Systematic Review and Meta-Analyses of Aminopeptidases as Prognostic Biomarkers in Amyotrophic Lateral Sclerosis
Abstract
:1. Introduction
2. Methods
2.1. Literature Search and Selection Criteria
2.2. Quality Assessment and Quantitative Synthesis for Meta-Analyses
3. Results and Discussion
3.1. Study Selection
3.2. Study Characteristics
3.3. Quantitative Synthesis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lacomblez, L.; Bensimon, G.; Leigh, P.N.; Guillet, P.; Meininger, V. Dose-Ranging Study of Riluzole in Amyotrophic Lateral Sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 1996, 347, 1425–1431. [Google Scholar] [CrossRef]
- Kübler, A.; Winter, S.; Ludolph, A.C.; Hautzinger, M.; Birbaumer, N. Severity of Depressive Symptoms and Quality of Life in Patients with Amyotrophic Lateral Sclerosis. Neurorehabilit. Neural Repair 2005, 19, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Logroscino, G.; Traynor, B.J.; Hardiman, O.; Chió, A.; Mitchell, D.; Swingler, R.J.; Millul, A.; Benn, E.; Beghi, E. Incidence of Amyotrophic Lateral Sclerosis in Europe. J. Neurol. Neurosurg. Psychiatry 2010, 81, 385–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, N.; Atsuta, N.; Yokoi, D.; Nakamura, R.; Nakatochi, M.; Katsuno, M.; Izumi, Y.; Kanai, K.; Hattori, N.; Taniguchi, A.; et al. Prognosis of Amyotrophic Lateral Sclerosis Patients Undergoing Tracheostomy Invasive Ventilation Therapy in Japan. J. Neurol. Neurosurg. Psychiatry 2020, 91, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.H.; Al-Chalabi, A. Amyotrophic Lateral Sclerosis. N. Engl. J. Med. 2017, 377, 162–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lulé, D.; Zickler, C.; Häcker, S.; Bruno, M.A.; Demertzi, A.; Pellas, F.; Laureys, S.; Kübler, A. Life Can Be Worth Living in Locked-in Syndrome. Prog. Brain Res. 2009, 177, 339–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aronica, E.; Baas, F.; Iyer, A.; ten Asbroek, A.L.M.A.; Morello, G.; Cavallaro, S. Molecular Classification of Amyotrophic Lateral Sclerosis by Unsupervised Clustering of Gene Expression in Motor Cortex. Neurobiol. Dis. 2015, 74, 359–376. [Google Scholar] [CrossRef] [Green Version]
- Landers, J.E.; Melki, J.; Meininger, V.; Glass, J.D.; van den Berg, L.H.; van Es, M.A.; Sapp, P.C.; van Vught, P.W.J.; McKenna-Yasek, D.M.; Blauw, H.M.; et al. Reduced Expression of the Kinesin-Associated Protein 3 (KIFAP3) Gene Increases Survival in Sporadic Amyotrophic Lateral Sclerosis. Proc. Natl. Acad. Sci. USA 2009, 106, 9004–9009. [Google Scholar] [CrossRef] [Green Version]
- Schymick, J.C.; Talbot, K.; Traynor, B.J. Genetics of Sporadic Amyotrophic Lateral Sclerosis. Hum. Mol. Genet. 2007, 16, R233–R242. [Google Scholar] [CrossRef] [Green Version]
- Andersen, P.M.; Al-Chalabi, A. Clinical Genetics of Amyotrophic Lateral Sclerosis: What Do We Really Know? Nat. Rev. Neurol. 2011, 7, 603–615. [Google Scholar] [CrossRef]
- Webster, C.P.; Smith, E.F.; Shaw, P.J.; de Vos, K.J. Protein Homeostasis in Amyotrophic Lateral Sclerosis: Therapeutic Opportunities? Front. Mol. Neurosci. 2017, 10, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chisholm, C.; Lum, J.; Farrawell, N.; Yerbury, J. Ubiquitin Homeostasis Disruption, a Common Cause of Proteostasis Collapse in Amyotrophic Lateral Sclerosis? Neural Regen. Res. 2022, 17, 2218. [Google Scholar] [CrossRef] [PubMed]
- Checler, F.; Valverde, A. Aminopeptidase A and Dipeptidyl Peptidase 4: A Pathogenic Duo in Alzheimer’s Disease? Neural Regen. Res. 2022, 17, 2215–2217. [Google Scholar] [CrossRef]
- Albiston, A.L.; Fernando, R.; Ye, S.; Peck, G.R.; Chai, S.Y. Alzheimer’s, Angiotensin IV and an Aminopeptidase. Biol. Pharm. Bull. 2004, 27, 765–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantle, D.; Perry, E.K. Comparison of Aminopeptidase, Dipeptidyl Aminopeptidase and Tripeptidyl Aminopeptidase Activities in Brain Tissue from Normal and Alzheimer’s Disease Cases. J. Neurol. Sci. 1990, 98, 13–20. [Google Scholar] [CrossRef]
- Röhnert, P.; Schmidt, W.; Emmerlich, P.; Goihl, A.; Wrenger, S.; Bank, U.; Nordhoff, K.; Täger, M.; Ansorge, S.; Reinhold, D.; et al. Dipeptidyl Peptidase IV, Aminopeptidase N and DPIV/APN-like Proteases in Cerebral Ischemia. J. Neuroinflamm. 2012, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Al-Badri, G.; Leggio, G.M.; Musumeci, G.; Marzagalli, R.; Drago, F.; Castorina, A. Tackling Dipeptidyl Peptidase IV in Neurological Disorders. Neural Regen. Res. 2018, 13, 26–34. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, M.; Sun, J.; Guo, A.; Fernando, R.L.; Chen, Y.; Peng, P.; Zhao, G.; Deng, Y. DPP-4 Inhibitor Improves Learning and Memory Deficits and AD-like Neurodegeneration by Modulating the GLP-1 Signaling. Neuropharmacology 2019, 157, 107668. [Google Scholar] [CrossRef]
