Low Serum Cholesterol Level Is a Significant Prognostic Factor That Improves CLL-IPI in Chronic Lymphocytic Leukaemia
Abstract
:1. Introduction
2. Results
2.1. Correlation between Clinical Characteristics and Lipid Profile
2.2. Serum Lipid Profile as a Significant Prognostic Factor in CLL
2.3. Post-Chemoimmunotherapeutic Cholesterol Fluctuation in Relation to Treatment Response and Prognosis
2.4. Construction and Prognostic Performance of ModelLipo-IPI
2.5. Prognostic Value of Cholesterol Levels and ModelLipo-IPI in the Era of Targeted Therapies
2.6. T Cell Subset Counts in Relation to Cholesterol Levels
3. Discussion
4. Materials and Methods
4.1. Ethics and Consent
4.2. Patients
4.3. Data Collection
4.4. Follow-Up and Outcome Measures
4.5. Model Construction and Validation
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Rawstron, A.C.; Kreuzer, K.A.; Soosapilla, A.; Spacek, M.; Stehlikova, O.; Gambell, P.; McIver-Brown, N.; Villamor, N.; Psarra, K.; Arroz, M.; et al. Reproducible diagnosis of chronic lymphocytic leukemia by flow cytometry: An European Research Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA) Harmonisation project. Cytom. B Clin. Cytom. 2018, 94, 121–128. [Google Scholar] [CrossRef]
- Eichhorst, B.; Robak, T.; Montserrat, E.; Ghia, P.; Hillmen, P.; Hallek, M.; Buske, C.; Committee, E.G. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. 5), v78–v84. [Google Scholar] [CrossRef]
- Mina, A.; Sus, J.S.; Sleiman, E.; Pinilla-Ibarz, J.; Awan, F.T.; Kharfan-Dabaja, M.A. Using prognostic models in CLL to personalize approach to clinical care: Are we there yet? Blood Rev. 2018, 32, 159–166. [Google Scholar] [CrossRef] [PubMed]
- The International CLL-IPI Working Group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): A meta-analysis of individual patient data. Lancet Oncol. 2016, 17, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Condoluci, A.; di Bergamo, L.T.; Langerbeins, P.; Hoechstetter, M.A.; Herling, C.D.; De Paoli, L.; Delgado, J.; Rabe, K.G.; Gentile, M.; Doubek, M.; et al. International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia. Blood 2020, 135, 1859–1869. [Google Scholar] [CrossRef]
- Iovino, L.; Shadman, M. Novel Therapies in Chronic Lymphocytic Leukemia: A Rapidly Changing Landscape. Curr. Treat. Options Oncol. 2020, 21, 24. [Google Scholar] [CrossRef] [PubMed]
- Tausch, E.; Schneider, C.; Robrecht, S.; Zhang, C.; Dolnik, A.; Bloehdorn, J.; Bahlo, J.; Al-Sawaf, O.; Ritgen, M.; Fink, A.M.; et al. Prognostic and predictive impact of genetic markers in patients with CLL treated with obinutuzumab and venetoclax. Blood 2020, 135, 2402–2412. [Google Scholar] [CrossRef]
- Baenke, F.; Peck, B.; Miess, H.; Schulze, A. Hooked on fat: The role of lipid synthesis in cancer metabolism and tumour development. Dis. Model. Mech. 2013, 6, 1353–1363. [Google Scholar] [CrossRef]
- Mollinedo, F.; Gajate, C. Lipid rafts as major platforms for signaling regulation in cancer. Adv. Biol. Regul. 2015, 57, 130–146. [Google Scholar] [CrossRef]
