Tetrahydrocannabivarin (THCV) Protects Adipose-Derived Mesenchymal Stem Cells (ASC) against Endoplasmic Reticulum Stress Development and Reduces Inflammation during Adipogenesis
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Morphology and Proliferation Rate
2.2. Evaluation of Apoptosis
2.3. Evaluation of ER Stress
2.4. Evaluation of Inflammation
3. Discussion
4. Materials and Methods
4.1. Experimental Model Setting
4.2. Proliferation Rate and Scratch Assay
4.3. Visualization of Cell Organelles
4.4. Immunostaining with KI-67
4.5. Evaluation of β-Galactosidase Activation
4.6. Gene Expression Analysis
4.7. Proteins Profiling Using Western Blot
4.8. Cell Cycle Analysis
4.9. Evaluation of Apoptosis
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawasaki, N.; Asada, R.; Saito, A.; Kanemoto, S.; Imaizumi, K. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci. Rep. 2012, 2, 799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schröder, M.; Kaufman, R.J. ER stress and the unfolded protein response. Mutat. Res. Mol. Mech. Mutagen. 2005, 569, 29–63. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H. ER stress and diseases. FEBS J. 2007, 274, 630–658. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [Green Version]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 2016, 387, 1513–1530. [Google Scholar] [CrossRef] [Green Version]
- Wellen, K.E.; Hotamisligil, G.S. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Investig. 2003, 112, 1785–1788. [Google Scholar] [CrossRef]
- Bourgeois, C.; Gorwood, J.; Barrail-Tran, A.; Lagathu, C.; Capeau, J.; Desjardins, D.; Le Grand, R.; Damouche, A.; Béréziat, V.; Lambotte, O. Specific Biological Features of Adipose Tissue, and Their Impact on HIV Persistence. Front. Microbiol. 2019, 10, 2837. [Google Scholar] [CrossRef] [Green Version]
- Pérez, L.M.; Bernal, A.; Martín, N.S.; Galvez, B.G. Obese-derived ASCs show impaired migration and angiogenesis properties. Arch. Physiol. Biochem. 2013, 119, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Li, C.; Li, Y.; Tai, R.; Sun, C. Adipose-derived stem cells and obesity: The spear and shield relationship. Genes Dis. 2021, 10, 175–186. [Google Scholar] [CrossRef]
- Hajer, G.R.; van Haeften, T.W.; Visseren, F.L.J. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J. 2008, 29, 2959–2971. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Li, L.; Cao, X.; Yue, H.; Fu, W.; Chen, Y.; Xu, Z.; Zhao, Q.; Zhao, J.; Wang, Y.; et al. Transmissible Endoplasmic Reticulum Stress Mediated by Extracellular Vesicles from Adipocyte Promoting the Senescence of Adipose-Derived Mesenchymal Stem Cells in Hypertrophic Obesity. Oxidative Med. Cell. Longev. 2022, 2022, 7175027. [Google Scholar] [CrossRef]
- Mechoulam, R. Recent advantages in cannabinoid research. Complement. Med. Res. 1999, 6 (Suppl. A3), 16–20. [Google Scholar] [CrossRef] [PubMed]