- Ikeda, Y.; Nagase, N.; Tsuji, A.; Kitagishi, Y.; Matsuda, S. Neuroprotection by Dipeptidyl-Peptidase-4 Inhibitors and Glucagon-like Peptide-1 Analogs via the Modulation of AKT-Signaling Pathway in Alzheimer’s Disease. World J. Biol. Chem. 2021, 12, 104–113. [Google Scholar] [CrossRef]
- Takala, T.E.S.; Myllylä, V.V.; Salminen, A.; Tolonen, U.; Hassinen, I.E.; Vihko, V. Lysosomal and Nonlysosomal Hydrolases of Skeletal Muscle in Neuromuscular Diseases. Arch. Neurol. 1983, 40, 541–544. [Google Scholar] [CrossRef]
- Van Es, M.A.; van Vught, P.W.J.; Blauw, H.M.; Franke, L.; Saris, C.G.J.; van den Bosch, L.; de Jong, S.W.; de Jong, V.; Baas, F.; van’t Slot, R.; et al. Genetic Variation in DPP6 Is Associated with Susceptibility to Amyotrophic Lateral Sclerosis. Nat. Genet. 2008, 40, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.R.; Noor, A.; Vincent, J.B.; Lionel, A.C.; Feuk, L.; Skaug, J.; Shago, M.; Moessner, R.; Pinto, D.; Ren, Y.; et al. Structural Variation of Chromosomes in Autism Spectrum Disorder. Am. J. Hum. Genet. 2008, 82, 477–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Morales, V.; Rodríguez-Bey, G.; Gómez-Pérez, L.; Domínguez-Vías, G.; González-Forero, D.; Portillo, F.; Campos-Caro, A.; Gento-Caro, Á.; Issaoui, N.; Soler, R.M.; et al. Sp1-Regulated Expression of P11 Contributes to Motor Neuron Degeneration by Membrane Insertion of TASK1. Nat. Commun. 2019, 10, 3784. [Google Scholar] [CrossRef] [Green Version]
- Nadal, M.S.; Ozaita, A.; Amarillo, Y.; Vega-Saenz De Miera, E.; Ma, Y.; Mo, W.; Goldberg, E.M.; Misumi, Y.; Ikehara, Y.; Neubert, T.A.; et al. The CD26-Related Dipeptidyl Aminopeptidase-like Protein DPPX Is a Critical Component of Neuronal A-Type K+ Channels. Neuron 2003, 37, 449–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, W.; Newell, E.W.; Jugloff, D.G.M.; Jones, O.T.; Schlichter, L.C. Cell Surface Targeting and Clustering Interactions between Heterologously Expressed PSD-95 and the Shal Voltage-Gated Potassium Channel, Kv4.2. J. Biol. Chem. 2002, 277, 20423–20430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Maffie, J.K.; Lin, L.; Petralia, R.S.; Rudy, B.; Hoffman, D.A. DPP6 Establishes the A-Type K(+) Current Gradient Critical for the Regulation of Dendritic Excitability in CA1 Hippocampal Neurons. Neuron 2011, 71, 1102–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malloy, C.; Ahern, M.; Lin, L.; Hoffman, D.A. Neuronal Roles of the Multifunctional Protein Dipeptidyl Peptidase-like 6 (DPP6). Int. J. Mol. Sci. 2022, 23, 9184. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Petralia, R.S.; Holtzclaw, L.; Wang, Y.X.; Abebe, D.; Hoffman, D.A. Alzheimer’s Disease/Dementia-Associated Brain Pathology in Aging DPP6-KO Mice. Neurobiol. Dis. 2022, 174, 105887. [Google Scholar] [CrossRef]
- Cronin, S.; Berger, S.; Ding, J.; Schymick, J.C.; Washecka, N.; Hernandez, D.G.; Greenway, M.J.; Bradley, D.G.; Traynor, B.J.; Hardiman, O. A Genome-Wide Association Study of Sporadic ALS in a Homogenous Irish Population. Hum. Mol. Genet. 2008, 17, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Cronin, S.; Tomik, B.; Bradley, D.G.; Slowik, A.; Hardiman, O. Screening for Replication of Genome-Wide SNP Associations in Sporadic ALS. Eur. J. Hum. Genet. 2009, 17, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Witzel, S.; Mayer, K.; Oeckl, P. Biomarkers for Amyotrophic Lateral Sclerosis. Curr. Opin. Neurol. 2022, 35, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Swindell, W.R.; Kruse, C.P.S.; List, E.O.; Berryman, D.E.; Kopchick, J.J. ALS Blood Expression Profiling Identifies New Biomarkers, Patient Subgroups, and Evidence for Neutrophilia and Hypoxia. J. Transl. Med. 2019, 17, 170. [Google Scholar] [CrossRef] [Green Version]
- Sturmey, E.; Malaspina, A. Blood Biomarkers in ALS: Challenges, Applications and Novel Frontiers. Acta Neurol. Scand. 2022, 146, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Vejux, A.; Namsi, A.; Nury, T.; Moreau, T.; Lizard, G. Biomarkers of Amyotrophic Lateral Sclerosis: Current Status and Interest of Oxysterols and Phytosterols. Front. Mol. Neurosci. 2018, 11, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verber, N.; Shaw, P.J. Biomarkers in Amyotrophic Lateral Sclerosis: A Review of New Developments. Curr. Opin. Neurol. 2020, 33, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Ma, Z.; Hui, M.; Kudo, L.C.; Hui, K.-S.; Karsten, S.L. Cu, Zn-Superoxide Dismutase 1 (SOD1) Is a Novel Target of Puromycin-Sensitive Aminopeptidase (PSA/NPEPPS): PSA/NPEPPS Is a Possible Modifier of Amyotrophic Lateral Sclerosis. Mol. Neurodegener. 2011, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zeng, Y.; Huang, R.; Yang, Y.; Chen, K.; Song, W.; Zhao, B.; Li, J.; Yuan, L.; Shang, H.-F. No Association of Five Candidate Genetic Variants with Amyotrophic Lateral Sclerosis in a Chinese Population. Neurobiol. Aging 2012, 33, 2721.e3. [Google Scholar] [CrossRef]