- Quesney-Huneeus, V.; Galick, H.A.; Siperstein, M.D.; Erickson, S.K.; Spencer, T.A.; Nelson, J.A. The dual role of mevalonate in the cell cycle. J. Biol. Chem. 1983, 258, 378–385. [Google Scholar] [CrossRef]
- Siemianowicz, K.; Gminski, J.; Stajszczyk, M.; Wojakowski, W.; Goss, M.; Machalski, M.; Telega, A.; Brulinski, K.; Magiera-Molendowska, H. Serum total cholesterol and triglycerides levels in patients with lung cancer. Int. J. Mol. Med. 2000, 5, 201–205. [Google Scholar] [CrossRef]
- Chi, P.D.; Liu, W.; Chen, H.; Zhang, J.P.; Lin, Y.; Zheng, X.; Liu, W.; Dai, S. High-density lipoprotein cholesterol is a favorable prognostic factor and negatively correlated with C-reactive protein level in non-small cell lung carcinoma. PLoS ONE 2014, 9, e91080. [Google Scholar] [CrossRef] [PubMed]
- Tomiki, Y.; Suda, S.; Tanaka, M.; Okuzawa, A.; Matsuda, M.; Ishibiki, Y.; Sakamoto, K.; Kamano, T.; Tsurumaru, M.; Watanabe, Y. Reduced low-density-lipoprotein cholesterol causing low serum cholesterol levels in gastrointestinal cancer: A case control study. J. Exp. Clin. Cancer Res. 2004, 23, 233–240. [Google Scholar] [PubMed]
- Kim, J.; Kim, M.K.; Baek, K.H.; Song, K.H.; Han, K.; Kwon, H.S. Repeated Low High-Density Lipoprotein Cholesterol and the Risk of Thyroid Cancer: A Nationwide Population- Based Study in Korea. Endocrinol. Metab. 2022, 37, 303–311. [Google Scholar] [CrossRef]
- Li, X.; Tang, H.; Wang, J.; Xie, X.; Liu, P.; Kong, Y.; Ye, F.; Shuang, Z.; Xie, Z.; Xie, X. The effect of preoperative serum triglycerides and high-density lipoprotein-cholesterol levels on the prognosis of breast cancer. Breast 2017, 32, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gadomska, H.; Janecki, J.; Marianowski, L.; Nowicka, G. Lipids in serum of patients with malignant ovarian neoplasms. Int. J. Gynaecol. Obstet. 1997, 57, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Kotani, K.; Sekine, Y.; Ishikawa, S.; Ikpot, I.Z.; Suzuki, K.; Remaley, A.T. High-density lipoprotein and prostate cancer: An overview. J. Epidemiol. 2013, 23, 313–319. [Google Scholar] [CrossRef]
- Jeong, S.M.; Choi, T.; Kim, D.; Han, K.; Kim, S.J.; Rhee, S.Y.; Giovannucci, E.L.; Shin, D.W. Association between high-density lipoprotein cholesterol level and risk of hematologic malignancy. Leukemia 2021, 35, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Yavasoglu, I.; Sargin, G.; Yilmaz, F.; Altindag, S.; Akgun, G.; Tombak, A.; Toka, B.; Dal, S.; Ozbas, H.; Cetin, G.; et al. Cholesterol Levels in Patients with Chronic Lymphocytic Leukemia. J. Natl. Med. Assoc. 2017, 109, 23–27. [Google Scholar] [CrossRef]
- Mogensen, P.R.; Grell, K.; Schmiegelow, K.; Overgaard, U.M.; Wolthers, B.O.; Mogensen, S.S.; Vaag, A.; Frandsen, T.L. Dyslipidemia at diagnosis of childhood acute lymphoblastic leukemia. PLoS ONE 2020, 15, e0231209. [Google Scholar] [CrossRef]
- Lim, U.; Gayles, T.; Katki, H.A.; Stolzenberg-Solomon, R.; Weinstein, S.J.; Pietinen, P.; Taylor, P.R.; Virtamo, J.; Albanes, D. Serum high-density lipoprotein cholesterol and risk of non-hodgkin lymphoma. Cancer Res. 2007, 67, 5569–5574. [Google Scholar] [CrossRef] [PubMed]
