Natural Isoforms of Listeria monocytogenes Virulence Factor Inlb Differ in c-Met Binding Efficiency and Differently Affect Uptake and Survival Listeria in Macrophage †
Abstract
:1. Introduction
2. Results
2.1. idInlB Isoforms Characteristic for Lineage I (Clonal Complex CC1) and Lineage II (Clonal complexes CC7 and CC9) Differently Bind c-Met but not gC1qR
2.2. The CC1-Specific InlBCC1 Improves Bacterial Multiplication in Macrophages Comparatively to Other InlB Isoforms
2.3. Exogenic idInlB Affects Bacterial Uptake and Proliferation in Macrophages in an Isoform-Specific Manner
3. Discussion
4. Materials and Methods
4.1. In Silico Analysis
4.2. Purification of idInlBs
4.3. Assessment of the Dissociation Constant of InlB Interactions with the Target Receptors
4.4. Isolation of Mononuclear Cells from Blood and Differentiation of Human Macrophages
4.5. Bacterial Strains and Growth Conditions
4.6. Estimation of InlB Concentrations by ELISA
4.7. Infection of Human Macrophages and Analysis of Bacterial Multiplication in Macrophages
4.8. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Noordhout, C.M.; Devleesschauwer, B.; Angulo, F.J.; Verbeke, G.; Haagsma, J.; Kirk, M.; Havelaar, A.; Speybroeck, N. The Global Burden of Listeriosis: A Systematic Review and Meta-Analysis. Lancet. Infect. Dis. 2014, 14, 1073–1082. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, O.F.; Skouboe, P.; Dons, L.; Rosen, L.; Olsen, J.E. Listeria monocytogenes Exists in at Least Three Evolutionary Lines: Evidence from Flagellin, Invasive Associated Protein and Listeriolysin O Genes. Microbiology 1995, 141 Pt 9, 2053–2061. [Google Scholar] [CrossRef] [Green Version]
- Nightingale, K.K.; Fortes, E.D.; Ho, A.J.; Schukken, Y.H.; Grohn, Y.T.; Wiedmann, M. Evaluation of Farm Management Practices as Risk Factors for Clinical Listeriosis and Fecal Shedding of Listeria monocytogenes in Ruminants. J. Am. Vet. Med. Assoc. 2005, 227, 1808–1814. [Google Scholar] [CrossRef]
- Orsi, R.H.; de Bakker, H.C.; Wiedmann, M. Listeria monocytogenes Lineages: Genomics, Evolution, Ecology, and Phenotypic Characteristics. Int. J. Med. Microbiol. 2011, 301, 79–96. [Google Scholar] [CrossRef]
- Gray, M.J.; Zadoks, R.N.; Fortes, E.D.; Dogan, B.; Cai, S.; Chen, Y.; Scott, V.N.; Gombas, D.E.; Boor, K.J.; Wiedmann, M. Listeria monocytogenes Isolates from Foods and Humans Form Distinct but Overlapping Populations. Appl. Environ. Microbiol. 2004, 70, 5833–5841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennison, A.V.; Masson, J.J.; Fang, N.X.; Graham, R.M.; Bradbury, M.I.; Fegan, N.; Gobius, K.S.; Graham, T.M.; Guglielmino, C.J.; Brown, J.L.; et al. Analysis of the Listeria monocytogenes Population Structure among Isolates from 1931 to 2015 in Australia. Front. Microbiol. 2017, 8, 603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maury, M.M.; Tsai, Y.H.; Charlier, C.; Touchon, M.; Chenal-Francisque, V.; Leclercq, A.; Criscuolo, A.; Gaultier, C.; Roussel, S.; Brisabois, A.; et al. Uncovering Listeria monocytogenes Hypervirulence by Harnessing Its Biodiversity. Nat. Genet. 2016, 48, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Voronina Olga, L.; Ryzhova Natalia, N.; Kunda Marina, S.; Kurnaeva Margarita, A.; Semenov Andrey, N.; Aksenova Ekaterina, I.; Egorova, I.Y.; Kolbasov Denis, V.; Ermolaeva Svetlana, A.; Gintsburg Alexander, L. Diversity and Pathogenic Potential of Listeria monocytogenes Isolated from Environmental Sources in the Russian Federation. J. Mod. Eng. Res. 2015, 5–15. [Google Scholar]