- Shaw, P.J.; Ince, P.G.; Falkous, G.; Mantle, D. Cytoplasmic, Lysosomal and Matrix Protease Activities in Spinal Cord Tissue from Amyotrophic Lateral Sclerosis (ALS) and Control Patients. J. Neurol. Sci. 1996, 139, 71–75. [Google Scholar] [CrossRef]
- Narayan, M.; Seeley, K.W.; Jinwal, U.K. Identification of Apo B48 and Other Novel Biomarkers in Amyotrophic Lateral Sclerosis Patient Fibroblasts. Biomark. Med. 2016, 10, 453–462. [Google Scholar] [CrossRef]
- Del Bo, R.; Ghezzi, S.; Corti, S.; Santoro, D.; Prelle, A.; Mancuso, M.; Siciliano, G.; Briani, C.; Murri, L.; Bresolin, N.; et al. DPP6 Gene Variability Confers Increased Risk of Developing Sporadic Amyotrophic Lateral Sclerosis in Italian Patients. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1085. [Google Scholar] [CrossRef] [PubMed]
- Kwee, L.C.; Liu, Y.; Haynes, C.; Gibson, J.R.; Stone, A.; Schichman, S.A.; Kamel, F.; Nelson, L.M.; Topol, B.; van den Eeden, S.K.; et al. A High-Density Genome-Wide Association Screen of Sporadic Als in US Veterans. PLoS ONE 2012, 7, e32768. [Google Scholar] [CrossRef] [Green Version]
- Daoud, H.; Valdmanis, P.N.; Dion, P.A.; Rouleau, G.A. Analysis of DPP6 and FGGY as Candidate Genes for Amyotrophic Lateral Sclerosis. Amyotroph. Lateral Scler. 2010, 11, 389–391. [Google Scholar] [CrossRef]
- Khokhlov, A.P.; YuN, S.; Chekhonin, V.P.; Zotova, E.E.; Shmidt, T.E.; Zhuchenko, T.D.; Morozov, S.G. Results of Clinical and Enzymatic Immunoassay Study of a Neurospecific Leucine Aminopeptidase in Neurological Patients. Neurosci. Behav. Physiol. 1992, 22, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Blauw, H.M.; Al-Chalabi, A.; Andersen, P.M.; van Vught, P.W.J.; Diekstra, F.P.; van Es, M.A.; Saris, C.G.J.; Groen, E.J.N.; van Rheenen, W.; Koppers, M.; et al. A Large Genome Scan for Rare CNVs in Amyotrophic Lateral Sclerosis. Hum. Mol. Genet. 2010, 19, 4091–4099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogh, I.; D’Alfonso, S.; Gellera, C.; Ratti, A.; Cereda, C.; Penco, S.; Corrado, L.; Sorarù, G.; Castellotti, B.; Tiloca, C.; et al. No Association of DPP6 with Amyotrophic Lateral Sclerosis in an Italian Population. Neurobiol. Aging 2011, 32, 966–967. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-G.; Zhang, J.-H.; Xie, M.-Q.; Liu, M.-S.; Li, B.-H.; Zhao, Y.-H.; Ren, H.-T.; Cui, L.-Y. Association between DPP6 Polymorphism and the Risk of Sporadic Amyotrophic Lateral Sclerosis in Chinese Patients. Chin. Med. J. 2009, 122, 2989–2992. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qiu, W.; Hu, F.; Zhang, X.; Deng, Y.; Nie, H.; Xu, R. The Rs2619566, Rs10260404, and Rs79609816 Polymorphisms Are Associated With Sporadic Amyotrophic Lateral Sclerosis in Individuals of Han Ancestry From Mainland China. Front. Genet. 2021, 12, 679204. [Google Scholar] [CrossRef]
- Duran, R.; Barrero, F.J.; Morales, B.; Luna, J.D.; Ramirez, M.; Vives, F. Oxidative Stress and Aminopeptidases in Parkinson’s Disease Patients with and without Treatment. Neurodegener. Dis. 2011, 8, 109–116. [Google Scholar] [CrossRef]
- Gard, P.R.; Fidalgo, S.; Lotter, I.; Richardson, C.; Farina, N.; Rusted, J.; Tabet, N. Changes of Renin-Angiotensin System-Related Aminopeptidases in Early Stage Alzheimer’s Disease. Exp. Gerontol. 2017, 89, 1–7. [Google Scholar] [CrossRef]
- Khokhlov, A.P.; Savchenko, I.N.; Chekhonin, V.P.; Zotova, E.E.; Shmidt, T.E.; Zhuchenko, T.D.; Morozov, S.G. Results of Clinical and Immunoenzymatic Studies of Neurospecific Leucine Aminopeptidase in Patients with Neurologic Disorders. Zhurnal Nevropatol. Psikhiatrii Im. SS Korsakova 1990, 90, 20–24. [Google Scholar]
- Hui, M.; Hui, K.S. A New Type of Neuron-Specific Aminopeptidase NAP-2 in Rat Brain Synaptosomes. Neurochem. Int. 2008, 53, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudo, L.C.; Parfenova, L.; Ren, G.; Vi, N.; Hui, M.; Ma, Z.; Lau, K.; Gray, M.; Bardag-Gorce, F.; Wiedau-Pazos, M.; et al. Puromycin-Sensitive Aminopeptidase (PSA/NPEPPS) Impedes Development of Neuropathology in HPSA/TAU(P301L) Double-Transgenic Mice. Hum. Mol. Genet. 2011, 20, 1820–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hersh, L.B.; McKelvy, J.F. An Aminopeptidase from Bovine Brain Which Catalyzes the Hydrolysis of Enkephalin. J. Neurochem. 1981, 36, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, N.; Venkatraman, P.; Goldberg, A.L. Puromycin-Sensitive Aminopeptidase Is the Major Peptidase Responsible for Digesting Polyglutamine Sequences Released by Proteasomes during Protein Degradation. EMBO J. 2007, 26, 1385–1396. [Google Scholar] [CrossRef] [Green Version]
- Karsten, S.L.; Parfenova, L.; Lau, K.; Pomakian, J.; Vinters, H.V.; Kudo, L.C. Is Puromycin Sensitive Aminopeptidase (PSA) a Modifier of Amyotrophic Lateral Sclerosis That Acts on SOD1? Soc. Neurosci. Abstr. Viewer Itiner. Plan. 2009, 39. [Google Scholar]