- Yavasoglu, I.; Tombuloglu, M.; Kadikoylu, G.; Donmez, A.; Cagirgan, S.; Bolaman, Z. Cholesterol levels in patients with multiple myeloma. Ann. Hematol. 2008, 87, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Rozovski, U.; Hazan-Halevy, I.; Barzilai, M.; Keating, M.J.; Estrov, Z. Metabolism pathways in chronic lymphocytic leukemia. Leuk. Lymphoma 2016, 57, 758–765. [Google Scholar] [CrossRef]
- Man, S.; Henley, P. Chronic lymphocytic leukaemia: The role of T cells in a B cell disease. Br. J. Haematol. 2019, 186, 220–233. [Google Scholar] [CrossRef]
- King, R.J.; Singh, P.K.; Mehla, K. The cholesterol pathway: Impact on immunity and cancer. Trends Immunol. 2022, 43, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Alford, S.H.; Divine, G.; Chao, C.; Habel, L.A.; Janakiraman, N.; Wang, Y.; Feigelson, H.S.; Scholes, D.; Roblin, D.; Epstein, M.M.; et al. Serum cholesterol trajectories in the 10 years prior to lymphoma diagnosis. Cancer Causes Control 2018, 29, 143–156. [Google Scholar] [CrossRef]
- Benn, M.; Tybjaerg-Hansen, A.; Stender, S.; Frikke-Schmidt, R.; Nordestgaard, B.G. Low-density lipoprotein cholesterol and the risk of cancer: A mendelian randomization study. J. Natl. Cancer Inst. 2011, 103, 508–519. [Google Scholar] [CrossRef]
- Matsuo, T.; Tashiro, H.; Shirasaki, R.; Sumiyoshi, R.; Yamamoto, T.; Saito, S.; Matsumoto, K.; Ooi, J.; Shirafuji, N. Serum high-density lipoprotein cholesterol level has a significant prognostic impact on outcomes of follicular lymphoma patients. Medicine 2022, 101, e29541. [Google Scholar] [CrossRef]
- Wang, L.; Chi, P.D.; Chen, H.; Xiang, J.; Xia, Z.J.; Zhang, Y.J. Low level of high-density lipoprotein cholesterol correlates with poor prognosis in extranodal natural killer/T cell lymphoma. Tumour Biol. 2014, 35, 2141–2149. [Google Scholar] [CrossRef]
- Komiya, I.; Tomoyose, T.; Ouchi, G.; Yara, T.; Higa, S. Low level of serum HDL-cholesterol with increased sIL-2R predicts a poor clinical outcome for patients with malignant lymphoma and adult T-cell leukemia-lymphoma. Cytokine 2018, 105, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Liang, J.H.; Wang, L.; Zhu, H.Y.; Wu, W.; Cao, L.; Fan, L.; Li, J.Y.; Yang, T.; Xu, W. Low serum cholesterol levels predict inferior prognosis and improve NCCN-IPI scoring in diffuse large B cell lymphoma. Int. J. Cancer 2018, 143, 1884–1895. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Yin, H.; Wu, J.Z.; Xia, Y.; Liang, J.H.; Chen, R.Z.; Zhu, H.Y.; Fan, L.; Li, J.Y.; Wang, L.; et al. Low serum cholesterol levels predict inferior prognosis and improve prognostic index scoring for peripheral T-cell lymphoma, unspecified. Leuk. Res. 2021, 103, 106534. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhan, H.; Jiang, X.; Li, Y.; Zeng, H. The role of cholesterol metabolism in leukemia. Blood Sci. 2019, 1, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Giles, F.J.; Krawczyk, J.; O’Dwyer, M.; Swords, R.; Freeman, C. The role of inflammation in leukaemia. Adv. Exp. Med. Biol. 2014, 816, 335–360. [Google Scholar] [CrossRef]
