Assessing the Role of MicroRNAs in Predicting Breast Cancer Recurrence—A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Literature Search
2.2. Eligibility Criteria
2.3. Statistical Analysis
3. Results
3.1. Literature Search
3.2. MiRNA Expression Profiling Methodology
3.3. Disease Recurrence
Author | Year | Country | Tissue | N | LOE | Pathology Confirmation | Treatment | Timing of Sampling | Technique | MiRNA Selection | Validation |
---|---|---|---|---|---|---|---|---|---|---|---|
Davey [14] | 2022 | Ireland | Blood | 124 | Prospective | Yes | NAC and surgery | First sample at breast cancer diagnosis, second sample halfway point during NAC | qRT-PCR | Selected from the literature | No |
Zellinger [22] | 2022 | Austria | Tumour tissue | 110 | Retrospective | Yes | BCT, chemotherapy, anti-hormonal therapy, and radiotherapy | During BCT | qRT-PCR | miRNA array | Yes |
Amiruddin [23] | 2021 | Indonesia | Plasma | 34 | Retrospective | Yes | Tamoxifen | 1 year post-tamoxifen initiation | qRT-PCR | Selected from the literature | No |
Thomopoulou [24] | 2021 | Greece | Plasma | 204 | Retrospective | Not mentioned | Surgery, anthracycline-based therapy, taxane-based therapy, anthracycline and taxane-based therapy | Post-surgery and pre-adjuvant therapy in those with early BC. Before initiation of first-line chemo in those with metastatic BC | qRT-PCR | miRNA array | No |
Zellinger [25] | 2020 | Austria | Tumour tissue | 81 | Retrospective | Yes | Surgery, chemotherapy, anti-hormonal therapy, and radiotherapy | During surgery | qRT-PCR | Selected from the literature | Yes |
Elango [26] | 2020 | Qatar | Tumour tissue | 44 | Retrospective | Yes | N/R | Lymph node metastasis and matched primary tumour tissue | qRT-PCR | miRNA array | No |
Zhang [27] | 2020 | China | Tumour tissue | 62 | Retrospective | Yes | Surgery, chemotherapy, and hormone therapy | Not given | qRT-PCR | Selected from a literature review | No |
Estevão-Pereira [28] | 2019 | Portugal | Tumour tissue and plasma | 143 (98 tissue and 45 plasma) | Retrospective | Yes | N/R | Not given | qRT-PCR | Selected from historical laboratory findings | Yes |
Giannoudis [29] | 2019 | UK | Tumour tissue | 52 | Retrospective | Yes | N/R | Not given | qRT-PCR | miRNA array | Yes |
Masuda [30] | 2018 | Japan | Serum | 366 | Retrospective | Not mentioned | Surgery | Post-surgery | qRT-PCR | miRNA array | Yes |
Wang [31] | 2018 | China | Tumour tissue | 133 | Retrospective | Yes | Surgery, endocrine therapy, radiation therapy, and chemotherapy | Post-surgery but pre-adjuvant therapy | qRT-PCR | Selected from a literature review | No |
Bašová [32] | 2017 | Czech Republic | Serum | 133 | Retrospective | Yes | Surgery, anthracyclines, taxanes, trastuzumab, hormonal therapy, chemotherapy, and radiation | First—1 day pre-surgery Second—14–28 days after surgery Third—14–28 days after first non-surgical treatment Fourth—On relapse | qRT-PCR | Historical lab findings | No |
Sueta [33] | 2017 | Japan | Tumour tissue and serum exosomes) | 106 (32 from exosomes and 74 from tissue) | Retrospective | Not mentioned | Surgery, endocrine therapy, chemotherapy, and trastuzumab | Serum and tissue samples collected pre-surgery and pre-treatment. | qRT-PCR | miRNA array | No |
Du [34] | 2016 | China | Tumour tissue | 211 | Retrospective | Not mentioned | Surgery followed by adjuvant chemotherapy or trastuzumab | During surgery | qRT-PCR | miRNA array | Yes |