- Minnasch, P.; Yamamoto, Y.; Ohkubo, I.; Nishi, K. Demonstration of Puromycin-Sensitive Alanyl Aminopeptidase in Alzheimer Disease Brain. Leg. Med. 2003, 5, S285–S287. [Google Scholar] [CrossRef]
- Ballard, F.J.; Tomas, F.M.; Stern, L.M. Increased Turnover of Muscle Contractile Proteins in Duchenne Muscular Dystrophy as Assessed by 3-Methylhistidine and Creatinine Excretion. Clin. Sci. 1979, 56, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Myllylä, R.; Myllylä, V.V.; Tolonen, U.; Kivirikko, K.I. Changes in Collagen Metabolism in Diseased Muscle. I. Biochemical Studies. Arch. Neurol. 1982, 39, 752–755. [Google Scholar] [CrossRef]
- Pearson, C.M.; Kar, N.C. Muscle Breakdown and Lysosomal Activation (Biochemistry). Ann. N. Y. Acad. Sci. 1979, 317, 465–477. [Google Scholar] [CrossRef]
- Peltonen, L.; Myllylä, R.; Tolonen, U.; Myllylä, V.V. Changes in Collagen Metabolism in Diseased Muscle. II. Immunohistochemical Studies. Arch. Neurol. 1982, 39, 756–759. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Vías, G.; Segarra, A.B.; Ramírez-Sánchez, M.; Prieto, I. High-Fat Diets Modify the Proteolytic Activities of Dipeptidyl-Peptidase IV and the Regulatory Enzymes of the Renin–Angiotensin System in Cardiovascular Tissues of Adult Wistar Rats. Biomedicines 2021, 9, 1149. [Google Scholar] [CrossRef] [PubMed]
- Sweeny, P.R.; Brown, R.G. The Aetiology of Muscular Dystrophy in Mammals—A New Perspective and Hypothesis. Comp. Biochem. Physiol. Part B Comp. Biochem. 1981, 70, 27–33. [Google Scholar] [CrossRef]
- Van Es, M.A.; van Vught, P.W.J.; van Kempen, G.; Blauw, H.M.; Veldink, J.H.; van den Berg, L.H. DPP6 is associated with susceptibility to progressive spinal muscular atrophy. Neurology 2009, 72, 1184–1185. [Google Scholar] [CrossRef] [PubMed]
- Laaksovirta, H.; Peuralinna, T.; Schymick, J.C.; Scholz, S.W.; Lai, S.L.; Myllykangas, L.; Sulkava, R.; Jansson, L.; Hernandez, D.G.; Gibbs, J.R.; et al. Chromosome 9p21 in Amyotrophic Lateral Sclerosis in Finland: A Genome-Wide Association Study. Lancet Neurol. 2010, 9, 978–985. [Google Scholar] [CrossRef] [Green Version]
- Simpson, C.L.; Lemmens, R.; Miskiewicz, K.; Broom, W.J.; Hansen, V.K.; van Vught, P.W.J.; Landers, J.E.; Sapp, P.; van den Bosch, L.; Knight, J.; et al. Variants of the Elongator Protein 3 (ELP3) Gene Are Associated with Motor Neuron Degeneration. Hum. Mol. Genet. 2009, 18, 472–481. [Google Scholar] [CrossRef] [Green Version]
- Stefansson, H.; Rujescu, D.; Cichon, S.; Pietiläinen, O.P.H.; Ingason, A.; Steinberg, S.; Fossdal, R.; Sigurdsson, E.; Sigmundsson, T.; Buizer-Voskamp, J.E.; et al. Large Recurrent Microdeletions Associated with Schizophrenia. Nature 2008, 455, 232–236. [Google Scholar] [CrossRef] [Green Version]
- De Kovel, C.G.F.; Trucks, H.; Helbig, I.; Mefford, H.C.; Baker, C.; Leu, C.; Kluck, C.; Muhle, H.; von Spiczak, S.; Ostertag, P.; et al. Recurrent Microdeletions at 15q11.2 and 16p13.11 Predispose to Idiopathic Generalized Epilepsies. Brain 2010, 133, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Blauw, H.M.; Veldink, J.H.; van Es, M.A.; van Vught, P.W.; Saris, C.G.; van der Zwaag, B.; Franke, L.; Burbach, J.P.H.; Wokke, J.H.; Ophoff, R.A.; et al. Copy-Number Variation in Sporadic Amyotrophic Lateral Sclerosis: A Genome-Wide Screen. Lancet Neurol. 2008, 7, 319–326. [Google Scholar] [CrossRef]
- Cronin, S.; Blauw, H.M.; Veldink, J.H.; van Es, M.A.; Ophoff, R.A.; Bradley, D.G.; van den Berg, L.H.; Hardiman, O. Analysis of Genome-Wide Copy Number Variation in Irish and Dutch ALS Populations. Hum. Mol. Genet. 2008, 17, 3392–3398. [Google Scholar] [CrossRef] [Green Version]
- Wain, L.V.; Pedroso, I.; Landers, J.E.; Breen, G.; Shaw, C.E.; Leigh, P.N.; Brown, R.H.; Tobin, M.D.; Al-Chalabi, A. The Role of Copy Number Variation in Susceptibility to Amyotrophic Lateral Sclerosis: Genome-Wide Association Study and Comparison with Published Loci. PLoS ONE 2009, 4, e8175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, K.S. Brain-Specific Aminopeptidase: From Enkephalinase to Protector against Neurodegeneration. Neurochem. Res. 2007, 32, 2062–2071. [Google Scholar] [CrossRef] [PubMed]
- Vargas, F.; Wangesteen, R.; Rodríguez-Gómez, I.; García-Estañ, J. Aminopeptidases in Cardiovascular and Renal Function. Role as Predictive Renal Injury Biomarkers. Int. J. Mol. Sci. 2020, 21, 5615. [Google Scholar] [CrossRef] [PubMed]
- Kenny, A.J.; Bourne, A. Cellular Reorganisation of Membrane Peptidases in Wallerian Degeneration of Pig Peripheral Nerve. J. Neurocytol. 1991, 20, 875–885. [Google Scholar] [CrossRef]
- Vasta, R.; D’Ovidio, F.; Logroscino, G.; Chiò, A. The Links between Diabetes Mellitus and Amyotrophic Lateral Sclerosis. Neurol. Sci. 2021, 42, 1377–1387. [Google Scholar] [CrossRef]