- Psareva, E.K.; Egorova, I.Y.; Liskova, E.A.; Razheva, I.V.; Gladkova, N.A.; Sokolova, E.V.; Potemkin, E.A.; Zhurilov, P.A.; Mikhaleva, T.V.; Blokhin, A.A.; et al. Retrospective Study of Listeria monocytogenes Isolated in the Territory of Inner Eurasia from 1947 to 1999. Pathogens 2019, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.H.L.; Maron, S.B.; McGann, P.; Nightingale, K.K.; Wiedmann, M.; Orsi, R.H. Recombination and Positive Selection Contributed to the Evolution of Listeria monocytogenes Lineages III and IV, Two Distinct and Well Supported Uncommon L. monocytogenes Lineages. Infect. Genet. Evol. 2011, 11, 1881–1890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamburro, M.; Sammarco, M.L.; Ammendolia, M.G.; Fanelli, I.; Minelli, F.; Ripabelli, G. Evaluation of Transcription Levels of InlA, InlB, Hly, Bsh and PrfA Genes in Listeria monocytogenes Strains Using Quantitative Reverse-Transcription PCR and Ability of Invasion into Human CaCo-2 Cells. FEMS Microbiol. Lett. 2015, 362, fnv018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalenko, Y.M.; Sysolyatina, E.V.; Kalinin, E.V.; Sobyanin, K.A.; Ermolaeva, S.A. Natural Variants of Listeria monocytogenes Internalin B with Different Ability to Stimulate Cell Proliferation and Cytoskeleton Rearrangement in HEp-2 Cells. Mol. Genet. Microbiol. Virol. 2017, 32, 80–86. [Google Scholar] [CrossRef]
- Chalenko, Y.; Kalinin, E.; Marchenkov, V.; Sysolyatina, E.; Surin, A.; Sobyanin, K.; Ermolaeva, S. Phylogenetically Defined Isoforms of Listeria monocytogenes Invasion Factor InlB Differently Activate Intracellular Signaling Pathways and Interact with the Receptor GC1q-R. Int. J. Mol. Sci. 2019, 20, 4138. [Google Scholar] [CrossRef] [Green Version]
- Adgamov, R.; Zaytseva, E.; Thiberge, J.-M.; Brisse, S.; Ermolaeva, S. Genetically Related Listeria Monocytogenes Strains Isolated from Lethal Human Cases and Wild Animals. In Genetic Diversity in Microorganisms; IntechOpen: London, UK, 2012; Chapter 9; pp. 235–251. [Google Scholar] [CrossRef]
- Moura, A.; Criscuolo, A.; Pouseele, H.; Maury, M.M.; Leclercq, A.; Tarr, C.; Björkman, J.T.; Dallman, T.; Reimer, A.; Enouf, V.; et al. Whole Genome-Based Population Biology and Epidemiological Surveillance of Listeria monocytogenes. Nat. Microbiol. 2016, 2, 16185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Témoin, S.; Roche, S.M.; Grépinet, O.; Fardini, Y.; Velge, P. Multiple Point Mutations in Virulence Genes Explain the Low Virulence of Listeria monocytogenes Field Strains. Microbiology 2008, 154, 939–948. [Google Scholar] [CrossRef] [Green Version]