- Lipina, C.; Rastedt, W.; Irving, A.J.; Hundal, H.S. Endocannabinoids in obesity: Brewing up the perfect metabolic storm? Wiley Interdiscip. Rev. Membr. Transp. Signal. 2013, 2, 49–63. [Google Scholar] [CrossRef]
- Nesto, R.W.; Mackie, K. Endocannabinoid system and its implications for obesity and cardiometabolic risk. Eur. Hear. J. Suppl. 2008, 10, B34–B41. [Google Scholar] [CrossRef] [Green Version]
- Di Marzo, V. The endocannabinoid system in obesity and type 2 diabetes. Diabetologia 2008, 51, 1356–1367. [Google Scholar] [CrossRef] [Green Version]
- Bielawiec, P.; Harasim-Symbor, E.; Chabowski, A. Phytocannabinoids: Useful Drugs for the Treatment of Obesity? Special Focus on Cannabidiol. Front. Endocrinol. 2020, 11, 114. [Google Scholar] [CrossRef]
- Maurya, N.; Velmurugan, B.K. Therapeutic applications of cannabinoids. Chem. Interactions 2018, 293, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Wargent, E.T.; Zaibi, M.S.; Silvestri, C.; Hislop, D.C.; Stocker, C.J.; Stott, C.G.; Guy, G.W.; Duncan, M.; Di Marzo, V.; Cawthorne, M.A. The cannabinoid Δ9-tetrahydrocannabivarin (THCV) ameliorates insulin sensitivity in two mouse models of obesity. Nutr. Diabetes 2013, 3, e68. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, C.; Paris, D.; Martella, A.; Melck, D.; Guadagnino, I.; Cawthorne, M.; Motta, A.; Di Marzo, V. Two non-psychoactive cannabinoids reduce intracellular lipid levels and inhibit hepatosteatosis. J. Hepatol. 2015, 62, 1382–1390. [Google Scholar] [CrossRef]
- Jadoon, K.A.; Ratcliffe, S.H.; Barrett, D.A.; Thomas, E.L.; Stott, C.; Bell, J.D.; O’Sullivan, S.E.; Tan, G.D. Efficacy and Safety of Cannabidiol and Tetrahydrocannabivarin on Glycemic and Lipid Parameters in Patients with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled, Parallel Group Pilot Study. Diabetes Care 2016, 39, 1777–1786. [Google Scholar] [CrossRef] [Green Version]
- Walsh, K.B.; Holmes, A.E. Pharmacology of Minor Cannabinoids at the Cannabinoid CB1 Receptor: Isomer- and Ligand-Dependent Antagonism by Tetrahydrocannabivarin. Receptors 2022, 1, 3–12. [Google Scholar] [CrossRef]
- Fellous, T.; De Maio, F.; Kalkan, H.; Carannante, B.; Boccella, S.; Petrosino, S.; Maione, S.; Di Marzo, V.; Iannotti, F.A. Phytocannabinoids promote viability and functional adipogenesis of bone marrow-derived mesenchymal stem cells through different molecular targets. Biochem. Pharmacol. 2020, 175, 113859. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, T.; Feese, K.; Ghadban, C.; Dehghani, F.; Grabiec, U. On the influence of cannabinoids on cell morphology and motility of glioblastoma cells. PLoS ONE 2019, 14, e0212037. [Google Scholar] [CrossRef] [Green Version]
- Gowran, A.; McKayed, K.; Campbell, V.A. The Cannabinoid Receptor Type 1 Is Essential for Mesenchymal Stem Cell Survival and Differentiation: Implications for Bone Health. Stem Cells Int. 2013, 2013, 796715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, S.; Jo, M.J.; Yun, H.K.; Kim, D.Y.; Kim, B.R.; Kim, J.L.; Park, S.H.; Na, Y.J.; Jeong, Y.A.; Kim, B.G.; et al. Cannabidiol promotes apoptosis via regulation of XIAP/Smac in gastric cancer. Cell Death Dis. 2019, 10, 846. [Google Scholar] [CrossRef] [Green Version]