Huo [35] | 2016 | US | Serum | 90 | Retrospective | Yes | Surgery | One group pre-surgery, one group at time of recurrence, control pre-surgery | qRT-PCR | miRNA array | Yes |
Sahlberg [36] | 2015 | Norway | Serum | 194 (20 discovery and 110 validation) | Retrospective | Yes | Surgery and/or other unspecified treatment | Serum samples before surgery or any therapy | qRT-PCR | miRNA array | Yes |
Marino [37] | 2014 | Brazil | Tumour tissue | 64 | Retrospective | Yes | N/R | Not given | qRT-PCR | miRNA array | No |
Zhou [38] | 2012 | US | Tumour tissue | 68 (16 screening, 52 validation) | Retrospective | Yes | Surgery, radiation therapy, and chemotherapy | Not given | qRT-PCR | miRNA array | Yes |
Wu [39] | 2012 | US | Serum | 68 | Retrospective | Yes | NAC followed by surgery | Serum samples before neoadjuvant chemotherapy surgery | qRT-PCR | miRNA array | Yes |
3.4. Clinicopathological Data
3.5. MicroRNA Expression Profiling and Disease Recurrence
3.6. MicroRNA Expression from Tumour Tissue
3.7. MicroRNA Expression from Liquid Biopsy
3.8. Timepoints of Tissue Extraction
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.G.; Ryan, É.J.; McAnena, P.F.; Boland, M.R.; Barry, M.K.; Sweeney, K.J.; Malone, C.M.; McLaughlin, R.J.; Lowery, A.J.; Kerin, M.J. Disease recurrence and oncological outcome of patients treated surgically with curative intent for estrogen receptor positive, lymph node negative breast cancer. Surg. Oncol. 2021, 37, 101531. [Google Scholar] [CrossRef] [PubMed]
- Gerber, B.; Freund, M.; Reimer, T. Recurrent Breast Cancer Treatment Strategies for Maintaining and Prolonging Good Quality of Life. Dtsch. Arztebl. Int. 2010, 107, 85–91. [Google Scholar] [PubMed] [Green Version]
- Courtney, D.; Davey, M.G.; Moloney, B.M.; Barry, M.K.; Sweeney, K.; McLaughlin, R.P.; Malone, C.M.; Lowery, A.J.; Kerin, M.J. Breast cancer recurrence: Factors impacting occurrence and survival. Ir. J. Med. Sci. 2022, 191, 2501–2510. [Google Scholar] [CrossRef]
- Mattick, J.S. The Genetic Signatures of Noncoding RNAs. PLoS Genet. 2009, 5, e1000459. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Davey, M.G.; Casey, M.C.; McGuire, A.; Waldron, R.M.; Paganga, M.; Holian, E.; Newell, J.; Heneghan, H.M.; McDermott, A.M.; Keane, M.M.; et al. Evaluating the Role of Circulating MicroRNAs to Aid Therapeutic Decision Making for Neoadjuvant Chemotherapy in Breast Cancer A Prospective, Multicenter Clinical Trial. Ann. Surg. 2022, 276, 905–912. [Google Scholar] [CrossRef]
- Davey, M.G.; Davies, M.; Lowery, A.J.; Miller, N.; Kerin, M.J. The Role of MicroRNA as Clinical Biomarkers for Breast Cancer Surgery and Treatment. Int. J. Mol. Sci. 2021, 22, 8290. [Google Scholar] [CrossRef]
- Davey, M.G.; Lowery, A.J.; Miller, N.; Kerin, M.J. MicroRNA Expression Profiles and Breast Cancer Chemotherapy. Int. J. Mol. Sci. 2021, 22, 10812. [Google Scholar] [CrossRef]
- Davey, M.G.; Davey, M.S.; Richard, V.; Wyns, W.; Soliman, O.; Miller, N.; Lowery, A.J.; Kerin, M.J. Overview of MicroRNA Expression in Predicting Response to Neoadjuvant Therapies in Human Epidermal Growth Receptor-2 Enriched Breast Cancer—A Systematic Review. Breast Cancer 2022, 16, 11782234221086684. [Google Scholar] [CrossRef]
- Davey, M.G.; Feeney, G.; Annuk, H.; Paganga, M.; Holian, E.; Lowery, A.J.; Kerin, M.J.; Miller, N. Identification of a Five-MiRNA Expression Assay to Aid Colorectal Cancer Diagnosis. Gastrointest. Disord. 2022, 4, 190–204. [Google Scholar] [CrossRef]