- Spieker, L.E.; Ruschitzka, F.; Luscher, T.F.; Noll, G. HDL and inflammation in atherosclerosis. Curr. Drug Targets Immune. Endocr. Metabol. Disord. 2004, 4, 51–57. [Google Scholar] [CrossRef]
- Cockerill, G.W.; Huehns, T.Y.; Weerasinghe, A.; Stocker, C.; Lerch, P.G.; Miller, N.E.; Haskard, D.O. Elevation of plasma high-density lipoprotein concentration reduces interleukin-1-induced expression of E-selectin in an in vivo model of acute inflammation. Circulation 2001, 103, 108–112. [Google Scholar] [CrossRef]
- Ossoli, A.; Wolska, A.; Remaley, A.T.; Gomaraschi, M. High-density lipoproteins: A promising tool against cancer. Biochim. Biophys Acta Mol. Cell Biol. Lipids 2022, 1867, 159068. [Google Scholar] [CrossRef]
- Zamanian-Daryoush, M.; Lindner, D.; Tallant, T.C.; Wang, Z.; Buffa, J.; Klipfell, E.; Parker, Y.; Hatala, D.; Parsons-Wingerter, P.; Rayman, P.; et al. The cardioprotective protein apolipoprotein A1 promotes potent anti-tumorigenic effects. J. Biol. Chem. 2013, 288, 21237–21252. [Google Scholar] [CrossRef]
- Lewis, G.F.; Rader, D.J. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res. 2005, 96, 1221–1232. [Google Scholar] [CrossRef]
- Ansell, B.J.; Watson, K.E.; Fogelman, A.M.; Navab, M.; Fonarow, G.C. High-density lipoprotein function recent advances. J. Am. Coll. Cardiol. 2005, 46, 1792–1798. [Google Scholar] [CrossRef]
- Mooberry, L.K.; Sabnis, N.A.; Panchoo, M.; Nagarajan, B.; Lacko, A.G. Targeting the SR-B1 Receptor as a Gateway for Cancer Therapy and Imaging. Front. Pharmacol. 2016, 7, 466. [Google Scholar] [CrossRef]
- Jacobo-Albavera, L.; Dominguez-Perez, M.; Medina-Leyte, D.J.; Gonzalez-Garrido, A.; Villarreal-Molina, T. The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease. Int. J. Mol. Sci. 2021, 22, 1593. [Google Scholar] [CrossRef]
- Deng, C.F.; Zhu, N.; Zhao, T.J.; Li, H.F.; Gu, J.; Liao, D.F.; Qin, L. Involvement of LDL and ox-LDL in Cancer Development and Its Therapeutical Potential. Front. Oncol. 2022, 12, 803473. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Liu, J. Association between circulating oxidized low-density lipoprotein and atherosclerotic cardiovascular disease. Chronic Dis. Transl. Med. 2017, 3, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Nadeu, F.; Royo, R.; Massoni-Badosa, R.; Playa-Albinyana, H.; Garcia-Torre, B.; Duran-Ferrer, M.; Dawson, K.J.; Kulis, M.; Diaz-Navarro, A.; Villamor, N.; et al. Detection of early seeding of Richter transformation in chronic lymphocytic leukemia. Nat. Med. 2022, 28, 1662–1671. [Google Scholar] [CrossRef]
- Nie, Y.; Yun, X.; Zhang, Y.; Wang, X. Targeting metabolic reprogramming in chronic lymphocytic leukemia. Exp. Hematol. Oncol. 2022, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Thurgood, L.A.; Best, O.G.; Rowland, A.; Lower, K.M.; Brooks, D.A.; Kuss, B.J. Lipid uptake in chronic lymphocytic leukemia. Exp. Hematol. 2022, 106, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, C.G.; Pournaras, S.; Vaslamatzis, M.; Avgerinos, A.; Raptis, S. Changes in serum lipids and lipoproteins in cancer patients during chemotherapy. Cancer Chemother. Pharmacol. 1992, 30, 412–416. [Google Scholar] [CrossRef]
