Changes in K+ Concentration as a Signaling Mechanism in the Apicomplexa Parasites Plasmodium and Toxoplasma
Abstract
:1. Introduction
2. Differences in Ion Concentrations in the Microenvironment Activate Signaling Pathways Required for Infection
3. K+ in the Invasion of Erythrocytes and Progression of the Erythrocytic Cycle
4. Plasmodium falciparum Serpentine Receptor 25 (PfSR25), a GPCR-like Receptor Responsible for the Transmission of the K+ Stimulus to the Interior of the Parasite
5. Other Apicomplexans Encode Proteins Homologous to GPCR-like PfSR25
6. Calcium Acts as the Second Messenger Resulting from the Signaling Triggered by [K+] Shift
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Nadjm, B.; Behrens, R.H. Malaria: An Update for Physicians. Infect. Dis. Clin. N. Am. 2012, 26, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Cowman, A.F.; Tonkin, C.J.; Tham, W.H.; Duraisingh, M.T. The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. Cell Host Microbe 2017, 22, 232–245. [Google Scholar] [CrossRef] [PubMed]
- Cowman, A.F.; Crabb, B.S. Invasion of red blood cells by malaria parasites. Cell 2006, 124, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Dvorak, J.A.; Miller, L.H.; Whitehouse, W.C.; Shiroishi, T. Invasion of erythrocytes by malaria merozoites. Science 1975, 187, 748–750. [Google Scholar] [CrossRef] [PubMed]
- Mota, M.M.; Pradel, G.; Vanderberg, J.P.; Hafalla, J.C.R.; Frevert, U.; Nussenzweig, R.S.; Nussenzweig, V.; Rodriguez, A. Migration of Plasmodium sporozoites through cells before infection. Science 2001, 291, 141–144. [Google Scholar] [CrossRef]
- Cowman, A.F.; Berry, D.; Baum, J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J. Cell Biol. 2012, 198, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Amino, R.; Thiberge, S.; Martin, B.; Celli, S.; Shorte, S.; Frischknecht, F.; Ménard, R. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat. Med. 2006, 12, 220–224. [Google Scholar] [CrossRef]
- Rohrbach, P. Imaging ion flux and ion homeostasis in blood-stage malaria parasites. Biotechnol. J. 2009, 4, 812–825. [Google Scholar] [CrossRef]
- Pillai, A.D.; Addo, R.; Sharma, P.; Nguitragool, W.; Srinivasan, P.; Desai, S.A. Malaria parasites tolerate a broad range of ionic environments and do not require host cation remodeling. Mol. Microbiol. 2013, 88, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.A.; Garcia, C.R.S.; Chandran, V.R.; Van Rooijen, N.; Zhou, Y.; Winzeler, E.; Nussenzweig, V. Exposure of Plasmodium sporozoites to the intracellular concentration of potassium enhances infectivity and reduces cell passage activity. Mol. Biochem. Parasitol. 2007, 156, 32–40. [Google Scholar] [CrossRef]
- Mota, M.M.; Hafalla, J.C.R.; Rodriguez, A. Migration through host cells activates Plasmodium sporozoites for infection. Nat. Med. 2002, 8, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Mota, M.M.; Rodriguez, A. Migration through host cells: The first steps of Plasmodium sporozoites in the mammalian host. Cell. Microbiol. 2004, 6, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Bannister, L.H.; Mitchell, G.H. The Fine Structure of Secretion by Plasmodium knowlesi Merozoites during Red Cell Invasion. J. Protozool. 1989, 36, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Moudy, R.; Manning, T.J.; Beckers, C.J. The Loss of Cytoplasmic Potassium upon Host Cell Breakdown Triggers Egress of Toxoplasma gondii. J. Biol. Chem. 2001, 276, 41492–41501. [Google Scholar] [CrossRef] [Green Version]
- Lovett, J.L.; Marchesini, N.; Moreno, S.N.J.; David Sibley, L. Toxoplasma gondii microneme secretion involves intracellular Ca2+ release from inositol 1,4,5-triphosphate(IP3)/ryanodine-sensitive stores. J. Biol. Chem. 2002, 277, 25870–25876. [Google Scholar] [CrossRef] [Green Version]
- Carruthers, V.B.; Sibley, L.D. Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol. Microbiol. 1999, 31, 421–428. [Google Scholar] [CrossRef]
- Carruthers, V.B.; Giddings, O.K.; Sibley, L.D. Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cell. Microbiol. 1999, 1, 225–235. [Google Scholar] [CrossRef]