- Sobyanin, K.; Sysolyatina, E.; Krivozubov, M.; Chalenko, Y.; Karyagina, A.; Ermolaeva, S. Naturally Occurring InlB Variants That Support Intragastric Listeria monocytogenes Infection in Mice. FEMS Microbiol. Lett. 2017, 364, fnx011. [Google Scholar] [CrossRef] [Green Version]
- Sobyanin, K.; Sysolyatina, E.; Chalenko, Y.; Kalinin, E.; Ermolaeva, S. Route of Injection Affects the Impact of InlB Internalin Domain Variants on Severity of Listeria monocytogenes Infection in Mice. BioMed Res. Int. 2017, 2017, 2101575. [Google Scholar] [CrossRef] [Green Version]
- Chalenko, Y.; Kolbasova, O.; Pivova, E.; Abdulkadieva, M.; Povolyaeva, O.; Kalinin, E.; Kolbasov, D.; Ermolaeva, S. Listeria monocytogenes Invasion Into Sheep Kidney Epithelial Cells Depends on InlB, and Invasion Efficiency Is Modulated by Phylogenetically Defined InlB Isoforms. Front. Microbiol. 2022, 13, 825076. [Google Scholar] [CrossRef]
- Povolyaeva, O.; Chalenko, Y.; Kalinin, E.; Kolbasova, O.; Pivova, E.; Kolbasov, D.; Yurkov, S.; Ermolaeva, S. Listeria monocytogenes Infection of Bat Pipistrellus Nathusii Epithelial Cells Depends on the Invasion Factors InlA and InlB. Pathogens 2020, 9, 867. [Google Scholar] [CrossRef]
- Braun, L.; Ghebrehiwet, B.; Cossart, P. GC1q-R/P32, a C1q-Binding Protein, Is a Receptor for the InlB Invasion Protein of Listeria monocytogenes. EMBO J. 2000, 19, 1458–1466. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Naujokas, M.; Park, M.; Ireton, K. InIB-Dependent Internalization of Listeria Is Mediated by the Met Receptor Tyrosine Kinase. Cell 2000, 103, 501–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonquières, R.; Pizarro-Cerdá, J.; Cossart, P. Synergy between the N- and C-Terminal Domains of InlB for Efficient Invasion of Non-Phagocytic Cells by Listeria monocytogenes. Mol. Microbiol. 2001, 42, 955–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierne, H.; Cossart, P. InIB, a Surface Protein of Listeria monocytogenes That Behaves as an Invasin and a Growth Factor. J. Cell Sci. 2002, 115, 3357–3367. [Google Scholar] [CrossRef] [PubMed]
- Bussolino, F.; Di Renzo, M.F.; Ziche, M.; Bocchietto, E.; Olivero, M.; Naldini, L.; Gaudino, G.; Tamagnone, L.; Coffer, A.; Comoglio, P.M. Hepatocyte Growth Factor Is a Potent Angiogenic Factor Which Stimulates Endothelial Cell Motility and Growth. J. Cell Biol. 1992, 119, 629–641. [Google Scholar] [CrossRef] [Green Version]
- Ireton, K.; Payrastre, B.; Cossart, P. The Listeria monocytogenes Protein InlB Is an Agonist of Mammalian Phosphoinositide 3-Kinase. J. Biol. Chem. 1999, 274, 17025–17032. [Google Scholar] [CrossRef]
- Ferraris, D.M.; Gherardi, E.; Di, Y.; Heinz, D.W.; Niemann, H.H. Ligand-Mediated Dimerization of the Met Receptor Tyrosine Kinase by the Bacterial Invasion Protein InlB. J. Mol. Biol. 2010, 395, 522–532. [Google Scholar] [CrossRef]
- Ghebrehiwet, B.; Peerschke, E.I.B. Structure and Function of GC1q-R: A Multiligand Binding Cellular Protein. Immunobiology 1998, 199, 225–238. [Google Scholar] [CrossRef]
- Matsumoto, K.; Nakamura, T. Pleiotropic Roles of HGF in Mitogenesis, Morphogenesis, and Organ Regeneration. n. Gann Monogr. Cancer Res 1994, 42, 91–112. [Google Scholar]
