Autoreactivity against Denatured Type III Collagen Is Significantly Decreased in Serum from Patients with Cancer Compared to Healthy Controls
Abstract
:1. Introduction
2. Results
2.1. Technical Evaluation of the Developed Anti-dCol3 Assay
2.2. Anti-dCol3 Assay Sensitivity and Specificity
2.3. Biological Evaluation of the Anti-dCol3 Assay in Cancer and RA
2.4. Evaluation of Circulating Type III Collagen Fragments (C3M and PRO-C3) and Their Association with the Anti-dCol3 Assay
3. Discussion
4. Materials and Methods
4.1. Development and Procedure of the Anti-dCol3 Assay
4.2. Technical Evaluation of the Anti-dCol3 Assay
4.3. Biological Evaluation of the Anti-dCol3 Assay in Cancer Patients Compared to Healthy Controls
4.4. Statistical Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karsdal, M.A.; Kraus, V.B.; Shevell, D.; Bay-Jensen, A.C.; Schattenberg, J.; Surabattula, R.R.; Schuppan, D. Profiling and targeting connective tissue remodeling in autoimmunity—A novel paradigm for diagnosing and treating chronic diseases. Autoimmun. Rev. 2020, 20, 102706. [Google Scholar] [CrossRef]
- Nissen, N.I.; Karsdal, M.; Willumsen, N. Collagens and Cancer associated fibroblasts in the reactive stroma and its relation to Cancer biology. J. Exp. Clin. Cancer Res. 2019, 38, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J.; Huang, Y.; Burwell, T.J.; Peterson, N.C.; Connor, J.; Weiss, S.J.; Yu, S.M.; Li, Y. In Situ Imaging of Tissue Remodeling with Collagen Hybridizing Peptides. ACS Nano 2017, 11, 9825–9835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, T.; Lau, L.; Cheng, N.; Chan, P.; Tan, K.; Gardner, A. Efficacy of Oral Collagen in Joint Pain—Osteoarthritis and Rheumatoid Arthritis. J. Arthritis 2017, 6, 1–4. [Google Scholar] [CrossRef]
- Han, X.; Caron, J.M.; Brooks, P.C. Cryptic collagen elements as signaling hubs in the regulation of tumor growth and metastasis. J. Cell. Physiol. 2020, 235, 9005–9020. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, R.J.; Vanhoorelbeke, K.; Leypoldt, F.; Kaya, Z.; Bieber, K.; McLachlan, S.M.; Komorowski, L.; Luo, J.; Cabral-Marques, O.; Hammers, C.M.; et al. Mechanisms of Autoantibody-Induced Pathology. Front. Immunol. 2017, 8, 603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, A.; Srivastava, R.; Agrawal, S.; Srivastava, R. T cell responses to citrullinated self-peptides in patients with rheumatoid arthritis. Rheumatol. Int. 2013, 33, 2359–2363. [Google Scholar] [CrossRef]
- Shimizu, K.; Iyoda, T.; Okada, M.; Yamasaki, S.; Fujii, S.-I. Immune suppression and reversal of the suppressive tumor microenvironment. Int. Immunol. 2018, 30, 445–455. [Google Scholar] [CrossRef]
- Seliger, B.; Massa, C. Immune Therapy Resistance and Immune Escape of Tumors. Cancers 2021, 13, 551. [Google Scholar] [CrossRef]
- Ingrosso, G.; Fantini, M.; Nardi, A.; Benvenuto, M.; Sacchetti, P.; Masuelli, L.; Ponti, E.; Frajese, G.V.; Lista, F.; Schillaci, O.; et al. Local radiotherapy increases the level of autoantibodies to ribosomal P0 protein but not to heat shock proteins, extracellular matrix molecules and EGFR/ErbB2 receptors in prostate cancer patients. Oncol. Rep. 2012, 29, 1167–1174. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Madrid, F.; Karvonen, R.L.; Kraut, M.J.; Czelusniak, B.; Ager, J.W. Autoimmunity to collagen in human lung cancer. Cancer Res. 1996, 56, 121–126. [Google Scholar] [PubMed]
- FDA; CDER. Bioanalytical Method Validation Guidance for Industry. In Biopharmaceutics Bioanalytical Method Validation Guidance for Industry Biopharmaceutics Contains Nonbinding Recommendations; FDA: Silver Spring, MD, USA, 2018. [Google Scholar]