- Sainz-Cort, A.; Müller-Sánchez, C.; Espel, E. Anti-proliferative and cytotoxic effect of cannabidiol on human cancer cell lines in presence of serum. BMC Res. Notes 2020, 13, 389. [Google Scholar] [CrossRef] [PubMed]
- Amen, O.M.; Sarker, S.D.; Ghildyal, R.; Arya, A. Endoplasmic Reticulum Stress Activates Unfolded Protein Response Signaling and Mediates Inflammation, Obesity, and Cardiac Dysfunction: Therapeutic and Molecular Approach. Front. Pharmacol. 2019, 10, 977. [Google Scholar] [CrossRef] [Green Version]
- Longo, M.; Spinelli, R.; D’Esposito, V.; Zatterale, F.; Fiory, F.; Nigro, C.; Raciti, G.A.; Miele, C.; Formisano, P.; Beguinot, F.; et al. Pathologic endoplasmic reticulum stress induced by glucotoxic insults inhibits adipocyte differentiation and induces an inflammatory phenotype. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2016, 1863, 1146–1156. [Google Scholar] [CrossRef]
- Rodrigues, M.; Wong, V.W.; Rennert, R.C.; Davis, C.R.; Longaker, M.T.; Gurtner, G.C. Progenitor Cell Dysfunctions Underlie Some Diabetic Complications. Am. J. Pathol. 2015, 185, 2607–2618. [Google Scholar] [CrossRef] [Green Version]
- Kowalczuk, A.; Marycz, K.; Kornicka-Garbowska, K.; Kornicka, J.; Bujalska-Zadrożny, M.; Groborz, S. Cannabidiol (CBD) Protects Adipose-Derived Mesenchymal Stem Cells (ASCs) against Endoplasmic Reticulum Stress Development and Its Complications. Int. J. Environ. Res. Public Health 2022, 19, 10864. [Google Scholar] [CrossRef]
- Hasnain, S.; Lourie, R.; Das, I.; Chen, A.C.; McGuckin, M.A. The interplay between endoplasmic reticulum stress and inflammation. Immunol. Cell Biol. 2012, 90, 260–270. [Google Scholar] [CrossRef]
- Pestel, J.; Blangero, F.; Eljaafari, A. Pathogenic Role of Adipose Tissue-Derived Mesenchymal Stem Cells in Obesity and Obesity-Related Inflammatory Diseases. Cells 2023, 12, 348. [Google Scholar] [CrossRef]
- Priglinger, E.; Schuh, C.M.; Steffenhagen, C.; Wurzer, C.; Maier, J.; Nuernberger, S.; Holnthoner, W.; Fuchs, C.; Suessner, S.; Rünzler, D.; et al. Improvement of adipose tissue–derived cells by low-energy extracorporeal shock wave therapy. Cytotherapy 2017, 19, 1079–1095. [Google Scholar] [CrossRef] [PubMed]
- Marycz, K.; Alicka, M.; Kornicka-Garbowska, K.; Polnar, J.; Lis-Bartos, A.; Wiglusz, R.J.; Roecken, M.; Nedelec, J. Promotion through external magnetic field of osteogenic differentiation potential in adipose-derived mesenchymal stem cells: Design of polyurethane/poly(lactic) acid sponges doped with iron oxide nanoparticles. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 108, 1398–1411. [Google Scholar] [CrossRef] [PubMed]
- Kornicka, K.; Szłapka-Kosarzewska, J.; Śmieszek, A.; Marycz, K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2018, 23, 237–259. [Google Scholar] [CrossRef] [Green Version]
