First Draft Genome Assembly of Root-Lesion Nematode Pratylenchus scribneri Generated Using Long-Read Sequencing
Abstract
:1. Introduction
2. Results
2.1. Library Preparation and Assembly
2.2. Assembly Decontamination and Completeness Analysis
2.3. Genome Ploidy Estimation and Structural Annotation
3. Discussion
4. Materials and Methods
4.1. Nematode Collection, DNA Isolation, and Evaluation
4.2. Library Preparation and Sequencing
4.3. Genome Assembly, Decontamination, and Completeness Analysis
4.4. Genome Ploidy Estimations
4.5. Genome Structural Annotation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smiley, R.W. Multiplication of Pratylenchus neglectus and P. thornei on plants other than cereals. In Proceedings of the Fifth International Cereal Nematode Initiative Workshop, Ankara, Turkey, 12–15 September 2015. [Google Scholar]
- Castillo, P.; Vovlas, N. Pratylenchus (Nematoda: Pratylenchidae): Diagnosis, biology, pathogenicity and management. Nematol. Monogr. Perspect. 2007, 6, 1–543. [Google Scholar] [CrossRef]
- Grynberg, P.; Coiti Togawa, R.; Dias de Freitas, L.; Antonino, J.D.; Rancurel, C.; Mota do Carmo Costa, M.; Grossi-de-Sa, M.F.; Miller, R.N.; Brasileiro, A.C.M.; Messenberg Guimaraes, P.; et al. Comparative genomics reveals novel target genes towards specific control of plant-parasitic nematodes. Genes 2020, 11, 1347. [Google Scholar] [CrossRef]
- Akhter, N. Molecular Characterization of Root-Lesion Nematode Species from Corn Fields in North Dakota and Evaluation of Resistance in Corn Hybrids. Master’s Thesis, North Dakota State University, Fargo, North Dakota, October 2019. [Google Scholar]
- Ozbayrak, M. DNA Barcoding of Pratylenchus from Agroecosystems in the Northern Great Plains of North America. Master’s Thesis, University of Nebraska-Lincoln, Lincoln, Nebraska, May 2019. [Google Scholar]
- Yan, G.P.; Plaisance, A.; Huang, D.; Liu, Z.; Chapara, V.; Handoo, Z.A. First report of the root-lesion nematode Pratylenchus scribneri infecting potato in North Dakota. Plant Dis. 2016, 100, 1023. [Google Scholar] [CrossRef]
- Arora, D.; Yan, G.P.; Baidoo, R. Developing a real-time PCR assay for direct detection and quantification of Pratylenchus scribneri in field soil. Nematology 2020, 22, 733–744. [Google Scholar] [CrossRef]
- Arora, D.; Yan, G.P. Early detection and temporal dynamics of Pratylenchus scribneri infection in potato roots determined using quantitative PCR and root staining. Phytopathology 2022, 112, 1776–1782. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Yan, G.P. Specific detection of the root-lesion nematode Pratylenchus scribneri using conventional and real-time PCR. Plant Dis. 2017, 101, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lu, Q.S.; Wang, S.; Liu, Y.K.; Wang, K.; Yuan, H.X.; Li, H.L. Discovery of a root-lesion nematode, Pratylenchus scribneri, infecting corn in inner Mongolia, China. Plant Dis. 2019, 103, 1792. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Q.S.; Wang, S.; Guo, F.; Xia, Y.H.; Wang, K.; Li, H.L. Occurrence of Pratylenchus scribneri on soybean in Henan Province, China. Plant Dis. 2019, 103, 774–775. [Google Scholar] [CrossRef]
- Xia, Y.; Li, J.; Hao, P.; Wang, K.; Lei, B.; Li, H.L.; Li, Y.U. Discovery of root-lesion nematode (Pratylenchus scribneri) on corn in Hainan Province of China. Plant Dis. 2022, 106, 1999. [Google Scholar] [CrossRef]
- Xia, Y.H.; Li, J.; Sun, M.R.; Lei, B.; Li, H.L.; Li, Y.; Wang, K. Identification and pathogenicity of Pratylenchus scribneri on tomato in Sichuan Province of People’s Republic of China. J. Helminthol. 2022, 96, E5. [Google Scholar] [CrossRef]
- Olowe, T. Relationship between inoculum density levels of Pratylenchus scribneri, and growth and yield of maize, Zea mays. Int. J. Nematol. 2011, 21, 73–78. [Google Scholar]