- Barascuk, N.; Veidal, S.S.; Larsen, L.; Larsen, D.V.; Larsen, M.R.; Wang, J.; Zheng, Q.; Xing, R.; Cao, Y.; Rasmussen, L.M.; et al. A novel assay for extracellular matrix remodeling associated with liver fibrosis: An enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin. Biochem. 2010, 43, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Svobodová, R.J.; Bečvář, R.; Novotná, J.; Havelka, S.; Adam, M. Anticollagen antibodies in patients with juvenile chronic arthritis. Clin. Rheumatol. 1988, 7, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Trentham, D.E.; Dynesius, R.A.; Rocklin, R.E.; David, J.R. Cellular Sensitivity to Collagen in Rheumatoid Arthritis. N. Engl. J. Med. 1978, 299, 327–332. [Google Scholar] [CrossRef]
- Jensen, C.; Nielsen, S.H.; Eslam, M.; Genovese, F.; Nielsen, M.J.; Vongsuvanh, R.; Uchila, R.; van der Poorten, D.; George, J.; Karsdal, M.A.; et al. Cross-Linked Multimeric Pro-Peptides of Type III Collagen (PC3X) in Hepatocellular Carcinoma—A Biomarker That Provides Additional Prognostic Value in AFP Positive Patients. J. Hepatocell. Carcinoma 2020, ume 7, 301–313. [Google Scholar] [CrossRef]
- Chen, I.M.; Willumsen, N.; Dehlendorff, C.; Johansen, A.Z.; Jensen, B.V.; Hansen, C.P.; Hasselby, J.P.; Bojesen, S.E.; Pfeiffer, P.; Nielsen, S.E.; et al. Clinical value of serum hyaluronan and propeptide of type III collagen in patients with pancreatic cancer. Int. J. Cancer 2019, 146, 2913–2922. [Google Scholar] [CrossRef]
- Willumsen, N.; Ali, S.M.; Leitzel, K.; Drabick, J.J.; Yee, N.; Polimera, H.V.; Nagabhairu, V.; Krecko, L.; Ali, A.; Maddukuri, A.; et al. Collagen fragments quantified in serum as measures of desmoplasia associate with survival outcome in patients with advanced pancreatic cancer. Sci. Rep. 2019, 9, 19761. [Google Scholar] [CrossRef] [Green Version]
- Reyneveld, I.; Savelkoul, H.F.J.; Parmentier, H.K. Current Understanding of Natural Antibodies and Exploring the Possibilities of Modulation Using Veterinary Models. A Review. Front. Immunol. 2020, 11, 2139. [Google Scholar] [CrossRef]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Queirolo, P.; Boutros, A.; Tanda, E.; Spagnolo, F.; Quaglino, P. Immune-checkpoint inhibitors for the treatment of metastatic melanoma: A model of cancer immunotherapy. Semin. Cancer Biol. 2019, 59, 290–297. [Google Scholar] [CrossRef]
- Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 2018, 62, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Casals, M.; Brahmer, J.R.; Callahan, M.K.; Flores-Chávez, A.; Keegan, N.; Khamashta, M.A.; Lambotte, O.; Mariette, X.; Prat, A.; Suárez-Almazor, M.E. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 2020, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yang, S.; Palmer, N.; Fox, K.; Kohane, I.S.; Liao, K.P.; Yu, K.-H.; Kou, S.C. Real-world data analyses unveiled the immune-related adverse effects of immune checkpoint inhibitors across cancer types. NPJ Precis. Oncol. 2021, 5, 82. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.J.; Nedergaard, A.F.; Sun, S.; Veidal, S.S.; Larsen, L.; Zheng, Q.; Suetta, C.; Henriksen, K.; Christiansen, C.; Karsdal, M.A.; et al. The neo-epitope specific PRO-C3 ELISA measures true formation of type III collagen associated with liver and muscle parameters. Am. J. Transl. Res. 2013, 5, 303–315. [Google Scholar]
- Abcam. 2023. Available online: https://www.abcam.com/products/secondary-antibodies/mouse-monoclonal-jdc-10-human-igg-fc-hrp-ab99759.html (accessed on 4 April 2023).
- Jones, G.; Sebba, A.; Alvarez-Rodríguez, L.; Lowenstein, M.B.; Calvo-Alen, J.; Gomez-Reino, J.J.; Siri, A.D.; Tomšič, M.; Alecock, E.; Woodworth, T.; et al. Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: The AMBITION study. Ann. Rheum. Dis. 2009, 69, 88–96. [Google Scholar] [CrossRef] [Green Version]
Assay Parameters | Results |
---|---|
Inter-assay variation, mean (range) | 15% (9–28%) |
Intra-assay variation, mean (range) | 7% (4–9%) |
Measurement range (RU/mL) LLMR-ULMR | 2.8–96.5 |
EC50, mean (range) | 40.8 (33.9–46.9) |
Std A concentration (RU/mL) | 100 |
Slope, mean (range) | 1.03 (0.81–1.44) |