- Chen, Q.; DeFrances, M.; Zarnegar, R. Induction of Met Proto-Oncogene (Hepatocyte Growth Factor Receptor) Expression during Human Monocyte-Macrophage Differentiation. Cell Growth Differ 1996, 7, 821–832. [Google Scholar]
- Galimi, F.; Cottone, E.; Vigna, E.; Arena, N.; Boccaccio, C.; Giordano, S.; Naldini, L.; Comoglio, P.M. Hepatocyte Growth Factor Is a Regulator of Monocyte-Macrophage Function. J. Immunol. 2001, 166, 1241–1247. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M.; Goebel, W. Responses by Murine Macrophages Infected with Listeria monocytogenes Crucial for the Development of Immunity to This Pathogen. Immunol. Rev. 1997, 158, 57–93. [Google Scholar] [CrossRef] [PubMed]
- Shaughnessy, L.M.; Swanson, J. The Role of the Activated Macrophage in Clearing Listeria monocytogenes Infection. Front. Biosci. 2007, 12, 2683–2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, J.T.; Tsang, A.W.; Swanson, J.A. Localized Reactive Oxygen and Nitrogen Intermediates Inhibit Escape of Listeria monocytogenes from Vacuoles in Activated Macrophages. J. Immunol. 2003, 171, 5447–5453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Castejon, G.; Corbett, D.; Goldrick, M.; Roberts, I.S.; Brough, D. Inhibition of Calpain Blocks the Phagosomal Escape of Listeria monocytogenes. PLoS ONE 2012, 7, e35936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.M.J.; Garner, M.E.; Regeimbal, J.M.; Greene, C.J.; Márquez, J.D.R.; Ammendolia, D.A.; McCluggage, A.R.R.; Li, T.; Wu, K.J.; Cemma, M.; et al. Listeria Exploits IFITM3 to Suppress Antibacterial Activity in Phagocytes. Nat. Commun. 2021, 12, 4999. [Google Scholar] [CrossRef]
- Seveau, S. Multifaceted Activity of Listeriolysin O, the Cholesterol-Dependent Cytolysin of Listeria monocytogenes. Subcell. Biochem. 2014, 80, 161–195. [Google Scholar] [CrossRef] [Green Version]
- Aubry, C.; Goulard, C.; Nahori, M.A.; Cayet, N.; Decalf, J.; Sachse, M.; Boneca, I.G.; Cossart, P.; Dussurget, O. OatA, a Peptidoglycan O-Acetyltransferase Involved in Listeria monocytogenes Immune Escape, Is Critical for Virulence. J. Infect. Dis. 2011, 204, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Chalenko, Y.M.; Abdulkadieva, M.M.; Safarova, P.V.; Kalinin, E.V.; Slonova, D.A.; Ermolaeva, S.A. InlB Protein Secreted by Listeria monocytogenes Controls the Pathogen Interaction with Macrophages. Bull. Russ. State Med. Univ. 2022, 3, 5–10. [Google Scholar] [CrossRef]
- Charlier, C.; Perrodeau, É.; Leclercq, A.; Cazenave, B.; Pilmis, B.; Henry, B.; Lopes, A.; Maury, M.M.; Moura, A.; Goffinet, F.; et al. Clinical features and prognostic factors of listeriosis: The MONALISA national prospective cohort study. Lancet Infect. Dis. 2017, 17, 510–519. [Google Scholar] [CrossRef]
- Papić, B.; Pate, M.; Félix, B.; Kušar, D. Genetic Diversity of Listeria monocytogenes Strains in Ruminant Abortion and Rhombencephalitis Cases in Comparison with the Natural Environment. BMC Microbiol. 2019, 19, 299. [Google Scholar] [CrossRef] [Green Version]