- Yoon, S.H.; Bae, Y.S.; Oh, S.P.; Song, W.S.; Chang, H.; Kim, M.H. Altered Hippocampal Gene Expression, Glial Cell Population, and Neuronal Excitability in Aminopeptidase P1 Deficiency. Sci. Rep. 2021, 11, 932. [Google Scholar] [CrossRef]
- Mahmood, F.; Fu, S.; Cooke, J.; Wilson, S.W.; Cooper, J.D.; Russell, C. A Zebrafish Model of CLN2 Disease Is Deficient in Tripeptidyl Peptidase 1 and Displays Progressive Neurodegeneration Accompanied by a Reduction in Proliferation. Brain 2013, 136, 1488–1507. [Google Scholar] [CrossRef] [Green Version]
- Katz, M.L.; Coates, J.R.; Sibigtroth, C.M.; Taylor, J.D.; Carpentier, M.; Young, W.M.; Wininger, F.A.; Kennedy, D.; Vuillemenot, B.R.; O’Neill, C.A. Enzyme Replacement Therapy Attenuates Disease Progression in a Canine Model of Late-Infantile Neuronal Ceroid Lipofuscinosis (CLN2 Disease). J. Neurosci. Res. 2014, 92, 1591–1598. [Google Scholar] [CrossRef] [Green Version]
- Quitterer, U.; AbdAlla, S. Improvements of Symptoms of Alzheimer`s Disease by Inhibition of the Angiotensin System. Pharmacol. Res. 2020, 154, 104230. [Google Scholar] [CrossRef]
- Devin, J.K.; Pretorius, M.; Nian, H.; Yu, C.; Billings, F.T., IV; Brown, N.J. Substance P Increases Sympathetic Activity during Combined Angiotensin-Converting Enzyme and Dipeptidyl Peptidase-4 Inhibition. Hypertension 2014, 63, 951–957. [Google Scholar] [CrossRef] [Green Version]
- Banegas, I.; Prieto, I.; Segarra, A.B.; Vives, F.; de Gasparo, M.; Duran, R.; de Dios Luna, J.; Ramírez-Sánchez, M. Bilateral Distribution of Enkephalinase Activity in the Medial Prefrontal Cortex Differs between WKY and SHR Rats Unilaterally Lesioned with 6-Hydroxydopamine. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 75, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Zambotti-Villela, L.; Yamasaki, S.C.; Villarroel, J.S.; Alponti, R.F.; Silveira, P.F. Aspartyl, Arginyl and Alanyl Aminopeptidase Activities in the Hippocampus and Hypothalamus of Streptozotocin-Induced Diabetic Rats. Brain Res. 2007, 1170, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Stragier, B.; Demaegdt, H.; De Bundel, D.; Smolders, I.; Sarre, S.; Vauquelin, G.; Ebinger, G.; Michotte, Y.; Vanderheyden, P. Involvement of Insulin-Regulated Aminopeptidase and/or Aminopeptidase N in the Angiotensin IV-Induced Effect on Dopamine Release in the Striatum of the Rat. Brain Res. 2007, 1131, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Banegas, I.; Barrero, F.; Durén, R.; Morales, B.; Luna, J.D.; Prieto, I.; Ramírez, M.; Alba, F.; Vives, F. Plasma Aminopeptidase Activities in Parkinson’s Disease. Horm. Metab. Res. 2006, 38, 758–760. [Google Scholar] [CrossRef]
- Mendes, M.T.; Murari-do-Nascimento, S.; Torrigo, I.R.; Alponti, R.F.; Yamasaki, S.C.; Silveira, P.F. Basic Aminopeptidase Activity Is an Emerging Biomarker in Collagen-Induced Rheumatoid Arthritis. Regul. Pept. 2011, 167, 215–221. [Google Scholar] [CrossRef]
- Reinhold, D.; Bank, U.; Entz, D.; Goihl, A.; Stoye, D.; Wrenger, S.; Brocke, S.; Thielitz, A.; Stefin, S.; Nordhoff, K.; et al. PETIR-001, a Dual Inhibitor of Dipeptidyl Peptidase IV (DP IV) and Aminopeptidase N (APN), Ameliorates Experimental Autoimmune Encephalomyelitis in SJL/J Mice. Biol. Chem. 2011, 392, 233–237. [Google Scholar] [CrossRef]
- Reinhold, D.; Bank, U.; Täger, M.; Ansorge, S.; Wrenger, S.; Thielitz, A.; Lendeckel, U.; Faust, J.; Neubert, K.; Brocke, S. DP IV/CD26, APN/CD13 and Related Enzymes as Regulators of T Cell Immunity: Implications for Experimental Encephalomyelitis and Multiple Sclerosis. Front. Biosci. 2008, 13, 2356–2363. [Google Scholar] [CrossRef]
- Schreiter, A.; Gore, C.; Labuz, D.; Fournie-Zaluski, M.C.; Roques, B.P.; Stein, C.; Machelska, H. Pain Inhibition by Blocking Leukocytic and Neuronal Opioid Peptidases in Peripheral Inflamed Tissue. FASEB J. 2012, 26, 5161–5171. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Liu, X.; Wei, Y.; Li, X.; Gao, S.; Dong, L.; Rao, X.; Zhong, J. Emerging Role of Dipeptidyl Peptidase-4 in Autoimmune Disease. Front. Immunol 2022, 13, 830863. [Google Scholar] [CrossRef]
- Melo, F.J.; Pinto-Lopes, P.; Estevinho, M.M.; Magro, F. The Role of Dipeptidyl Peptidase 4 as a Therapeutic Target and Serum Biomarker in Inflammatory Bowel Disease: A Systematic Review. Inflamm. Bowel Dis. 2021, 27, 1153–1165. [Google Scholar] [CrossRef]
- Kumaravel, S.; Luo, G.R.; Huang, S.T.; Lin, H.Y.; Lin, C.M.; Lee, Y.C. Development of a Novel Latent Electrochemical Molecular Substrate for the Real-Time Monitoring of the Tumor Marker Aminopeptidase N in Live Cells, Whole Blood and Urine. Biosens. Bioelectron. 2022, 203, 114049. [Google Scholar] [CrossRef] [PubMed]