Dilution recovery of human serum, mean (range) | 103% (74–119%) |
Analyte stability | Up to 48 h at 4 °C or 4 h at 20 °C |
Analyte recovery, 4 freeze–thaw cycles, mean (range) | 98% (89–104%) |
Antibody stress | Up to 24 h at 20 °C |
Hemoglobin recovery | >120% |
Lipids Recovery (low)(high) | (89%)(81%) |
Biotin Recovery (low)(high) | (91%)(80%) |
RA1 | RA2 | RA3 | RA4 | RA5 | Mean | |
---|---|---|---|---|---|---|
Fold change when coating with denatured collagen compared to | ||||||
Native collagen | 3.9 | 10.3 | 2.7 | 4.7 | 2.0 | 4.7 |
Albumin | 4.8 | 15.2 | 4.8 | 11.2 | 2.8 | 7.8 |
Background | 6.3 | 13.5 | 3.0 | 9.1 | 3.0 | 7.0 |
Signal decrease in % compared to unspiked serum | ||||||
Denatured collagen | 61.9 | 78.0 | 64.9 | 73.3 | 56.7 | 67.0 |
Native collagen | 29.0 | 27.7 | 23.6 | 18.5 | 11.5 | 22.0 |
Albumin | −5.4 | 14.1 | 2.8 | −0.7 | −43.6 | −6.6 |
RA Disease (Mean, (SD)) | |
Disease activity score | 7.3 (1.1) |
Tender joint count | 46.4 (19.7) |
Swollen joint count | 38.0 (23.0) |
Age (years) | |
Mean (SD) | 57.6 (12.0) |
Median (min, max) | 58 (42, 75) |
Missing | 0 (0%) |
Sex | |
Male | 0 (0%) |
Female | 5 (100%) |
Ethnicity | |
Non-hispanic | 3 (60%) |
Hispanic | 2 (40%) |
Healthy (N = 33) | Cancer (N = 223) | Total (N = 256) | |
---|---|---|---|
Diagnosis | |||
Healthy | 33 (100%) | 33 (12.9%) | |
Bladder cancer | 20 (9.0%) | 20 (7.8%) | |
Breast cancer | 20 (9.0%) | 20 (7.8%) | |
CRC | 20 (9.0%) | 20 (7.8%) | |
H&N cancer | 20 (9.0%) | 20 (7.8%) | |
Kidney cancer | 20 (9.0%) | 20 (7.8%) | |
Liver cancer | 3 (1.3%) | 3 (1.2%) | |
Lung cancer | 20 (9.0%) | 20 (7.8%) | |
Melanoma | 20 (9.0%) | 20 (7.8%) | |
Ovarian cancer | 20 (9.0%) | 20 (7.8%) | |
Pancreatic cancer | 20 (9.0%) | 20 (7.8%) | |
Prostate cancer | 20 (9.0%) | 20 (7.8%) | |
Stomach cancer | 20 (9.0%) | 20 (7.8%) | |
Stages | |||
I | 7 (3.1%) | 7 (2.7%) | |
II | 49 (22.0%) | 49 (19.1%) | |
III | 93 (41.7%) | 93 (36.3%) | |
IV | 74 (33.2%) | 74 (28.9%) | |
Age (years) | |||
Mean (SD) | 57.7 (5.69) | 59.3 (11.2) | 59.1 (10.7) |
Median (min, max) | 57.0 (49.0, 69.0) | 61.0 (30.0, 87.0) | 60.0 (30.0, 87.0) |
Missing | 0 (0%) | 1 (0.4%) | 1 (0.4%) |
Sex | |||
Male | 21 (63.6%) | 121 (54.3%) | 142 (55.5%) |
Female | 12 (36.4%) | 102 (45.7%) | 114 (44.5%) |
Ethnicity | |||
Black | 13 (39.4%) | 0 (0%) | 13 (5.1%) |
Caucasian | 11 (33.3%) | 223 (100%) | 234 (91.4%) |
Hispanic | 9 (27.3%) | 0 (0%) | 9 (3.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, C.; Drobinski, P.; Thorlacius-Ussing, J.; Karsdal, M.A.; Bay-Jensen, A.-C.; Willumsen, N. Autoreactivity against Denatured Type III Collagen Is Significantly Decreased in Serum from Patients with Cancer Compared to Healthy Controls. Int. J. Mol. Sci. 2023, 24, 7067. https://doi.org/10.3390/ijms24087067
Jensen C, Drobinski P, Thorlacius-Ussing J, Karsdal MA, Bay-Jensen A-C, Willumsen N. Autoreactivity against Denatured Type III Collagen Is Significantly Decreased in Serum from Patients with Cancer Compared to Healthy Controls. International Journal of Molecular Sciences. 2023; 24(8):7067. https://doi.org/10.3390/ijms24087067
Chicago/Turabian StyleJensen, Christina, Patryk Drobinski, Jeppe Thorlacius-Ussing, Morten A. Karsdal, Anne-Christine Bay-Jensen, and Nicholas Willumsen. 2023. "Autoreactivity against Denatured Type III Collagen Is Significantly Decreased in Serum from Patients with Cancer Compared to Healthy Controls" International Journal of Molecular Sciences 24, no. 8: 7067. https://doi.org/10.3390/ijms24087067
APA StyleJensen, C., Drobinski, P., Thorlacius-Ussing, J., Karsdal, M. A., Bay-Jensen, A. -C., & Willumsen, N. (2023). Autoreactivity against Denatured Type III Collagen Is Significantly Decreased in Serum from Patients with Cancer Compared to Healthy Controls. International Journal of Molecular Sciences, 24(8), 7067. https://doi.org/10.3390/ijms24087067