- Kuliszkiewicz-Janus, M.; Malecki, R.; Mohamed, A.S. Lipid changes occuring in the course of hematological cancers. Cell Mol. Biol. Lett. 2008, 13, 465–474. [Google Scholar] [CrossRef]
- Kuliszkiewicz-Janus, M.; Tuz, M.A.; Baczynski, S. Application of 31P MRS to the analysis of phospholipid changes in plasma of patients with acute leukemia. Biochim. Biophys Acta 2005, 1737, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Li, J.Y.; Pan, J.L.; Qiu, H.R.; Shen, Y.F.; Li, L.; Wu, Y.F.; Xue, Y.Q. Interphase fluorescence in situ hybridization detection of cytogenetic abnormalities in B-cell chronic lymphocytic leukemia. Int. J. Hematol. 2007, 85, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.J.; Zhou, L.T.; Zhu, D.X.; Wang, D.M.; Fang, C.; Zhu, H.Y.; Zhuang, Y.; Miao, K.R.; Xu, W.; Li, J.Y. The prognostic significance of TP53 mutations in Chinese patients with chronic lymphocytic leukemia is independent of del(17p13). Ann. Hematol. 2011, 90, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, Y.; Zheng, W.; Wu, Y.; Qiao, C.; Fan, L.; Xu, W.; Li, J. Distinctive IgVH gene segments usage and mutation status in Chinese patients with chronic lymphocytic leukemia. Leuk. Res. 2008, 32, 1491–1498. [Google Scholar] [CrossRef]
- Xu, W.; Li, J.Y.; Wu, Y.J.; Yu, H.; Shen, Q.D.; Li, L.; Fan, L.; Qiu, H.X. Prognostic significance of ATM and TP53 deletions in Chinese patients with chronic lymphocytic leukemia. Leuk. Res. 2008, 32, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
Variables | Derivation Cohort (N = 507) | Validation Cohort (N = 254) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | TC (mmol/L) | p-Value | HDL-C (mmol/L) | p-Value | LDL-C (mmol/L) | p-Value | Total | TC (mmol/L) | p-Value | HDL-C (mmol/L) | p-Value | LDL-C (mmol/L) | p-Value | ||||
Clinical variables | |||||||||||||||||
Gender | Male | 329 | 3.90 ± 1.01 | <0.001 | 0.93 ± 0.27 | <0.001 | 2.48 ± 0.76 | <0.001 | 177 | 3.99 ± 1.00 | 0.003 | 0.97 ± 0.31 | 0.008 | 2.51 ± 0.73 | 0.019 | ||
Female | 178 | 4.58 ± 1.16 | 1.08 ± 0.31 | 2.87 ± 0.82 | 77 | 4.41 ± 1.06 | 1.08 ± 0.31 | 2.74 ± 0.70 | |||||||||
Age | ≤65 years | 317 | 4.26 ± 1.11 | 0.002 | 1.00 ± 0.29 | 0.210 | 2.69 ± 0.79 | 0.005 | 175 | 4.11 ± 1.00 | 0.860 | 1.00 ± 0.30 | 0.559 | 2.57 ± 0.71 | 0.790 | ||
>65 years | 190 | 3.95 ± 1.10 | 0.96 ± 0.29 | 2.49 ± 0.80 | 79 | 4.14 ± 1.12 | 1.02 ± 0.33 | 2.60 ± 0.76 | |||||||||
Binet stage | A | 157 | 4.55 ± 1.02 | <0.001 | 1.10 ± 0.29 | <0.001 | 2.88 ± 0.73 | <0.001 | 78 | 4.38 ± 0.97 | 0.007 | 1.11 ± 0.28 | 0.001 | 2.71 ± 0.66 | 0.049 | ||
B/C | 350 | 3.96 ± 1.11 | 0.93 ± 0.28 | 2.50 ± 0.81 | 176 | 4.00 ± 1.04 | 0.96 ± 0.32 | 2.52 ± 0.75 | |||||||||
ECOG PS | 0–1 | 441 | 4.17 ± 1.14 | 0.169 | 0.99 ± 0.30 | 0.250 | 2.64 ± 0.81 | 0.108 | 224 | 4.13 ± 1.02 | 0.638 | 1.01 ± 0.31 | 0.326 | 2.58 ± 0.72 | 0.880 | ||
