Sant’Ana, A.M.; Dias, L.C.; de Andrade Batista Murashima, A.; Costa Mendes da Silva, L.E.; Fantucci, M.Z.; Garcia, D.M.; Rocha, E.M. Distinct Inflammatory and Oxidative Effects of Diabetes Mellitus and Hypothyroidism in the Lacrimal Functional Unit. Int. J. Mol. Sci. 2023, 24, 6974. https://doi.org/10.3390/ijms24086974
Faustino-Barros JF, Saranzo Sant’Ana AM, Dias LC, de Andrade Batista Murashima A, Costa Mendes da Silva LE, Fantucci MZ, Garcia DM, Rocha EM. Distinct Inflammatory and Oxidative Effects of Diabetes Mellitus and Hypothyroidism in the Lacrimal Functional Unit. International Journal of Molecular Sciences. 2023; 24(8):6974. https://doi.org/10.3390/ijms24086974
Chicago/Turabian StyleFaustino-Barros, Jacqueline Ferreira, Ariane Mirela Saranzo Sant’Ana, Lara Cristina Dias, Adriana de Andrade Batista Murashima, Lilian Eslaine Costa Mendes da Silva, Marina Zílio Fantucci, Denny Marcos Garcia, and Eduardo Melani Rocha. 2023. "Distinct Inflammatory and Oxidative Effects of Diabetes Mellitus and Hypothyroidism in the Lacrimal Functional Unit" International Journal of Molecular Sciences 24, no. 8: 6974. https://doi.org/10.3390/ijms24086974
APA StyleFaustino-Barros, J. F., Saranzo Sant’Ana, A. M., Dias, L. C., de Andrade Batista Murashima, A., Costa Mendes da Silva, L. E., Fantucci, M. Z., Garcia, D. M., & Rocha, E. M. (2023). Distinct Inflammatory and Oxidative Effects of Diabetes Mellitus and Hypothyroidism in the Lacrimal Functional Unit. International Journal of Molecular Sciences, 24(8), 6974. https://doi.org/10.3390/ijms24086974