- Mularczyk, M.; Bourebaba, N.; Marycz, K.; Bourebaba, L. Astaxanthin Carotenoid Modulates Oxidative Stress in Adipose-Derived Stromal Cells Isolated from Equine Metabolic Syndrome Affected Horses by Targeting Mitochondrial Biogenesis. Biomolecules 2022, 12, 1039. [Google Scholar] [CrossRef] [PubMed]
- Bolognini, D.; Costa, B.; Maione, S.; Comelli, F.; Marini, P.; Di Marzo, V.; Parolaro, D.; Ross, R.A.; Gauson, L.A.; Cascio, M.G.; et al. The plant cannabinoid Δ9-tetrahydrocannabivarin can decrease signs of inflammation and inflammatory pain in mice. Br. J. Pharmacol. 2010, 160, 677–687. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.-P.; Wang, W.-W.; Lu, W.-Y.; Shang, A.-Q. The mechanism of miR-16-5p protection on LPS-induced A549 cell injury by targeting CXCR3. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1200–1206. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zhang, Z.; Zeng, T.; Lim, Y.C.; Wang, Y.; Xie, X.; Yang, S.; Huang, C.; Xu, M.; Tao, L.; et al. cAMP-MicroRNA-203-IFNγ network regulates subcutaneous white fat browning and glucose tolerance. Mol. Metab. 2019, 28, 36–47. [Google Scholar] [CrossRef]
- Liechty, C.; Hu, J.; Zhang, L.; Liechty, K.W.; Xu, J. Role of microRNA-21 and Its Underlying Mechanisms in Inflammatory Responses in Diabetic Wounds. Int. J. Mol. Sci. 2020, 21, 3328. [Google Scholar] [CrossRef]
- Oladejo, A.O.; Li, Y.; Imam, B.H.; Ma, X.; Shen, W.; Wu, X.; Jiang, W.; Yang, J.; Lv, Y.; Ding, X.; et al. MicroRNA miR-24-3p Mediates the Negative Regulation of Lipopolysaccharide-Induced Endometrial Inflammatory Response by Targeting TNF Receptor-Associated Factor 6 (TRAF6). J. Inflamm. Res. 2022, 15, 807–825. [Google Scholar] [CrossRef]
- Yan, F.; Wufuer, D.; Ding, J.; Wang, J. MicroRNA miR-146a-5p inhibits the inflammatory response and injury of airway epithelial cells via targeting TNF receptor-associated factor 6. Bioengineered 2021, 12, 1916–1926. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.-H.; Shiau, M.-Y.; Chuang, P.-H.; Chang, Y.-H.; Hwang, J. Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J. Lipid Res. 2014, 55, 385–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alicka, M.; Kornicka-Garbowska, K.; Kucharczyk, K.; Kępska, M.; Röcken, M.; Marycz, K. Age-dependent impairment of adipose-derived stem cells isolated from horses. Stem Cell Res. Ther. 2020, 11, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Primer Sequence (5′->3′) |
---|---|
BAX | F: ACCAAGAAGCTGAGCGAGTGTC |
R: ACAAAGATGGTCACGGTCTGC | |
BCL2 | F: ATCGCCCTGTGGATGACTGAG |
R: CAGCCAGGAGAAATCAAACAGAGG | |
p21 | F: TGCCGAAGTCAGTTCCTTGT |
R: GTTCTGACATGGCGCCTCC | |
p53 | F: AGTCACAGCACATGACGGAGG |
R: GGAGTCTTCCAGTGTGATGATGG | |
Casp3 | F: GCGGTTGTAGAAGTTAATAAAGGT |
R: CGACATCTGTACCAGACCGAG | |
Casp6 | F: TCATGAGAGGTTCTTTTGGCAC |
R: CACACACAAAGCAATCGGCA | |
Casp9 | F: TTGGTGATGTCGAGCAGAAAG |
R: CCAGGGTCTCAACGTACCAG | |
GPX | F: CTCCGGAACAACAGCCTTCT |
R: GGAAAGGGGTCTGTGATGGG | |
SOD1 | F: GACCATTGCATCATTGGCCG |