- Arrizabalaga, G.; Boothroyd, J.C. Role of calcium during Toxoplasma gondii invasion and egress. Int. J. Parasitol. 2004, 34, 361–368. [Google Scholar] [CrossRef]
- Vella, S.A.; Moore, C.A.; Li, Z.H.; Triana, M.A.H.; Potapenko, E.; Moreno, S.N. The role of potassium and host calcium signaling in Toxoplasma gondii egress. Cell Calcium 2021, 94, 102337. [Google Scholar] [CrossRef]
- Bonhomme, A.; Bouchot, A.; Pezzella, N.; Gomez, J.; Le Moal, H.; Pinon, J.M. Signaling during the invasion of host cells by Toxoplasma gondii. FEMS Microbiol. Rev. 1999, 23, 551–561. [Google Scholar] [CrossRef]
- Roiko, M.S.; Svezhova, N.; Carruthers, V.B. Acidification activates Toxoplasma gondii motility and egress by enhancing protein secretion and cytolytic activity. PLoS Pathog. 2014, 10, e1004488. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Uboldi, A.D.; Seizova, S.; Wilde, M.L.; Coffey, M.J.; Katris, N.J.; Tonkin, C.J. An apically located hybrid guanylate cyclase–ATPase is critical for the initiation of Ca2+ signaling and motility in Toxoplasma gondii. J. Biol. Chem. 2019, 294, 8959–8972. [Google Scholar] [CrossRef] [PubMed]
- Kirk, K.; Horner, H.A.; Elford, B.C.; Ellory, J.C.; Newbold, C.I. Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. J. Biol. Chem. 1994, 269, 3339–3347. [Google Scholar] [CrossRef] [PubMed]
- Kutner, S.; Ginsburg, H.; Cabantchik, Z.I. Permselectivity changes in malaria (Plasmodium falciparum) infected human red blood cell membranes. J. Cell. Physiol. 1983, 114, 245–251. [Google Scholar] [CrossRef]
- Ginsburg, H.; Krugliak, M.; Eidelman, O.; Ioav Cabantchik, Z. New permeability pathways induced in membranes of Plasmodium falciparum infected erythrocytes. Mol. Biochem. Parasitol. 1983, 8, 177–190. [Google Scholar] [CrossRef]
- Staines, H.M.; Ellory, J.C.; Kirk, K. Perturbation of the pump-leak balance for Na+ and K+ in malaria-infected erythrocytes. Am. J. Physiol.-Cell Physiol. 2001, 280, 1576–1587. [Google Scholar] [CrossRef] [Green Version]
- Mauritz, J.M.; Seear, R.; Esposito, A.; Kaminski, C.F.; Skepper, J.N.; Warley, A.; Lew, V.L.; Tiffert, T. X-ray microanalysis investigation of the changes in Na, K, and hemoglobin concentration in Plasmodium falciparum-infected red blood cells. Biophys. J. 2011, 100, 1438–1445. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.E.; Kirk, K. Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum. Blood 2007, 109, 2217–2224. [Google Scholar] [CrossRef]
- Spillman, N.J.; Allen, R.J.; McNamara, C.W.; Yeung, B.K.; Winzeler, E.A.; Diagana, T.T.; Kirk, K. Na+ regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell Host Microbe 2013, 13, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Winterberg, M.; Kiaran, K. A high-sensitivity HPLC assay for measuring intracellular Na+ and K+ and its application to Plasmodium falciparum infected erythrocytes. Sci. Rep. 2016, 6, 29241. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Alam, M.M.; Pal-Bhowmick, I.; Brzostowski, J.A.; Chitnis, C.E. Distinct External Signals Trigger Sequential Release of Apical Organelles during Erythrocyte Invasion by Malaria Parasites. PLoS Pathog. 2010, 6, e1000746. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; More, K.R.; Chitnis, C.E. Role of calcineurin and actin dynamics in regulated secretion of microneme proteins in Plasmodium falciparum merozoites during erythrocyte invasion. Cell. Microbiol. 2014, 16, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Chitnis, C.E. Signalling mechanisms involved in apical organelle discharge during host cell invasion by apicomplexan parasites. Microbes Infect. 2012, 14, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Madeira, L.; Galante, P.A.F.; Budu, A.; Azevedo, M.F.; Malnic, B.; Garcia, C.R.S. Genome-Wide Detection of Serpentine Receptor-Like Proteins in Malaria Parasites. PLoS ONE 2008, 3, e1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, M.S.; Budu, A.; Singh, M.K.; Borges-Pereira, L.; Levano-Garcia, J.; Currà, C.; Picci, L.; Pace, T.; Ponzi, M.; Pozzan, T.; et al. Plasmodium falciparum GPCR-like receptor SR25 mediates extracellular K+ sensing coupled to Ca2+ signaling and stress survival. Sci. Rep. 2017, 7, 9545. [Google Scholar] [CrossRef] [Green Version]