- Davies, M.; Davey, M.G.; Miller, N. The Potential of MicroRNAs as Clinical Biomarkers to Aid Ovarian Cancer Diagnosis and Treatment. Genes 2022, 13, 2054. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.G.; Feeney, G.; Annuk, H.; Paganga, M.; Holian, E.; Lowery, A.J.; Kerin, M.J.; Miller, N. MicroRNA Expression Profiling Predicts Nodal Status and Disease Recurrence in Patients Treated with Curative Intent for Colorectal Cancer. Cancers 2022, 14, 2109. [Google Scholar] [CrossRef]
- Davey, M.G.M.; McGuire, A.M.; Casey, M.C.M.; Waldron, R.M.M.; Paganga, M.M.; Holian, E.; Newell, J.; Heneghan, H.M.F.; McDermott, A.M.P.; Keane, M.M.; et al. Evaluating the Role of Circulating MicroRNAs in Predicting Long-Term Survival Outcomes in Breast Cancer: A Prospective, Multicenter Clinical Trial. J. Am. Coll. Surg. 2022, 236, 317–327. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Ma, S.L. miRNAs in breast cancer tumorigenesis (Review). Oncol. Rep. 2012, 27, 903–910. [Google Scholar] [CrossRef] [Green Version]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Ruksha, T.G. MicroRNAs’ control of cancer cell dormancy. Cell Div. 2019, 14, 11. [Google Scholar] [CrossRef]
- Papadaki, C.; Stratigos, M.; Markakis, G.; Spiliotaki, M.; Mastrostamatis, G.; Nikolaou, C.; Mavroudis, D.; Agelaki, S. Circulating microRNAs in the early prediction of disease recurrence in primary breast cancer. Breast Cancer Res. 2018, 20, 72. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Zellinger, B.; Bodenhofer, U.; Engländer, I.A.; Kronberger, C.; Grambozov, B.; Ruznic, E.; Stana, M.; Karner, J.; Fastner, G.; Sotlar, K.; et al. Hsa-miR-3651 could serve as a novel predictor for in-breast recurrence via FRMD3. Breast Cancer 2022, 29, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Amiruddin, A.; Massi, M.N.; Islam, A.A.; Patellongi, I.; Pratama, M.Y.; Sutandyo, N.; Natzir, R.; Hatta, M.; Latar, N.H.M.; Wahid, S. microRNA-221 and tamoxifen resistance in luminal-subtype breast cancer patients: A case-control study. Ann. Med. Surg. 2022, 73, 103092. [Google Scholar] [CrossRef] [PubMed]
- Thomopoulou, K.; Papadaki, C.; Monastirioti, A.; Koronakis, G.; Mala, A.; Kalapanida, D.; Mavroudis, D.; Agelaki, S. MicroRNAs Regulating Tumor Immune Response in the Prediction of the Outcome in Patients with Breast Cancer. Front. Mol. Biosci. 2021, 8, 668534. [Google Scholar] [CrossRef]
- Zellinger, B.; Bodenhofer, U.; Engländer, I.A.; Kronberger, C.; Strasser, P.; Grambozov, B.; Fastner, G.; Stana, M.; Reitsamer, R.; Sotlar, K.; et al. Hsa-miR-375/RASD1 Signaling May Predict Local Control in Early Breast Cancer. Genes 2020, 11, 1404. [Google Scholar] [CrossRef]
- Elango, R.; Alsaleh, K.A.; Vishnubalaji, R.; Manikandan, M.; Ali, A.; El-Aziz, N.A.; AlTheyab, A.; Al-Rikabi, A.; Alfayez, M.; Aldahmash, A.; et al. MicroRNA Expression Profiling on Paired Primary and Lymph Node Metastatic Breast Cancer Revealed Distinct microRNA Profile Associated with LNM. Front. Oncol. 2020, 10, 756. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, L.; He, L.; Wang, J.; Shi, X.; Li, Z.; Shi, S.; Hou, K.; Teng, Y.; Qu, X. MiR-891a-5p as a prognostic marker and therapeutic target for hormone receptor-positive breast cancer. J. Cancer 2020, 11, 3771–3782. [Google Scholar] [CrossRef]
- Estevão-Pereira, H.; Lobo, J.; Salta, S.; Amorim, M.; Lopes, P.; Cantante, M.; Reis, B.; Antunes, L.; Castro, F.; De Sousa, S.P.; et al. Overexpression of circulating MiR-30b-5p identifies advanced breast cancer. J. Transl. Med. 2019, 17, 435. [Google Scholar] [CrossRef] [Green Version]