R: CAAGCCAAACGACTTCCAGC | |
SOD2 | F: GGAGCGGCACTCGTGG |
R: CAGATACCCCAAAGCCGGAG | |
SIRT1 | F: ACAGGTTGCGGGAATCCAAA |
R: GTTCATCAGCTGGGCACCTA | |
IL-1β | F: AAACAGATGAAGTGCTCCTTCCAGG |
R: TGGAGAACACCACTTGTTGCTCCA | |
IL-6 | F: TCCTTCTCCACAAACATGTAACAA |
R: ATTTGTGGTTGGGTCAGGGG | |
TNFα | F: AGTGACAAGCCTGTAGCCCA |
R: GTCTGGTAGGAGACGGCGAT | |
IL-4 | F: CTTTGCTGCCTCCAAGAACAC |
R: GCGAGTGTCCTTCTCATGGT | |
IL-10 | F: AGACAGACTTGCAAAAGAAGGC |
R: TCGAAGCATGTTAGGCAGGTT | |
PERK | F: TGCTCCCACCTCAGCGAC |
R: TTTCAGGATCCAAGGCAGCA | |
eIF2-α | F: ATGTTTCAGCCAAGCCCAGA |
R: ACCAGGGGATCTACCACCAA | |
CHOP | F: TAAAGATGAGCGGGTGGCAG |
R: GGATAATGGGGAGTGGCTGG | |
ATF6 | F: ACCTCCTTGTCAGCCCCTAA |
R: CACTCCCTGAGTTCCTGCTG | |
IRE1 | F: CGGCCTCGGGATTTTTGGA |
R: AGAAAGGCAGGCTCTTCCAC | |
XBP1 | F: CGCGGATCCGAATGAAGTGAGGCCAGTG |
R: GGGGCTTGG TATATATGTGG |
Primer miRNAs | Primer Sequence (5′->3′) |
---|---|
miR101-1/2 | TACAGTACTGTGATAACTGAA |
miR17-5p | CAAAGTGCTTACAGTGCAGGTAG |
miR16-5p | TAGCAGCACGTAAATATTGGCG |
miR-203b | TTGAACTGTTAAGAACCACTGGA |
miR-21 | TAGCTTATCAGACTGATGTTGA |
miR 24-3p | TGGCTCAGTTCAGCAGGAACAG |
miR 146-5p | TGAGAACTGAATTCCATGGGTT |
Antibodies | Concentrations | CAT Numbers | Company |
---|---|---|---|
β-actin | 1:1000 | orb10033 | Biorbyt (Cambridge, UK) |
Casp3 | 1:1000 | c8487 | Sigma (Poznan, Poland) |
IL-6 | 1:1000 | ab6672 | Abcam (Cambridge, UK ) |
eIF2-α | 1:500 | nbp2-67353 | Novus (Centennial, CO, USA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczuk, A.; Marycz, K.; Kornicka, J.; Groborz, S.; Meissner, J.; Mularczyk, M. Tetrahydrocannabivarin (THCV) Protects Adipose-Derived Mesenchymal Stem Cells (ASC) against Endoplasmic Reticulum Stress Development and Reduces Inflammation during Adipogenesis. Int. J. Mol. Sci. 2023, 24, 7120. https://doi.org/10.3390/ijms24087120
Kowalczuk A, Marycz K, Kornicka J, Groborz S, Meissner J, Mularczyk M. Tetrahydrocannabivarin (THCV) Protects Adipose-Derived Mesenchymal Stem Cells (ASC) against Endoplasmic Reticulum Stress Development and Reduces Inflammation during Adipogenesis. International Journal of Molecular Sciences. 2023; 24(8):7120. https://doi.org/10.3390/ijms24087120
Chicago/Turabian StyleKowalczuk, Anna, Krzysztof Marycz, Justyna Kornicka, Sylwia Groborz, Justyna Meissner, and Malwina Mularczyk. 2023. "Tetrahydrocannabivarin (THCV) Protects Adipose-Derived Mesenchymal Stem Cells (ASC) against Endoplasmic Reticulum Stress Development and Reduces Inflammation during Adipogenesis" International Journal of Molecular Sciences 24, no. 8: 7120. https://doi.org/10.3390/ijms24087120
APA StyleKowalczuk, A., Marycz, K., Kornicka, J., Groborz, S., Meissner, J., & Mularczyk, M. (2023). Tetrahydrocannabivarin (THCV) Protects Adipose-Derived Mesenchymal Stem Cells (ASC) against Endoplasmic Reticulum Stress Development and Reduces Inflammation during Adipogenesis. International Journal of Molecular Sciences, 24(8), 7120. https://doi.org/10.3390/ijms24087120