- Jerabek-Willemsen, M.; André, T.; Wanner, R.; Roth, H.M.; Duhr, S.; Baaske, P.; Breitsprecher, D. MicroScale Thermophoresis: Interaction Analysis and Beyond. J. Mol. Struct. 2014, 1077, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Entzian, C.; Schubert, T. Studying Small Molecule–Aptamer Interactions Using MicroScale Thermophoresis (MST). Methods 2016, 97, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Seidel, S.A.I.; Dijkman, P.M.; Lea, W.A.; van den Bogaart, G.; Jerabek-Willemsen, M.; Lazic, A.; Joseph, J.S.; Srinivasan, P.; Baaske, P.; Simeonov, A.; et al. Microscale Thermophoresis Quantifies Biomolecular Interactions under Previously Challenging Conditions. Methods 2013, 59, 301–315. [Google Scholar] [CrossRef]
- Ripio, M.T.; Brehm, K.; Lara, M.; Suarez, M.; Vazquez-Boland, J.A. Glucose-1-Phosphate Utilization by Listeria monocytogenes Is PrfA Dependent and Coordinately Expressed with Virulence Factors. J. Bacteriol. 1997, 179, 7174–7180. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, L.A.J.; Pearce, E.J. Immunometabolism Governs Dendritic Cell and Macrophage Function. J. Exp. Med. 2016, 213, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Recondo, G.; Che, J.; Jänne, P.A.; Awad, M.M. Targeting MET Dysregulation in Cancer. Cancer Discov. 2020, 10, 922–934. [Google Scholar] [CrossRef] [PubMed]
- Ilangumaran, S.; Villalobos-Hernandez, A.; Bobbala, D.; Ramanathan, S. The Hepatocyte Growth Factor (HGF)-MET Receptor Tyrosine Kinase Signaling Pathway: Diverse Roles in Modulating Immune Cell Functions. Cytokine 2016, 82, 125–139. [Google Scholar] [CrossRef]
- Coudriet, G.M.; He, J.; Trucco, M.; Mars, W.M.; Piganelli, J.D. Hepatocyte Growth Factor Modulates Interleukin-6 Production in Bone Marrow Derived Macrophages: Implications for Inflammatory Mediated Diseases. PLoS ONE 2010, 5, e15384. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.; Lee, J.; Lee, J.; Lee, S.H.; Kim, S. Hepatocyte Growth Factor Regulates Macrophage Transition to the M2 Phenotype and Promotes Murine Skeletal Muscle Regeneration. Front. Physiol. 2019, 10, 914. [Google Scholar] [CrossRef] [Green Version]
- Nishikoba, N.; Kumagai, K.; Kanmura, S.; Nakamura, Y.; Ono, M.; Eguchi, H.; Kamibayashiyama, T.; Oda, K.; Mawatari, S.; Tanoue, S.; et al. HGF-MET Signaling Shifts M1 Macrophages Toward an M2-Like Phenotype Through PI3K-Mediated Induction of Arginase-1 Expression. Front. Immunol. 2020, 11, 02135. [Google Scholar] [CrossRef]
- Ozes, O.N.; Mayo, L.D.; Gustin, J.A.; Pfeffer, S.R.; Pfeffer, L.M.; Donner, D.B. NF-KappaB Activation by Tumour Necrosis Factor Requires the Akt Serine-Threonine Kinase. Nature 1999, 401, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Niemann, H.H.; Jäger, V.; Butler, P.J.G.; van den Heuvel, J.; Schmidt, S.; Ferraris, D.; Gherardi, E.; Heinz, D.W. Structure of the Human Receptor Tyrosine Kinase Met in Complex with the Listeria Invasion Protein InlB. Cell 2007, 130, 235–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockinger, S.; Materna, T.; Stoiber, D.; Bayr, L.; Steinborn, R.; Kolbe, T.; Unger, H.; Chakraborty, T.; Levy, D.E.; Müller, M.; et al. Production of Type I IFN Sensitizes Macrophages to Cell Death Induced by Listeria monocytogenes. J. Immunol. 2002, 169, 6522–6529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansell, A.; Braun, L.; Cossart, P.; O’Neill, L.A.J. A Novel Function of InIB from Listeria monocytogenes: Activation of NF-κB in J774 Macrophages. Cell. Microbiol. 2000, 2, 127–136. [Google Scholar] [CrossRef]