- Santos, B.M.D.; Gonzaga, D.T.G.; da Silva, F.C.; Ferreira, V.F.; Garcia, C.R.S. Plasmodium falciparum Knockout for the GPCR-Like PfSR25 Receptor Displays Greater Susceptibility to 1,2,3-Triazole Compounds That Block Malaria Parasite Development. Biomolecules 2020, 10, 1197. [Google Scholar] [CrossRef]
- Santos, B.M.; Dias, B.K.M.; Nakabashi, M.; Garcia, C.R.S. The Knockout for G Protein-Coupled Receptor-Like PfSR25 Increases the Susceptibility of Malaria Parasites to the Antimalarials Lumefantrine and Piperaquine but Not to Medicine for Malaria Venture Compounds. Front. Microbiol. 2021, 12, 638869. [Google Scholar] [CrossRef]
- Lee, A.H.; Dhingra, S.K.; Lewis, I.A.; Singh, M.K.; Siriwardana, A.; Dalal, S.; Rubiano, K.; Klein, M.S.; Baska, K.S.; Krishna, S.; et al. Evidence for regulation of hemoglobin metabolism and intracellular ionic flux by the Plasmodium falciparum chloroquine resistance transporter. Sci. Rep. 2018, 8, 13578. [Google Scholar] [CrossRef] [Green Version]
- Mwai, L.; Diriye, A.; Masseno, V.; Muriithi, S.; Feltwell, T.; Musyoki, J.; Lemieux, J.; Feller, A.; Mair, G.R.; Marsh, K.; et al. Genome-wide adaptations of Plasmodium falciparum in response to Lumefantrine selective drug pressure. PLoS ONE 2012, 7, e31623. [Google Scholar] [CrossRef] [Green Version]
- Alaganan, A.; Singh, P.; Chitnis, C.E. Molecular mechanisms that mediate invasion and egress of malaria parasites from red blood cells. Curr. Opin. Hematol. 2017, 24, 208–214. [Google Scholar] [CrossRef]
- Bannister, L.H.; Dluzewski, A.R. The ultrastructure of red cell invasion in malaria infections: A review. Blood Cells 1990, 16, 257–292. [Google Scholar] [PubMed]
- Blake, T.C.; Haase, S.; Baum, J. Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum. PLoS Pathog. 2020, 16, e1009007. [Google Scholar] [CrossRef]
- Patel, A.; Perrin, A.; Flynn, H.R.; Bisson, C.; Withers-Martinez, C.; Treeck, M.; Flueck, C.; Nicastro, G.; Martin, S.R.; Ramos, A.; et al. Cyclic AMP signalling controls key components of malaria parasite host cell invasion machinery. PLoS Biol. 2019, 17, e3000264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, A.S.; Egan, E.S.; Duraisingh, M.T. Host-parasite interactions that guide red blood cell invasion by malaria parasites. Curr. Opin. Hematol. 2015, 22, 220. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Wootton, J.C.; Gertz, E.M.; Agarwala, R.; Morgulis, A.; Schäffer, A.A.; Yu, Y.K. Protein database searches using compositionally adjusted substitution matrices. FEBS J. 2005, 272, 5101–5109. [Google Scholar] [CrossRef]
- Nagamune, K.; Moreno, S.N.; Chini, E.N.; Sibley, L.D. Calcium regulation and signaling in apicomplexan parasites. Subcell. Biochem. 2008, 47, 70–81. [Google Scholar]
- Borges-Pereira, L.; Thomas, S.J.; e Silva, A.L.D.A.; Bartlett, P.J.; Thomas, A.P.; Garcia, C.R. The genetic Ca2+ sensor GCaMP3 reveals multiple Ca2+ stores differentially coupled to Ca2+ entry in the human malaria parasite Plasmodium falciparum. J. Biol. Chem. 2020, 295, 14998–15012. [Google Scholar] [CrossRef]
- Pecenin, M.F.; Borges-Pereira, L.; Levano-Garcia, J.; Budu, A.; Alves, E.; Mikoshiba, K.; Thomas, A.; Garcia, C.R. Blocking IP3 signal transduction pathways inhibits melatonin-induced Ca2+ signals and impairs P. falciparum development and proliferation in erythrocytes. Cell Calcium 2018, 72, 81–90. [Google Scholar] [CrossRef]
- Koyama, F.C.; Chakrabarti, D.; Garcia, C.R.S. Molecular machinery of signal transduction and cell cycle regulation in Plasmodium. Mol. Biochem. Parasitol. 2009, 165, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Levano-Garcia, J.; Dluzewski, A.R.; Markus, R.P.; Garcia, C.R.S. Purinergic signalling is involved in the malaria parasite Plasmodium falciparum invasion to red blood cells. Purinergic Signal. 2010, 6, 365–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazarini, M.L.; Thomas, A.P.; Pozzan, T.; Garcia, C.R. Calcium signaling in a low calcium environment: How the intracellular malaria parasite solves the problem. J. Cell Biol. 2003, 161, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotta, C.T.; Gazarini, M.L.; Beraldo, F.H.; Varotti, F.P.; Lopes, C.; Markus, R.P.; Pozzan, T.; Garcia, C.R.S. Calcium-dependent modulation by melatonin of the circadian rhythm in malarial parasites. Nat. Cell Biol. 2000, 2, 466–468. [Google Scholar] [CrossRef] [PubMed]