>1 | 66 | 3.96 ± 0.92 | 0.95 ± 0.26 | 2.47 ± 0.72 | 30 | 4.04 ± 1.11 | 0.95 ± 0.32 | 2.60 ± 0.78 | |||||||||
Symptoms | No B symptoms | 410 | 4.18 ± 1.12 | 0.149 | 1.00 ± 0.30 | 0.020 | 2.64 ± 0.80 | 0.128 | 195 | 4.15 ± 1.03 | 0.403 | 1.02 ± 0.32 | 0.068 | 2.60 ± 0.74 | 0.491 | ||
B symptoms | 97 | 3.99 ± 1.08 | 0.92 ± 0.24 | 2.51 ± 0.79 | 59 | 4.02 ± 1.03 | 0.94 ± 0.29 | 2.52 ± 0.70 | |||||||||
Richter transformation | Absence | 471 | 4.14 ± 1.11 | 0.764 | 0.99 ± 0.29 | 0.053 | 2.61 ± 0.80 | 0.758 | 243 | 4.12 ± 1.04 | 0.996 | 1.00 ± 0.31 | 0.559 | 2.58 ± 0.73 | 0.992 | ||
Presence | 36 | 4.19 ± 1.20 | 0.89 ± 0.27 | 2.66 ± 0.90 | 11 | 4.12 ± 0.95 | 1.06 ± 0.31 | 2.58 ± 0.63 | |||||||||
CLL-IPI | 0–3 | 285 | 4.37 ± 1.10 | <0.001 | 1.06 ± 0.30 | <0.001 | 2.76 ± 0.79 | <0.001 | 141 | 4.32 ± 0.98 | 0.001 | 1.07 ± 0.30 | <0.001 | 2.71 ± 0.69 | 0.002 | ||
4–10 | 222 | 3.85 ± 1.07 | 0.89 ± 0.25 | 2.44 ± 0.78 | 113 | 3.87 ± 1.05 | 0.92 ± 0.30 | 2.42 ± 0.74 | |||||||||
ALC | ≤50 × 109/L | 393 | 4.20 ± 1.15 | 0.039 | 1.01 ± 0.30 | <0.001 | 2.64 ± 0.83 | 0.201 | 202 | 4.18 ± 1.03 | 0.059 | 1.04 ± 0.31 | <0.001 | 2.60 ± 0.72 | 0.378 | ||
>50 × 109/L | 114 | 3.95 ± 0.95 | 0.88 ± 0.24 | 2.53 ± 0.70 | 52 | 3.88 ± 1.04 | 0.87 ± 0.27 | 2.50 ± 0.74 | |||||||||
Hb | <100 g/L | 106 | 3.54 ± 1.02 | <0.001 | 0.85 ± 0.27 | <0.001 | 2.27 ± 0.75 | <0.001 | 53 | 3.40 ± 1.03 | <0.001 | 0.81 ± 0.29 | <0.001 | 2.15 ± 0.73 | <0.001 | ||
≥100 g/L | 401 | 4.30 ± 1.09 | 1.02 ± 0.29 | 2.71 ± 0.79 | 201 | 4.31 ± 0.95 | 1.06 ± 0.29 | 2.69 ± 0.69 | |||||||||
PLT | <100 × 109/L | 139 | 3.75 ± 1.10 | <0.001 | 0.93 ± 0.28 | 0.006 | 2.37 ± 0.82 | <0.001 | 65 | 3.62 ± 1.00 | <0.001 | 0.90 ± 0.34 | 0.001 | 2.27 ± 0.77 | <0.001 | ||
≥100 × 109/L | 368 | 4.29 ± 1.09 | 1.01 ± 0.29 | 2.71 ± 0.78 | 189 | 4.29 ± 0.99 | 1.04 ± 0.29 | 2.69 ± 0.68 | |||||||||
LDH | ≤ULN (271 U/L) | 394 | 4.19 ± 1.10 | 0.052 | 1.01 ± 0.29 | 0.002 | 2.64 ± 0.78 | 0.151 | 204 | 4.17 ± 1.06 | 0.092 | 1.03 ± 0.31 | 0.041 | 2.61 ± 0.75 | 0.216 | ||
>ULN (271 U/L) | 113 | 3.96 ± 1.15 | 0.91 ± 0.30 | 2.52 ± 0.86 | 50 | 3.90 ± 0.90 | 0.92 ± 0.29 | 2.47 ± 0.64 | |||||||||
Albumin | <LLN (3.50 g/dL) | 204 | 3.83 ± 1.08 | <0.001 | 0.90 ± 0.26 | <0.001 | 2.42 ± 0.80 | <0.001 | 91 | 3.62 ± 1.02 | <0.001 | 0.86 ± 0.28 | <0.001 | 2.29 ± 0.68 | <0.001 | ||
≥LLN (3.50 g/dL) | 303 | 4.35 ± 1.09 | 1.04 ± 0.30 | 2.75 ± 0.78 | 163 | 4.40 ± 0.93 | 1.09 ± 0.30 | 2.74 ± 0.70 | |||||||||
β2-MG | ≤3.50 mg/L | 301 | 4.37 ± 1.09 | <0.001 | 1.06 ± 0.30 | <0.001 | 2.73 ± 0.78 | <0.001 | 138 | 4.37 ± 0.95 | <0.001 | 1.12 ± 0.32 | <0.001 | 2.71 ± 0.69 | <0.001 | ||
>3.50 mg/L | 206 | 3.80 ± 1.07 | 0.87 ± 0.24 | 2.45 ± 0.80 | 116 | 3.82 ± 1.05 | 0.87 ± 0.25 | 2.42 ± 0.74 | |||||||||
CRP | ≤ULN (1 mg/dL) | 391 | 4.27 ± 1.08 | <0.001 | 1.02 ± 0.29 | <0.001 | 2.69 ± 0.79 | <0.001 | 212 | 4.16 ± 0.99 | 0.182 | 1.04 ± 0.31 | <0.001 | 2.59 ± 0.71 | 0.451 | ||
>ULN (1 mg/dl) | 116 | 3.71 ± 1.13 | 0.86 ± 0.26 | 2.36 ± 0.80 | 42 | 3.93 ± 1.22 | 0.85 ± 0.26 | 2.50 ± 0.80 | |||||||||