- Matsukawa, T.; Mizutani, S.; Matsumoto, K.; Kato, Y.; Yoshihara, M.; Kajiyama, H.; Shibata, K. Placental Leucine Aminopeptidase as a Potential Specific Urine Biomarker for Invasive Ovarian Cancer. J. Clin. Med. 2021, 11, 222. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Zhang, N.; Xia, Y.; Wang, D.; Wang, G.; Meng, X. Serum APN/CD13 as a Novel Diagnostic and Prognostic Biomarker of Pancreatic Cancer. Oncotarget 2016, 7, 77854–77864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abouzied, M.M.; Eltahir, H.M.; Fawzy, M.A.; Abdel-Hamid, N.M.; Gerges, A.S.; El-Ibiari, H.M.; Nazmy, M.H. Estimation of Leucine Aminopeptidase and 5-Nucleotidase Increases Alpha-Fetoprotein Sensitivity in Human Hepatocellular Carcinoma Cases. Asian Pac. J. Cancer Prev. 2015, 16, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Megias, M.J.; Alba-Araguez, F.; Luna, J.D.; Vives, F.; Ramirez-Sanchez, M. Serum Pyroglutamyl Aminopeptidase Activity: A Promising Novel Biomarker Candidate for Liver Cirrhosis. Endocr. Regul. 2015, 49, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Wagner, L.; Wolf, R.; Zeitschel, U.; Rossner, S.; Petersén, Å.; Leavitt, B.R.; Kästner, F.; Rothermundt, M.; Gärtner, U.T.; Gündel, D.; et al. Proteolytic Degradation of Neuropeptide Y (NPY) from Head to Toe: Identification of Novel NPY-Cleaving Peptidases and Potential Drug Interactions in CNS and Periphery. J. Neurochem. 2015, 135, 1019–1037. [Google Scholar] [CrossRef] [Green Version]
- Quesada, A.; Segarra, A.B.; Montoro-Molina, S.; De Gracia, M.D.C.; Osuna, A.; O’Valle, F.; Gómez-Guzmán, M.; Vargas, F.; Wangensteen, R. Glutamyl Aminopeptidase in Microvesicular and Exosomal Fractions of Urine Is Related with Renal Dysfunction in Cisplatin-Treated Rats. PLoS ONE 2017, 12, e0175462. [Google Scholar] [CrossRef] [Green Version]
Reference | Country (Year) | ALS Type | N | Age | Gender (M:F) | Aminopeptidase | Sample | Result |
---|---|---|---|---|---|---|---|---|
Ren et al. [37] | United States (2011) | SALS | Control: 6 | n.d. | n.d. | PSA/NPEPPS | Postmortem motor neurons (brain and spinal cord tissue) | With decreased PSA/NPEPPS protein expression (p = 0.0013), the removal of accumulated SOD1 decreases. PSA/NPEPPS contributes to the pathogenesis of ALS. |
Patient: 19 | n.d. | n.d. | ||||||
Chen et al. [38] | China (2012) | SALS | Control: 288 | n.d | n.d. | DPP6 | DNA for SNP gene polymorphism: (rs10260404) | rs10260404 is not associated with the risk of developing ALS in Chinese populations (Genotype distribution, p = 0.2; MAF, p = 0.9, OR: 1.0, 95% CI: 0.7–1.3). |
Patient: 395 | n.d. | n.d. | ||||||
Shaw et al. [39] | United Kingdom (1996) | Unspecific ALS | Control: 8 | 61.0 ± 17.5 | 6:2 | Matrix and cytoplasmic proteases: AlaAP ArgAP DPP3 DPP4 LeuAP GluAP pGluAP Tripeptidyl AP | Postmortem spinal cord | No evidence of generalized alterations in protein-catabolizing enzyme activities in spinal cord tissue was found in ALS. Only pGluAP showed significantly altered activity (119%) in ALS cases compared to normal controls (Control: 2.6 ± 0.6 vs. ALS: 5.7 ± 1.1; p < 0.5). |
Patient: 10 | 67.7 ± 15.4 | 7:3 | ||||||
Control: 8 | 58.3 ± 12.7 | 7:1 | Lysosomal proteases: DPP1 DPP2 | |||||
Patient: 9 | 67.0 ± 7.9 | 4:5 | ||||||
Narayan et al. [40] | United States (2016) | Unspecific ALS | Control: 5 | 60.6 ± 7.3 | 2:3 | DPP2 | Cultures of human fibroblasts | The differential regulation of DPP2 protein expression in ALS fibroblasts has the potential as a biomarker and potential drug target for ALS. The expression of DPP2 is overexpressed upwards (×2.2) with respect to the controls (p = 7.75 × 10−9). |
Patient: 4 | 60.8 ± 6.3 | 3:1 | ||||||
Takala et al. [20] | Finland (1983) | Unspecific ALS | Control: 9 | 43 (25–58) | n.d. | Lysosomal hydrolase: DPP1 Non-lysosomal hydrolase: DPP4 | Muscle biopsy and serum samples for diagnostic purposes. | The DPP1 and DPP4 activities in patients with ALS and the control group are not altered. DPP1 (p < 0.05; r = 0.35) and DPP4 (p < 0.01; r = 0.59) activities are positively correlated with collagen-forming activity (muscle galactosylhydroxylysyl glucosyltransferase; M-GGT). Also, DPP1 (p < 0.05; r = 0.44) and DPP4 (p < 0.05; r = 0.43) activities correlate with the serum concentration of N-terminal propeptide of type III procollagen (S-PRO III). DPP1 (p = n.s.; r = 0.15) activity does not have a significant correlation with muscle prolyl hydroxylase (M-PH) activity, except for DPP4 (p < 0.05; r = 0.38) activity, which presents a positive correlation. DPP1 (p = n.s.; r = 0.11) and DPP4 (p = n.s.; r = 0.16) activities do not correlate with muscle collagen (muscular hydroxyproline, M-HYP). DPP1 activity does not correlate with the degree of severity of muscle atrophy (p = n.s.; r = 0.12), but DPP4 activity does (p < 0.01; r = 0.53). |
Patient: 8 | 52 (23–74) | n.d. | ||||||