- Capece, D.; Verzella, D.; Flati, I.; Arboretto, P.; Cornice, J.; Franzoso, G. NF-ΚB: Blending Metabolism, Immunity, and Inflammation. Trends Immunol. 2022, 43, 757–775. [Google Scholar] [CrossRef]
- Wang, H.; Yao, N.; Wu, M.D.; Yue, K.; Bai, Y.; You, L.W.; Liu, T.; Xu, F.; Guo, J.R. Regulation of Macrophage Polarization by MiR-449a/Cripto-1-PI3K/AKT/NF-ΚB Signaling Pathway in Allogeneic Transfusion Mice. BioMed Res. Int. 2023, 2023, 1277258. [Google Scholar] [CrossRef]
- Braun, L.; Dramsi, S.; Dehoux, P.; Bierne, H.; Lindahl, G.; Cossart, P. InlB: An Invasion Protein of Listeria monocytogenes with a Novel Type of Surface Association. Mol. Microbiol. 1997, 25, 285–294. [Google Scholar] [CrossRef]
- Rana, S.; Maurya, S.; Mohapatra, G.; Singh, S.; Babar, R.; Chandrasekhar, H.; Chamoli, G.; Rathore, D.; Kshetrapal, P.; Srikanth, C.V. Activation of Epigenetic Regulator KDM6B by Salmonella Typhimurium Enables Chronic Infections. Gut Microbes 2021, 13, 1986665. [Google Scholar] [CrossRef]
- Siwczak, F.; Cseresnyes, Z.; Hassan, M.I.; Aina, K.O.; Carlstedt, S.; Sigmund, A.; Groger, M.; Surewaard, B.G.; Werz, O.; Figge, M.T.; et al. Human macrophage polarization determines bacterial persistence of Staphylococcus aureus in a liver-on-chip-based infection model. Biomaterials 2022, 287, 121632. [Google Scholar] [CrossRef]
- Kibardin, A.; Karpova, T.; Sapenko, T.; Vazquez-Boland, J.A.; Kiselev, S.; Ermolaeva, S. Mammalian Peptidoglycan Recognition Protein TagL Inhibits Listeria monocytogenes Invasion into Epithelial Cells. FEMS Immunol. Med. Microbiol. 2006, 46, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Fuss, I.J.; Kanof, M.E.; Smith, P.D.; Zola, H. Isolation of Whole Mononuclear Cells from Peripheral Blood and Cord Blood. Curr. Protoc. Immunol. 2009, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kalinin, E.V.; Chalenko, Y.M.; Kezimana, P.; Stanishevskyi, Y.M.; Ermolaeva, S.A. Combination of growth conditions and InlB-specific dot-immunoassay for rapid detection of Listeria monocytogenes in raw milk. J. Dairy Sci. 2023, 106, 1638–1649. [Google Scholar] [CrossRef]
- Portnoy, D.A.; Chakraborty, T.; Goebel, W.; Cossart, P. Molecular Determinants of Listeria monocytogenes Pathogenesis. Infect. Immun. 1992, 60, 1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheehan, B.; Kocks, C.; Dramsi, S.; Gouin, E.; Klarsfeld, A.D.; Mengaud, J.; Cossart, P. Molecular and Genetic Determinants of the Listeria monocytogenes Infectious Process. Curr. Top. Microbiol. Immunol. 1994, 192, 187–216. [Google Scholar] [CrossRef] [PubMed]
- Bohne, J.; Kestler, H.; Uebele, C.; Sokolovic, Z.; Goebel, W. Differential Regulation of the Virulence Genes of Listeria monocytogenes by the Transcriptional Activator PrfA. Mol. Microbiol. 1996, 20, 1189–1198. [Google Scholar] [CrossRef] [PubMed]