- Giannoudis, A.; Clarke, K.; Zakaria, R.; Varešlija, D.; Farahani, M.; Rainbow, L.; Platt-Higgins, A.; Ruthven, S.; Brougham, K.A.; Rudland, P.S.; et al. A novel panel of differentially-expressed microRNAs in breast cancer brain metastasis may predict patient survival. Sci. Rep. 2019, 9, 18518. [Google Scholar] [CrossRef] [Green Version]
- Masuda, T.; Shinden, Y.; Noda, M.; Ueo, H.; Hu, Q.; Yoshikawa, Y.; Tsuruda, Y.; Kuroda, Y.; Ito, S.; Eguchi, H.; et al. Circulating Pre-microRNA-488 in Peripheral Blood Is a Potential Biomarker for Predicting Recurrence in Breast Cancer. Anticancer Res. 2018, 38, 4515–4523. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Dai, L.; Zheng, J.; Yi, Z.; Chen, L. MiR-17-5p may serve as a novel predictor for breast cancer recurrence. Cancer Biomark. Sect. A Dis. Markers 2018, 22, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Bašová, P.; Pešta, M.; Sochor, M.; Stopka, T. Prediction Potential of Serum miR-155 and miR-24 for Relapsing Early Breast Cancer. Int. J. Mol. Sci. 2017, 18, 2116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sueta, A.; Yamamoto, Y.; Tomiguchi, M.; Takeshita, T.; Yamamoto-Ibusuki, M.; Iwase, H. Differential expression of exosomal miRNAs between breast cancer patients with and without recurrence. Oncotarget 2017, 8, 69934–69944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, F.; Yuan, P.; Zhao, Z.T.; Yang, Z.; Wang, T.; Zhao, J.D.; Luo, Y.; Ma, F.; Wang, J.Y.; Fan, Y.; et al. A miRNA-based signature predicts development of disease recurrence in HER2 positive breast cancer after adjuvant trastuzumab-based treatment. Sci. Rep. 2016, 6, 33825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, D.Z.; Clayton, W.M.; Yoshimatsu, T.F.; Chen, J.J.; Olopade, O.I. Identification of a circulating MicroRNA signature to distinguish recurrence in breast cancer patients. Oncotarget 2016, 7, 55231–55248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleivi Sahlberg, K.; Bottai, G.; Naume, B.; Burwinkel, B.; Calin, G.A.; Børresen-Dale, A.L.; Santarpia, L. A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients. Clin. Cancer Res. 2015, 21, 1207–1214. [Google Scholar] [CrossRef] [Green Version]
- Marino, A.L.; Evangelista, A.F.; Vieira, R.A.; Macedo, T.; Kerr, L.M.; Abrahão-Machado, L.F.; Longatto-Filho, A.; Silveira, H.; Marques, M. MicroRNA expression as risk biomarker of breast cancer metastasis: A pilot retrospective case-cohort study. BMC Cancer 2014, 14, 739. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Marian, C.; Makambi, K.H.; Kosti, O.; Kallakury, B.V.S.; Loffredo, C.A.; Zheng, Y.-L. MicroRNA-9 as potential biomarker for breast cancer local recurrence and tumor estrogen receptor status. PLoS ONE 2012, 7, e39011. [Google Scholar] [CrossRef]
- Wu, X.; Somlo, G.; Yu, Y.; Palomares, M.R.; Li, A.X.; Zhou, W.; Chow, A.; Yen, Y.; Rossi, J.J.; Gao, H.; et al. De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer. J. Transl. Med. 2012, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Kurozumi, S.; Yamaguchi, Y.; Kurosumi, M.; Ohira, M.; Matsumoto, H.; Horiguchi, J. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J. Hum. Genet. 2017, 62, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.S.; Conant, E.F.; Soo, M.S. Molecular Subtypes of Breast Cancer: A Review for Breast Radiologists. J. Breast Imaging 2020, 3, 12–24. [Google Scholar] [CrossRef]
- Baxter, D.E.; Allinson, L.M.; Al Amri, W.S.; Poulter, J.A.; Pramanik, A.; Thorne, J.L.; Verghese, E.T.; Hughes, T.A. MiR-195 and Its Target SEMA6D Regulate Chemoresponse in Breast Cancer. Cancers 2021, 13, 5979. [Google Scholar] [CrossRef] [PubMed]