- Burke, M.; Scholl, E.H.; Bird, D.M.; Schaff, J.E.; Colman, S.D.; Crowell, R.; Diener, S.; Gordon, O.; Graham, S.; Wang, X.; et al. The plant parasite Pratylenchus coffeae carries a minimal nematode genome. Nematology 2015, 17, 621–637. [Google Scholar] [CrossRef] [Green Version]
- Fosu-Nyarko, J.; Jones, M.G.K. Advances in understanding the molecular mechanisms of root lesion nematode host interactions. Annu. Rev. Phytopathol. 2016, 54, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Kingan, S.B.; Heaton, H.; Cudini, J.; Lambert, C.C.; Baybayan, P.; Galvin, B.D.; Durbin, R.; Korlach, J.; Lawniczak, M.K. A high-quality de novo genome assembly from a single mosquito using PacBio sequencing. Genes 2019, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Rufai, S.B.; McIntosh, F.; Poojary, I.; Chothe, S.; Sebastian, A.; Albert, I.; Praul, C.; Venkatesan, M.; Mahata, G.; Maity, H.; et al. Complete Genome Sequence of Mycobacterium orygis Strain 51145. Microbiol. Resour. Announc. 2021, 10, e01279-20. [Google Scholar] [CrossRef]
- Crowley, L.M. Darwin Tree of Life Consortium. The genome sequence of the seven-spotted ladybird, Coccinella septempunctata Linnaeus, 1758. Wellcome Open Res. 2021, 6, 319. [Google Scholar] [CrossRef]
- Bali, S.; Hu, S.; Vining, K.; Brown, C.; Mojtahedi, H.; Zhang, L.; Gleason, C.; Sathuvalli, V. Nematode Genome Announcement: Draft genome of Meloidogyne chitwoodi, an economically important pest of potato in the Pacific Northwest. Mol. Plant-Microbe Interact. 2021, 34, 981–986. [Google Scholar] [CrossRef]
- Wram, C.L.; Hesse, C.N.; Wasala, S.K.; Howe, D.K.; Peetz, A.B.; Denver, D.R.; Humphreys-Pereira, D.; Zasada, I.A. Genome announcement: The draft genomes of two Radopholus similis populations from Costa Rica. J. Nematol. 2019, 51. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Guo, Y.; Ye, J.; Wu, X.; Lin, S.; Chen, F.; Zhu, L.; Huang, L.; Song, X.; Zhang, Y.; et al. Population differentiation and epidemic tracking of Bursaphelenchus xylophilus in China based on chromosome-level assembly and whole\-\genome sequencing data. Pest Manag. Sci. 2022, 78, 1213–1226. [Google Scholar] [CrossRef]
- Sato, K.; Kadota, Y.; Gan, P.; Bino, T.; Uehara, T.; Yamaguchi, K.; Ichihashi, Y.; Maki, N.; Iwahori, H.; Suzuki, T.; et al. High-quality genome sequence of the root-knot nematode Meloidogyne arenaria genotype A2-O. Genome Announc. 2018, 6, e00519-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Susič, N.; Koutsovoulos, G.D.; Riccio, C.; Danchin, E.G.; Blaxter, M.L.; Lunt, D.H.; Strajnar, P.; Širca, S.; Urek, G.; Stare, B.G.; et al. Genome sequence of the root-knot nematode Meloidogyne luci. J. Nematol. 2020, 52, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutsovoulos, G.D.; Poullet, M.; Elashry, A.; Kozlowski, D.K.; Sallet, E.; Da Rocha, M.; Perfus-Barbeoch, L.; Martin-Jimenez, C.; Frey, J.E.; Ahrens, C.H.; et al. Genome assembly and annotation of Meloidogyne enterolobii, an emerging parthenogenetic root-knot nematode. Sci. Data 2020, 7, 324. [Google Scholar] [CrossRef]
- Shinya, R.; Sun, S.; Dayi, M.; Tsai, I.J.; Miyama, A.; Chen, A.F.; Hasegawa, K.; Antoshechkin, I.; Kikuchi, T.; Sternberg, P.W.; et al. Possible stochastic sex determination in Bursaphelenchus nematodes. Nat. Commun. 2022, 13, 2574. [Google Scholar] [CrossRef] [PubMed]
- Lawn, D.A.; Noel, G.R. Gnotobiotic culture of Pratylenchus scribneri on carrot discs. Nematropica 1986, 16, 45–51. [Google Scholar]
- Shen, W.; Le, S.; Li, Y.; Hu, F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 2016, 11, e0163962. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 2021, 18, 170–175. [Google Scholar] [CrossRef]