Cronin et al. § [29] | Ireland, the United States, Netherlands (2008) | SALS | Control: 932 | n.d. | n.d. | DPP6 | DNA for SNP gene polymorphism: (rs10260404) | Combined GWA analysis suggests that possession of the associated allele within the DPP6 gene increases the risk of ALS (p = 2.53 × 10−6; OR = 1.37; 95% CI = 1.20–1.56). The strongest association is for the variant in the gene encoding DPP6 and for SNP rs10260404, an intronic variant found within the DPP6 gene on chromosome 7. |
Patient: 958 | n.d. | n.d. | ||||||
Van Es et al. § [21] | United States, Netherlands, Sweden, Belgium (2008) | SALS | Control: 1916 | n.d. | n.d. | DPP6 | DNA for SNP gene polymorphism: (rs10260404) | The SNP rs10260404 polymorphism of the DPP6 gene is strongly associated with ALS susceptibility in different populations of European descent (p = 5.04 × 10−8; OR = 1.30; 95% CI = 1.18–1.43). |
Patient: 1767 | n.d. | n.d. | ||||||
Del Bo et al. § [41] | Italy (2008) | SALS | Control: 239 | n.d. (matched for age) | n.d. | DPP6 | DNA for SNP gene polymorphism: (rs10260404) | The genetic variant of DPP6 (SNP rs 10260404) is associated as a possible risk factor for developing sALS in an Italian population (Genotype, p = 0.0027; MAF, p = 0.0066). The CC genotype and C allele are associated with an increased risk of sALS in recessive and allelic association tests (CC vs. CT/TT: p = 0.0008; OR = 2.44; 95% CI = 1.41–4.32; C allele vs. to T allele: p = 0.0055; OR = 1.43; 95% CI = 1.10–1.86). |
Patient: 266 | 58.4 ± 12.9 | 173:93 | ||||||
Kwee et al. [42] | United States (2012) | SALS | Control: 961 | 63.5 ± 11.5 | 755:206 | DPP6 | DNA for 2 SNP gene polymorphisms: (rs17174381) (rs10260404) | Through the GWA, the SNP rs17174381 (p = 4.4 × 10−4; OR = 1.9; 95% CI = 1.3–2.8) located in the DPP6 gene shows evidence of association with ALS, but no association with the SNP rs10260404 (p = 0.97; OR = 1.0; 95% CI = 0.9–1.1) of the same gene. |
Patient: 183 | 57.4 ± 12.1 | 115:68 | ||||||
Daoud et al. [43] | Canada (2010) | FALS SALS | Control: 190 | n.d. | n.d. | DPP6 | Peripheral blood DNA for 8 SNP gene polymorphisms: (rs11243339) (rs3807218) (rs56091483) (rs2293353) (rs2230064) (rs3817522) (rs1129300) (rs3734960) | Mutations in the DPP6 genes do not show evidence of being the cause of ALS. The MAF in the ALS cohort did not differ from the dbSNP. rs11243339 (p = 0.48) rs3807218 (p = 0.14) rs56091483 (n.d.) rs2293353 (p = 0.27) rs2230064 (p = 0.35) rs3817522 (p = 0.32) rs1129300 (p = 0.49) rs3734960 (p = 0.08) |
Patient: 190 (FALS: 110) (SALS): 80 | n.d. | n.d. | ||||||
Khokhlov et al. [44] | Russia (1992) | Unspecific ALS | Control: 14 | n.d. | n.d. | LeuAP | Cerebrospinal fluid | In patients with ALS, by enzyme immunoassay in the cerebrospinal fluid, the level of the LeuAP enzyme was significantly higher at the onset of the disease with moderate clinical manifestations than in the cases of generalized form and in the terminal phase. |
Patient: 2 | 57.5 ± 2.1 | n.d. | Blood serum | The LeuAP enzyme was not registered in the blood serum of control donors, but the frequency of registration in ALS compared to other neurological patients is approximately 50%. | ||||
Blauw et al. [45] | Netherlands (2010) | SALS | Control: 14618 | n.d. | n.d. | DPP6 | DNA for SNP gene polymorphism: (rs10260404) | The SNP rs10260404 of the DPP6 gene shows ALS susceptibility (p = 1.4 × 10−3; OR = 2.64) in ALS association analysis but does not explain the associations with the number of rare copy number variables (CNV; Average all CNVs per individual, p = 0.28). There is no evidence of a higher global burden of CNV in ALS cases than in controls or a difference in gene content in ALS cases for CNVs in general or for large CNVs (>500 Kb; Average CNVs per individual, p = 0.99). The results for the DPP6 locus do not appear to be population-specific (Woolf test, p = 0.60). Although the association of the SNP rs10260404 in the DPP6 gene with susceptibility to ALS has been described, the signal from the CNV locus is not explained by rs10260404. CNVs in patients with ALS do not have statistical power to detect the association of rare events. |
Patient: 4434 | n.d. | n.d. | ||||||
Fogh et al. § [46] | Italy (2011) | SALS | Control: 1036 | n.d. | n.d. | DPP6 | DNA for SNP gene polymorphism: (rs10260404) | The MAF for the risk C allele was 0.38 in ALS cases and 0.39 in controls (p = 0.64; OR = 0.97; 95% CI = 0.84–1.09). The results of the GWA study do not suggest an association of the DPP6 gene with the risk of ALS susceptibility (p = 0.64). |
Patient: 904 | n.d. | n.d. | ||||||
Cronin et al. § [30] | Ireland, Netherlands, Poland, United States (2009) | SALS | Control: 1336 | 60 ± 4.7 | 706:630 | DPP6 | DNA for SNP gene polymorphism: (rs10260404) | A pooled analysis of GWA data shows a stronger clustered allelic association at rs10260404 in the DPP6 gene (p = 2.62 × 10−4; OR = 1.23; 95% CI = 1.1–1.38), showing the same risk allele (C) of the same SNP in each of the populations. |
Patient: 1267 | 58 ± 2.4 | 720:547 | ||||||