Author | Median Age | Over 50 | Age Range | Relapse | ER+ | PR+ | HER2+ | TNBC | G1 | G2 | G3 | S1 | S2 | S3 | S4 | LRR | DR | Nodal Involvement | Ductal Histology |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Davey [14] | 55.0 | N/R | 48–63 | N/R | 81 | 66 | 38 | 25 | 1 | 66 | 57 | N/R | N/R | N/R | N/R | N/R | N/R | 79 | N/R |
Zellinger [22] | 53.0 | N/R | 33–79 | 37 | 81 | 74 | 38 | N/R | 1 | 68 | 34 | 85 | 25 | 0 | 0 | 23 | 0 | N/R | 89 |
Amiruddin [23] | N/R | N/R | N/R | 15 | 34 | 19 | N/R | N/R | 0 | 12 | 11 | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R |
Thomopoulou [24] | 56.0 | N/R | 27–82 | 121 | 138 | 133 | 235 | 31 | 32 | 56 | 107 | 122 | 103 | 10 | 0 | N/R | N/R | N/R | N/R |
Zellinger [25] | 55.0 | N/R | 40–79 | 27 | 54 | 38 | 35 | 0 | 4 | 45 | 32 | 61 | 20 | 0 | 0 | N/R | N/R | N/R | N/R |
Elango [26] | 52.0 | N/R | 32–74 | 44 | 36 | 33 | 10 | 4 | N/R | N/R | N/R | 0 | 25 | 14 | 5 | N/R | N/R | N/R | N/R |
Zhang [27] | N/R | 19 | N/R | 28 | 62 | N/R | N/R | 0 | N/R | N/R | N/R | 30 | 32 | 0 | 0 | N/R | N/R | N/R | N/R |
Estevão-Pereira [28] | 57.0 | N/R | 28–82 | 140 | 131 | 109 | 33 | 6 | 10 | 75 | 56 | 47 | 72 | 11 | 11 | N/R | N/R | N/R | N/R |
Giannoudis [29] | N/R | N/R | N/R | 40 | 30 | N/R | 14 | 8 | N/R | N/R | N/R | N/R | N/R | N/R | N/R | 0 | 40 | N/R | N/R |
Masuda [30] | N/R | N/R | N/R | 125 | 243 | 192 | 100 | 34 | 214 | 98 | 173 | 153 | N/R | N/R | N/R | 120 | 356 | ||
Wang [31] | 54.9 | N/R | N/R | 29 | 76 | 68 | 16 | 0 | 58 | 75 | 108 | 108 | 25 | N/R | N/R | 72 | N/R | ||
Bašová [32] | 61.5 | N/R | 37–84 | 13 | 119 | 4 | 12 | 27 | 72 | 27 | 94 | 40 | 0 | 0 | N/R | N/R | 26 | 97 | |
Sueta [33] | 55.5 | N/R | 30–79 | 16 | 19 | 16 | N/R | 6 | N/R | 19 | 13 | 10 | 17 | 2 | N/R | N/R | N/R | N/R | N/R |
Du [34] | N/R | 79 | N/R | 49 | 124 | 211 | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | |
Huo [35] | 50.0 | N/R | N/R | 28 | 41 | 38 | 11 | 40 | 5 | 30 | 51 | 40 | 29 | 13 | 5 | 8 | 20 | 46 | 76 |
Sahlberg [36] | N/R | N/R | N/R | 10 | 33 | 0 | 0 | 130 | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R |
Marino [37] | 53.1 | N/R | 29–95 | 29 | 34 | 21 | 13 | 0 | N/R | N/R | N/R | 27 | 18 | 9 | 10 | 0 | 29 | 39 | 49 |
Zhou [38] | 52.3 | N/R | N/R | 23 | 49 | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | 23 | 0 | N/R | 56 |
Wu [39] | N/R | N/R | N/R | 19 | 21 | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R |
miRNA | Expression | Role | Ref |
---|---|---|---|
miR-9 | High expression in patients with recurrence | Targets E-cadherin, facilitating metastases and stimulating angiogenesis in BC | [38] |
Early breast cancer | miR-10b: inhibits natural killer cells to recognize and attack cancer cells miR-155: regulates the differentiation of B lymphocytes and CD4+ T lymphocytes and the activation of T regulator cells miR-126: reshapes tumour microenvironment and represses recruitment of mesenchymal cells and inflammatory monocytes | [24] | |
| Low expression in patients with recurrence | ||
| High expression in patients with recurrence | ||
| Independent predictor for short disease-free survival | ||
| Shorter overall survival | ||
Metastatic breast cancer | |||
| Short PFS | miR-19a: oncogenic role by contributing to shifting of the M2 to M1-like phenotype of TAMs | |
miR-17-5p | High expression in patients with recurrence | Involved in tumour proliferation through the modulation of the PI3K/Akt/mTOR pathway | [31] |