- Laetsch, D.R.; Blaxter, M.L. BlobTools: Interrogation of genome assemblies. F1000Research 2017, 6, 1287. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016, 32, 2103–2110. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Buchfink, B.; Reuter, K.; Drost, H.G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 2021, 18, 366–368. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2008, 10, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, D.; McCarthy, S.A.; Wood, J.; Howe, K.; Wang, Y.; Durbin, R. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 2020, 36, 2896–2898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Kokot, M.; Dlugosz, M.; Deorowicz, S. KMC 3: Counting and manipulating k-mer statistics. Bioinformatics 2017, 33, 2759–2761. [Google Scholar] [CrossRef] [Green Version]
- Ranallo-Benavidez, T.R.; Jaron, K.S.; Schatz, M.C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 2020, 11, 1432. [Google Scholar] [CrossRef] [Green Version]
- Bruna, T.; Hoff, K.J.; Lomsadze, A.; Stanke, M.; Borodovsky, M. BRAKER2: Automatic eukaryotic genome annotation with genemark-ep+ and augustus supported by a protein database. NAR Genomic. Bioinform. 2021, 3, 1. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Gabriel, L.; Hoff, K.J.; Brůna, T.; Borodovsky, M.; Stanke, M. TSEBRA: Transcript selector for BRAKER. BMC Bioinform. 2021, 22, 1–12. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotech. 2010, 28, 511–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sequencing Yield | Method 1 a | Method 2 b |
---|---|---|
Total Number of Bases (bp) | 14,985,187,925 | 19,351,261,593 |
Total Number of Reads | 1,665,292 | 2,749,471 |
Maximum Read Length (bp) | 42,009 | 43,956 |
Minimum Read Length (bp) | 295 | 68 |
Mean Read Length (bp) | 8999 | 7038 |
Assembly Metrics | ||
Number of Contigs | 9447 | 492 |
Total number of bp | 714,324,379 | 361,758,083 |
Shortest (bp) | 5119 | 5897 |
Longest (bp) | 6,863,581 | 6,221,503 |
Average length (bp) | 75,613 | 735,280 |
Median (bp) | 30,718 | 334,760 |
Average GC% | 37.60% | 32.80% |
Non-ACGT bases | 0 | 0 |
Contig N50 (bp) | 222,427 | 1,701,422 |
BUSCO Category | Raw Assembly | Purged Assembly a | Decontaminated Assembly b |
---|---|---|---|
Complete (C) | 2084 c (66.5%) d | 2048 (65.4%) | 2047 (65.4%) |
Complete and single copy (S) | 530 (16.9%) | 753 (24.0%) | 752 (24.0%) |
Complete and duplicated (D) | 1554 (49.6%) | 1295 (41.4%) | 1296 (41.4%) |
Fragmented (F) | 36 (1.1%) | 57 (1.8%) | 56 (1.8%) |
Missing (M) | 1011 (32.3%) | 1026 (32.8%) | 1025 (32.7%) |
Total BUSCO groups searched | 3131 | 3131 | 3131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arora, D.; Hernandez, A.G.; Walden, K.K.O.; Fields, C.J.; Yan, G. First Draft Genome Assembly of Root-Lesion Nematode Pratylenchus scribneri Generated Using Long-Read Sequencing. Int. J. Mol. Sci. 2023, 24, 7311. https://doi.org/10.3390/ijms24087311
Arora D, Hernandez AG, Walden KKO, Fields CJ, Yan G. First Draft Genome Assembly of Root-Lesion Nematode Pratylenchus scribneri Generated Using Long-Read Sequencing. International Journal of Molecular Sciences. 2023; 24(8):7311. https://doi.org/10.3390/ijms24087311
Chicago/Turabian StyleArora, Deepika, Alvaro G. Hernandez, Kimberly K. O. Walden, Christopher J. Fields, and Guiping Yan. 2023. "First Draft Genome Assembly of Root-Lesion Nematode Pratylenchus scribneri Generated Using Long-Read Sequencing" International Journal of Molecular Sciences 24, no. 8: 7311. https://doi.org/10.3390/ijms24087311
APA StyleArora, D., Hernandez, A. G., Walden, K. K. O., Fields, C. J., & Yan, G. (2023). First Draft Genome Assembly of Root-Lesion Nematode Pratylenchus scribneri Generated Using Long-Read Sequencing. International Journal of Molecular Sciences, 24(8), 7311. https://doi.org/10.3390/ijms24087311