Treatments | Fludarabine + cyclophosphamide ± rituximab | 120 | 3.91 ± 1.03 | 0.907 | 0.93 ± 0.29 | 0.412 | 2.47 ± 0.70 | 0.937 | 68 | 4.02 ± 1.03 | 0.737 | 0.94 ± 0.27 | 0.195 | 2.55 ± 0.74 | 0.414 | ||
Bendamustine ± rituximab | 26 | 4.06 ± 0.90 | 1.01 ± 0.28 | 2.55 ± 0.58 | 14 | 3.66 ± 0.84 | 0.85 ± 0.29 | 2.15 ± 0.53 | |||||||||
Chlorambucil ± rituximab | 79 | 4.02 ± 0.99 | 0.92 ± 0.26 | 2.46 ± 0.71 | 42 | 3.93 ± 0.97 | 0.94 ± 0.30 | 2.48 ± 0.67 | |||||||||
Ibrutinib ± rituximab | 85 | 3.95 ± 1.02 | 0.94 ± 0.26 | 2.49 ± 0.76 | 40 | 4.09 ± 0.84 | 1.00 ± 0.33 | 2.57 ± 0.61 | |||||||||
Ibrutinib + fludarabine + cyclophosphamide + rituximab | 16 | 4.20 ± 1.37 | 1.06 ± 0.35 | 2.66 ± 0.93 | 7 | 3.79 ± 0.78 | 0.96 ± 0.20 | 2.33 ± 0.54 | |||||||||
Other treatments | 29 | 3.98 ± 1.26 | 0.93 ± 0.25 | 2.51 ± 0.95 | 17 | 4.07 ± 1.06 | 1.11 ± 0.41 | 2.42 ± 0.78 | |||||||||
Biological variables | |||||||||||||||||
TP53 disruption | Absence | 384 | 4.22 ± 1.10 | 0.007 | 1.01 ± 0.30 | <0.001 | 2.67 ± 0.79 | 0.008 | 209 | 4.19 ± 1.01 | 0.013 | 1.02 ± 0.30 | 0.138 | 2.63 ± 0.71 | 0.012 | ||
Presence | 123 | 3.91 ± 1.15 | 0.90 ± 0.26 | 2.45 ± 0.82 | 45 | 3.78 ± 1.08 | 0.94 ± 0.37 | 2.33 ± 0.78 | |||||||||
ATM deletion | Absence | 441 | 4.16 ± 1.15 | 0.370 | 0.99 ± 0.30 | 0.227 | 2.62 ± 0.82 | 0.640 | 207 | 4.14 ± 1.02 | 0.553 | 1.02 ± 0.31 | 0.141 | 2.59 ± 0.73 | 0.536 | ||
Presence | 66 | 4.03 ± 0.86 | 0.94 ± 0.25 | 2.57 ± 0.65 | 47 | 4.04 ± 1.10 | 0.94 ± 0.30 | 2.52 ± 0.71 | |||||||||
IGHV | Unmutated | 194 | 4.03 ± 1.02 | 0.091 | 0.93 ± 0.27 | 0.002 | 2.56 ± 0.75 | 0.217 | 110 | 3.98 ± 0.94 | 0.062 | 0.95 ± 0.30 | 0.020 | 2.50 ± 0.69 | 0.107 | ||
Mutated | 313 | 4.21 ± 1.16 | 1.02 ± 0.30 | 2.65 ± 0.83 | 144 | 4.23 ± 1.09 | 1.04 ± 0.31 | 2.64 ± 0.75 | |||||||||
CD38 | <30% | 373 | 4.10 ± 1.07 | 0.203 | 0.99 ± 0.29 | 0.370 | 2.60 ± 0.78 | 0.483 | 185 | 4.11 ± 1.09 | 0.733 | 1.01 ± 0.32 | 0.704 | 2.55 ± 0.75 | 0.263 | ||
≥30% | 134 | 4.25 ± 1.23 | 0.96 ± 0.29 | 2.66 ± 0.87 | 69 | 4.16 ± 0.89 | 0.99 ± 0.29 | 2.66 ± 0.66 |
Variables | TTFT | CSS | ||||||
---|---|---|---|---|---|---|---|---|
Univariate Analyses | Multivariate Analyses | Univariate Analyses | Multivariate Analyses | |||||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Male | 1.228 (0.984–1.532) | 0.070 | – | – | 1.501 (0.961–2.345) | 0.074 | – | – |
Age > 65 years | 0.956 (0.769–1.188) | 0.684 | – | – | 1.879 (1.257–2.810) | 0.002 | 1.806 (1.202–2.714) | 0.004 |
Binet B/C | 3.242 (2.483–4.234) | <0.001 | 2.170 (1.619–2.909) | <0.001 | 4.751 (2.391–9.441) | <0.001 | 2.236 (1.111–4.503) | 0.024 |
ECOG PS > 1 | 0.991 (0.729–1.348) | 0.956 | – | – | 1.589 (0.951–2.655) | 0.077 | – | – |
B symptoms | 2.304 (1.807–2.939) | <0.001 | 1.856 (1.450–2.375) | <0.001 | 1.045 (0.632–1.728) | 0.863 | – | – |
ALC > 50 × 109/L | 1.637 (1.294–2.072) | <0.001 | 1.190 (0.935–1.516) | 0.158 | 1.405 (0.904–2.183) | 0.131 | – | – |
Hb < 100 g/L | 2.108 (1.663–2.672) | <0.001 | 1.038 (0.793–1.358) | 0.786 | 1.820 (1.176–2.818) | 0.007 | 0.904 (0.573–1.427) | 0.665 |