Li et al. § [47] | China (2009) | SALS | Control: 52 | 45.3 ± 15.1 | 28:24 | DPP6 | Genomic DNA extracted from leukocytes of a whole blood sample. DNA for SNP gene polymorphism: (rs10260404) | GWA studies report several SNP polymorphisms that are susceptible to ALS in the Chinese population but do not find significant differences of the SNP rs10260404 of the DPP6 gene between the Chinese ALS group and the control group genotype frequencies (p = 0.68; OR = 1.21; 95% CI = 0.48–3.06) and allele frequencies (p = 0.59; OR = 1.26; 95% CI = 0.55–2.87). |
Patient: 58 | 46.4 ± 14.0 | 34:24 | ||||||
Zhang et al. [48] | China (2021) | SALS | Control: 261 | 65.7 (65–75) | 148:113 | DPP6 | DNA for 2 SNP gene polymorphisms: (rs882467) (rs10260404) | SNP rs10260404 of the DPP6 gene is strongly associated with sALS in subjects of Chinese descent and plays roles in ALS pathogenesis, affecting splicing, transcription, and translation of the DPP6 gene (genotype, p = 2.84 × 10−2). C minor allele of rs10260404 shows a lower risk of developing sALS compared with subjects of other genotypes (p = 0.009; OR = 0.64; 95% CI = 0.45–0.90). The minor allele (C) of rs10260404 represents a protective genetic factor. |
Patient: 239 | 47 (45–65) | 143:96 |
Genotype Frequencies (n (%)) | ||||||
---|---|---|---|---|---|---|
Homozygous Recessive | Heterozygous | Homozygous Dominant | ||||
Author | CC Control | CC sALS | CT Control | CT sALS | TT Control | TT sALS |
Chen et al., 2012 [38] | 4 (1.39) | 12 (3.04) | 84 (29.17) | 100 (25.32) | 200 (69.44) | 283 (71.64) |
Del Bo et al., 2008 [41] | 23 (9.6) | 55 (20.6) | 118 (49.4) | 118 (44.4) | 98 (41) | 93 (35) |
Fogh et al., 2011 [46] | 169 (16.31) | 116 (12.83) | 462 (44.6) | 449 (49.67) | 405 (39.09) | 339 (37.5) |
Li et al., 2009 [47] | 1 (1.92) | 2 (3.45) | 9 (17.31) | 11 (18.98) | 42 (80.77) | 45 (77.59) |
Zhang et al., 2021 [48] | 10 (3.88) | 3 (1.26) | 168 (65.11) | 178 (74.79) | 80 (31.01) | 57 (23.95) |
Allele frequencies | Minor Allele Frequency (MAF): Risk Frequency of the C > T Allele | |||||||
---|---|---|---|---|---|---|---|---|
Author | Control (n (%)) | ALS (n (%)) | Control MAF | sALS MAF | p-Value | OR (95% CI) | ||
C allele Frequency (n (%)) | T allele Frequency (n (%)) | C Allele Frequency (n (%)) | T allele Frequency (n (%)) | |||||
Chen et al., 2012 [38] | 576 (100) | 790 (100) | 92 (15.97) | 484 (84.03) | 124 (15.70) | 666 (84.3) | 0.89 | 0.98 (0.73–1.31) |
Cronin et al., 2008 [29] | 422 (100) | 442 (100) | 145 (34.4) | 277 (64.6) | 184 (41.6) | 258 (58.4) | 0.03 | 1.36 (1.03–1.79) |
Van Es et al., 2008 [21] | 3832 (100) | 3534 (100) | 1357 (35.4) | 2475 (64.6) | 1470 (41.6) | 2064 (58.4) | 5.04 × 10−8 | 1.30 (1.18–1.43) |
Del Bo et al., 2008 [41] | 478 (100) | 532 (100) | 164 (34.3) | 314 (65.7) | 228 (42.9) | 304 (57.1) | 6.60 × 10−9 | 1.43 (1.11–1.85) |
Fogh et al., 2011 [46] | 2072 (100) | 1808 (100) | 808 (39) | 1264 (61) | 687 (38) | 1121 (62) | 0.64 | 0.97 (084–1.09) |
Cronin et al., 2009 [30] | 2672 (100) | 2534 (100) | 962 (36) | 1710 (64) | 1039 (41) | 1495 (59) | 2.62 × 10−4 | 1.23 (1.1–1.38) |
Li et al., 2009 [47] | 104 (100) | 116 (100) | 11 (10.58) | 93 (89.43) | 15 (12.94) | 101 (87.06) | 0.59 | 1.26 (0.55–2.87) |
Zhang et al., 2021 [48] | 516 (100) | 476 (100) | 100 (19.4) | 416 (80.6) | 63 (13.2) | 413 (86.8) | 0.01 | 0.64 (0.45–0.90) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teruel-Peña, B.; Gómez-Urquiza, J.L.; Suleiman-Martos, N.; Prieto, I.; García-Cózar, F.J.; Ramírez-Sánchez, M.; Fernández-Martos, C.; Domínguez-Vías, G. Systematic Review and Meta-Analyses of Aminopeptidases as Prognostic Biomarkers in Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2023, 24, 7169. https://doi.org/10.3390/ijms24087169
Teruel-Peña B, Gómez-Urquiza JL, Suleiman-Martos N, Prieto I, García-Cózar FJ, Ramírez-Sánchez M, Fernández-Martos C, Domínguez-Vías G. Systematic Review and Meta-Analyses of Aminopeptidases as Prognostic Biomarkers in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences. 2023; 24(8):7169. https://doi.org/10.3390/ijms24087169
Chicago/Turabian StyleTeruel-Peña, Bárbara, José Luís Gómez-Urquiza, Nora Suleiman-Martos, Isabel Prieto, Francisco José García-Cózar, Manuel Ramírez-Sánchez, Carmen Fernández-Martos, and Germán Domínguez-Vías. 2023. "Systematic Review and Meta-Analyses of Aminopeptidases as Prognostic Biomarkers in Amyotrophic Lateral Sclerosis" International Journal of Molecular Sciences 24, no. 8: 7169. https://doi.org/10.3390/ijms24087169
APA StyleTeruel-Peña, B., Gómez-Urquiza, J. L., Suleiman-Martos, N., Prieto, I., García-Cózar, F. J., Ramírez-Sánchez, M., Fernández-Martos, C., & Domínguez-Vías, G. (2023). Systematic Review and Meta-Analyses of Aminopeptidases as Prognostic Biomarkers in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 24(8), 7169. https://doi.org/10.3390/ijms24087169