- Portman, J.L.; Dubensky, S.B.; Peterson, B.N.; Whiteley, A.T.; Portnoy, D.A. Activation of the Listeria monocytogenes Virulence Program by a Reducing Environment. MBio 2017, 8, e01595-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripio, M.T.; Domínguez-Bernal, G.; Suárez, M.; Brehm, K.; Berche, P.; Vázquez-Boland, J.A. Transcriptional Activation of Virulence Genes in Wild-Type Strains of Listeria monocytogenes in Response to a Change in the Extracellular Medium Composition. Res. Microbiol. 1996, 147, 371–384. [Google Scholar] [CrossRef]
- Ermolaeva, S.; Belyi, Y.; Tartakovskii, I. Characteristics of Induction of Virulence Factor Expression by Activated Charcoal in Listeria monocytogenes. FEMS Microbiol. Lett. 1999, 174, 137–141. [Google Scholar] [CrossRef]
Species/Strain | Characteristics | Reference |
---|---|---|
L. monocytogenes | ||
EGDeΔinlB 1 | EGDe derivative with inlB gene deletion, clonal complex CC9, lineage II | [61] |
EGDeΔinlB::InlBCC1 | EGDeΔinlB supplemented with the pInlB9 plasmid, idInlB clonal complex CC1, lineage I | [17] |
EGDeΔinlB::InlBCC7 | EGDeΔinlB supplemented with the pInlB14 plasmid, idInlB clonal complex CC7, lineage II | [17] |
EGDeΔinlB::InlBCC9 | EGDeΔinlB supplemented with the pInlB13 plasmid, idInlB clonal complex CC9, lineage II | [17] |
E. coli | ||
BL21 (DE3) | F–ompT gal dcm lon hsdSB(rB-mB-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) | NewEngland BioLabs |
BL21::pET28b(+)::idInlBCC1 | BL21 supplemented with the pET28b(+)::idInlBCC1 plasmid | [13] |
BL21::pET28b(+)::idInlBCC7 | EGDeΔinlB supplemented with the pET28b(+)::idInlBCC7 plasmid | [13] |
BL21::pET28b(+)::idInlBCC9 | EGDeΔinlB supplemented with the pET28b(+)::idInlBCC1 plasmid | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalenko, Y.M.; Slonova, D.A.; Kechko, O.I.; Kalinin, E.V.; Mitkevich, V.A.; Ermolaeva, S.A. Natural Isoforms of Listeria monocytogenes Virulence Factor Inlb Differ in c-Met Binding Efficiency and Differently Affect Uptake and Survival Listeria in Macrophage. Int. J. Mol. Sci. 2023, 24, 7256. https://doi.org/10.3390/ijms24087256
Chalenko YM, Slonova DA, Kechko OI, Kalinin EV, Mitkevich VA, Ermolaeva SA. Natural Isoforms of Listeria monocytogenes Virulence Factor Inlb Differ in c-Met Binding Efficiency and Differently Affect Uptake and Survival Listeria in Macrophage. International Journal of Molecular Sciences. 2023; 24(8):7256. https://doi.org/10.3390/ijms24087256
Chicago/Turabian StyleChalenko, Yaroslava M., Daria A. Slonova, Olga I. Kechko, Egor V. Kalinin, Vladimir A. Mitkevich, and Svetlana A. Ermolaeva. 2023. "Natural Isoforms of Listeria monocytogenes Virulence Factor Inlb Differ in c-Met Binding Efficiency and Differently Affect Uptake and Survival Listeria in Macrophage" International Journal of Molecular Sciences 24, no. 8: 7256. https://doi.org/10.3390/ijms24087256
APA StyleChalenko, Y. M., Slonova, D. A., Kechko, O. I., Kalinin, E. V., Mitkevich, V. A., & Ermolaeva, S. A. (2023). Natural Isoforms of Listeria monocytogenes Virulence Factor Inlb Differ in c-Met Binding Efficiency and Differently Affect Uptake and Survival Listeria in Macrophage. International Journal of Molecular Sciences, 24(8), 7256. https://doi.org/10.3390/ijms24087256