- Alves, E.; Nakaya, H.; Guimarães, E.; Garcia, C.R. Combining IP3 affinity chromatography and bioinformatics reveals a novel protein-IP3 binding site on Plasmodium falciparum MDR1 transporter. Curr. Res. Microb. Sci. 2022, 4, 100179. [Google Scholar] [CrossRef]
- Dos Santos, B.M.; Pereira, P.H.; Garcia, C.R. Molecular basis of synchronous replication of malaria parasites in the blood stage. Curr. Opin. Microbiol. 2021, 63, 210–215. [Google Scholar] [CrossRef]
- Wernimont, A.K.; Artz, J.D.; Finerty, P., Jr.; Lin, Y.-H.; Amani, M.; Allali-Hassani, A.; Senisterra, G.; Vedadi, M.; Tempel, W.; Mackenzie, F.; et al. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium. Nat. Publ. Gr. 2010, 17, 596–601. [Google Scholar] [CrossRef] [Green Version]
- Lourido, S.; Shuman, J.; Zhang, C.; Shokat, K.M.; Hui, R.; Sibley, L.D. Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 2010, 465, 359–362. [Google Scholar] [CrossRef] [Green Version]
- Sugi, T.; Kato, K.; Kobayashi, K.; Watanabe, S.; Kurokawa, H.; Gong, H.; Pandey, K.; Takemae, H.; Akashi, H. Use of the kinase inhibitor analog 1NM-PP1 reveals a role for Toxoplasma gondii CDPK1 in the invasion step. Eukaryot. Cell 2010, 9, 667. [Google Scholar] [CrossRef] [Green Version]
- Green, J.L.; Rees-Channer, R.R.; Howell, S.A.; Martin, S.R.; Knuepfer, E.; Taylor, H.M.; Grainger, M.; Holder, A.A. The motor complex of Plasmodium falciparum: Phosphorylation by a calcium-dependent protein kinase. J. Biol. Chem. 2008, 283, 30980–30989. [Google Scholar] [CrossRef] [Green Version]
- Vaid, A.; Sharma, P. PfPKB, a protein kinase B-like enzyme from Plasmodium falciparum: II. Identification of calcium/calmodulin as its upstream activator and dissection of a novel signaling pathway. J. Biol. Chem. 2006, 281, 27126–27133. [Google Scholar] [CrossRef] [Green Version]
- Vaid, A.; Thomas, D.C.; Sharma, P. Role of Ca2+/calmodulin-PfPKB signaling pathway in erythrocyte invasion by Plasmodium falciparum. J. Biol. Chem. 2008, 283, 5589–5597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, S.N.; Silva, J.; Vercesi, A.E.; Docampo, R. Cytosolic-free calcium elevation in Trypanosoma cruzi is required for cell invasion. J. Exp. Med. 1994, 180, 1535–1540. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.G.; Zhong, L.; Chang, K.P.; Docampo, R. Intracellular Ca2+ pool content and signaling and expression of a calcium pump are linked to virulence in Leishmania mexicana amazonesis amastigotes. J. Biol. Chem. 1997, 272, 9464–9473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, B.M.D.; Przyborski, J.M.; Garcia, C.R.S. Changes in K+ Concentration as a Signaling Mechanism in the Apicomplexa Parasites Plasmodium and Toxoplasma. Int. J. Mol. Sci. 2023, 24, 7276. https://doi.org/10.3390/ijms24087276
Santos BMD, Przyborski JM, Garcia CRS. Changes in K+ Concentration as a Signaling Mechanism in the Apicomplexa Parasites Plasmodium and Toxoplasma. International Journal of Molecular Sciences. 2023; 24(8):7276. https://doi.org/10.3390/ijms24087276
Chicago/Turabian StyleSantos, Benedito M. Dos, Jude M. Przyborski, and Célia R. S. Garcia. 2023. "Changes in K+ Concentration as a Signaling Mechanism in the Apicomplexa Parasites Plasmodium and Toxoplasma" International Journal of Molecular Sciences 24, no. 8: 7276. https://doi.org/10.3390/ijms24087276
APA StyleSantos, B. M. D., Przyborski, J. M., & Garcia, C. R. S. (2023). Changes in K+ Concentration as a Signaling Mechanism in the Apicomplexa Parasites Plasmodium and Toxoplasma. International Journal of Molecular Sciences, 24(8), 7276. https://doi.org/10.3390/ijms24087276