miR-18b, miR-103, miR-107, and miR-652 | High expression in TNBC patients with recurrence | miR-103 and miR-107: play a role in EMT and DNA repair miR-652: unclear oncogenic role in BC miR-18b: promotes BC cell migration and metastasis | [36] |
miR-194-5p | High expression in serum of patients with recurrence through downregulation of TSGs | miR-194-5p miR-21-5p: increases cell growth, invasion, and migration, and reduces apoptosis | [35] |
miR-375 | Low expression in patients with recurrence | miR-375: involved in EMT | |
Seven miRNA signatures (miR-21-5p, miR-375, miR-205-5p, miR-194-5p, miR-382-5p, miR-376c-3p, and miR-411-5p) | Individually, only the two miRNAs mentioned above are significant, but when pooled together, they provide the best predictive value:
| miR-205-5p, miR-382-5p, miR-376c-3p, and miR-411-5p: unclear role in BC | |
miR-155 and miR-24 | High expression in patients with recurrence | Modulate the TGFβ pathway albeit by targeting different mechanisms | [33] |
miR-30b-5p | High expression in patients with recurrence | Oncogenic role; facilitates EMT | [28] |
miR-340-5p, miR-17-5p, miR-130a-3p, and miR-93-5p | High expression in patients with recurrence | miR-340-5p and miR-130a-3p: involved in tumour proliferation | [32] |
miR-17-5p, miR-130a-3p, and miR- 93-5p | Low expression in patients with recurrence | miR-17-5p: involved in tumour proliferation | |
miR-340-5p | High expression in patients with recurrence | miR-93-5p: role remains unclear | |
miR-122 | High expression in patients with recurrence | Unclear role in BC | [39] |
miR-132-3p | Low expression in patients with brain metastasis | Interfere with inflammatory networks involved in metastasis | [29] |
miR-199a-5p, miR-150-5p, and miR-155-5p | High expression in patients with brain metastasis | ||
miR-145 | Low expression in patients with recurrence; High expression correlated with improved RFS and DFS | Acts as a tumour suppressor | [14] |
miR-150 | High expression in tumour tissue of patients with recurrence; worse DFS | miR-150: involved in cell proliferation | [34] |
miR-4734 | Low expression in tumour tissue of patients with recurrence; worse DFS | miR-4734: | |
miR-183, miR-494, and miR-21 | High expression in patients with recurrence | miR-183: associated with migration and invasion miR-949 and miR-21: target cancer-related molecules including PTEN | [37] |
miR-205 and miR-214 | Low expression in patients with recurrence and poor overall survival | miR-205 and miR-214: suppress BC cell proliferation, migration and colony formation miR-200 family: regulate BMI1 expression in BC tumour-initiating cells and suppress EMT | [26] |
miR-200 family (miR-200a, miR-200b, and miR-200c) | Low expression linked to lymph node metastasis | ||
miR-205-5p and miR-214-3p | Together, high expression of these two markers in lymph node metastasis | ||
miR-221 | High levels in patients with local recurrence and metastasis
| Alteration of cell cycle processes and evasion of apoptosis | [23] |
miR-375 | Low expression in patients with recurrence | Inhibitory function on cell proliferation | [25] |
miR-891a-5p and miR-383-5p | Low expression in patients with recurrence | miR-891a-5p: inhibits BC T47D and MCF7 cell proliferation and metastasis miR-383-5p: suppresses cancer cell proliferation and migration | [27] |
miR-488 | High expression in serum of patients with recurrence | Unexpectedly associated with worse prognosis in HER2+ BC, despite its role as a tumour suppressor | [30] |
miR-3651 | High expression in patients with recurrence | Interferes with protein binding as well as cytoskeletal and cell membrane stability | [22] |
Solid tumour tissue MicroRNA for relapse prediction | |||||
Author | Year | miRNAs | Tissue | Molecular Subtype | Relapse |
Zellinger [23] | 2022 | miR-3651 | Tumour tissue | Not specified | Local and distant |
Zellinger [25] | 2020 | miR-375 | Tumour tissue | Not specified | Local |
Elango [26] | 2020 | miR-205-5p, miR-214-3p, miR-200 | Tumour tissue | Not specified | Local |
Zhang [27] | 2020 | miR-891a-5p and miR-383-5p | Tumour tissue | Luminal | Distant |
Estevão-Pereira [28] | 2019 | miR-30b-5p | Tumour tissue | Not specified | Local and distant |
Giannoudis [29] | 2019 | miR-132-3p, miR-199a-5p, miR-150-5p, and miR-155-5p | Tumour tissue | Not specified | Distant (brain) |
Wang [31] | 2018 | miR-17-5p | Tumour tissue | Not specified | Not specified |
Sueta [33] | 2017 | miR-340-5p, miR-17-5p, miR-130a-3p, and miR-93-5p | Tumour tissue | Not specified | Not specified |
Du [34] | 2016 | miR-150, miR-4734 | Tumour tissue | HER2+ | Not specified |
Marino [37] | 2014 | miR-183, miR-494, and miR-21 | Tumour tissue | Not specified | Distant |
Zhou [38] | 2012 | miR-9 | Tumour tissue | Luminal | Local |
Liquid biopsy MicroRNA for relapse prediction | |||||
Author | Year | miRNAs | Tissue | Molecular Subtype | Relapse |
Davey [14] | 2022 | miR-145 | Blood | Not specified | Not specified |
Amiruddin [23] | 2021 | miR-221 | Plasma | Luminal | Local and distant |
Thomopoulou [24] | 2021 | miR-155, miR-10b, miR-126, miR-19a | Plasma | Not specified | Local |
Estevão-Pereira [28] | 2019 | miR-30b-5p | Plasma | Not specified | Local and distant |
Masuda [30] | 2018 | miR-488 | Serum | Not specified | Local |
Bašová [32] | 2017 | miR-155 and miR-24 | Serum | Not specified | Not specified |
Sueta [33] | 2017 | miR-340-5p, miR-17-5p, miR-130a-3p, and miR-93-5p | Serum exosomes | Not specified | Not specified |
Huo [35] | 2016 | miR-194-5p miR-375 Seven miRNA signatures (miR-21-5p, miR-375, miR-205-5p, miR-194-5p, miR-382-5p, miR-376c-3p, and miR-411-5p) | Serum | Not specified | Local and distant |
Sahlberg [36] | 2015 | miR-18b, miR-103, miR-107, and miR-652 | Serum | TNBC | Distant |
Wu [39] | 2012 | miR-122 | Serum | Not specified | Local |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouz Mkabaah, L.; Davey, M.G.; Lennon, J.C.; Bouz, G.; Miller, N.; Kerin, M.J. Assessing the Role of MicroRNAs in Predicting Breast Cancer Recurrence—A Systematic Review. Int. J. Mol. Sci. 2023, 24, 7115. https://doi.org/10.3390/ijms24087115
Bouz Mkabaah L, Davey MG, Lennon JC, Bouz G, Miller N, Kerin MJ. Assessing the Role of MicroRNAs in Predicting Breast Cancer Recurrence—A Systematic Review. International Journal of Molecular Sciences. 2023; 24(8):7115. https://doi.org/10.3390/ijms24087115
Chicago/Turabian StyleBouz Mkabaah, Luis, Matthew G. Davey, James C. Lennon, Ghada Bouz, Nicola Miller, and Michael J. Kerin. 2023. "Assessing the Role of MicroRNAs in Predicting Breast Cancer Recurrence—A Systematic Review" International Journal of Molecular Sciences 24, no. 8: 7115. https://doi.org/10.3390/ijms24087115
APA StyleBouz Mkabaah, L., Davey, M. G., Lennon, J. C., Bouz, G., Miller, N., & Kerin, M. J. (2023). Assessing the Role of MicroRNAs in Predicting Breast Cancer Recurrence—A Systematic Review. International Journal of Molecular Sciences, 24(8), 7115. https://doi.org/10.3390/ijms24087115