PLT < 100 × 109/L | 2.138 (1.712–2.670) | <0.001 | 1.377 (1.084–1.748) | 0.009 | 1.630 (1.079–2.462) | 0.020 | 0.935 (0.601–1.453) | 0.764 |
LDH > ULN (271 U/L) | 2.161 (1.711–2.730) | <0.001 | 1.464 (1.140–1.881) | 0.003 | 2.144 (1.409–3.262) | <0.001 | 0.925 (0.585–1.463) | 0.740 |
β2-MG > 3.50 mg/L | 1.837 (1.489–2.266) | <0.001 | 1.000 (0.790–1.266) | 1.000 | 3.015 (1.970–4.614) | <0.001 | 1.599 (1.032–2.479) | 0.036 |
TP53 disruption | 2.353 (1.867–2.966) | <0.001 | 1.333 (1.032–1.721) | 0.028 | 5.907 (3.913–8.918) | <0.001 | 3.468 (2.271–5.295) | <0.001 |
ATM deletion | 1.149 (0.849–1.555) | 0.369 | – | – | 1.129 (0.616–2.068) | 0.696 | – | – |
IGHV unmutated | 2.028 (1.642–2.505) | <0.001 | 1.462 (1.163–1.839) | 0.001 | 3.523 (2.312–5.369) | <0.001 | 2.564 (1.665–3.948) | <0.001 |
CD38 ≥ 30% | 1.363 (1.086–1.712) | 0.008 | 1.067 (0.843–1.352) | 0.588 | 1.261 (0.811–1.960) | 0.303 | – | – |
Low HDL-C and LDL-C | 2.278 (1.842–2.817) | <0.001 | 1.488 (1.187–1.865) | 0.001 | 4.614 (2.978–7.149) | <0.001 | 2.907 (1.848–4.572) | <0.001 |
Models | CSS | TTFT | ||||||
---|---|---|---|---|---|---|---|---|
Derivation Cohort | Internal Validation Cohort | Derivation Cohort | Internal Validation Cohort | |||||
C-index (95% CI) | p-value | C-index (95% CI) | p-value | C-index (95% CI) | p-value | C-index (95% CI) | p-value | |
ModelLipo-IPI | 0.838 (0.821–0.855) | 0.839 (0.819–0.859) | 0.687 (0.673–0.701) | 0.688 (0.668–0.708) | ||||
ModelCLL-IPI | 0.813 (0.795–0.831) | 0.004 | 0.791 (0.764–0.818) | <0.001 | 0.677 (0.662–0.692) | 0.093 | 0.676 (0.656–0.696) | 0.186 |
CLL-IPI | 0.810 (0.792–0.828) | 0.006 | 0.792 (0.765–0.819) | 0.002 | 0.665 (0.650–0.680) | 0.002 | 0.670 (0.650–0.690) | 0.075 |
3-year AUC (95% CI) | p-value | 3-year AUC (95% CI) | p-value | 1-year AUC (95% CI) | p-value | 1-year AUC (95% CI) | p-value | |
ModelLipo-IPI | 0.890 (0.851–0.930) | 0.878 (0.830–0.926) | 0.746 (0.703–0.789) | 0.746 (0.686–0.806) | ||||
ModelCLL-IPI | 0.843 (0.796–0.890) | <0.001 | 0.819 (0.753–0.886) | <0.001 | 0.746 (0.704–0.789) | 0.935 | 0.751 (0.691–0.810) | 0.743 |
CLL-IPI | 0.829 (0.778–0.881) | <0.001 | 0.809 (0.739–0.880) | <0.001 | 0.730 (0.686–0.773) | 0.129 | 0.735 (0.674–0.795) | 0.473 |
5-year AUC (95% CI) | p-value | 5-year AUC (95% CI) | p-value | 3-year AUC (95% CI) | p-value | 3-year AUC (95% CI) | p-value | |
ModelLipo-IPI | 0.868 (0.823–0.914) | 0.879 (0.833–0.925) | 0.772 (0.728–0.817) | 0.785 (0.723–0.847) | ||||
ModelCLL-IPI | 0.841 (0.792–0.889) | 0.020 | 0.816 (0.752–0.879) | 0.001 | 0.761 (0.716–0.806) | 0.275 | 0.785 (0.725–0.845) | 0.999 |
CLL-IPI | 0.835 (0.788–0.883) | 0.014 | 0.819 (0.758–0.881) | 0.002 | 0.739 (0.693–0.784) | 0.003 | 0.770 (0.708–0.833) | 0.360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R.; Du, K.; Liang, J.; Xia, Y.; Wu, J.; Li, Y.; Pan, B.; Wang, L.; Li, J.; Xu, W. Low Serum Cholesterol Level Is a Significant Prognostic Factor That Improves CLL-IPI in Chronic Lymphocytic Leukaemia. Int. J. Mol. Sci. 2023, 24, 7396. https://doi.org/10.3390/ijms24087396
Gao R, Du K, Liang J, Xia Y, Wu J, Li Y, Pan B, Wang L, Li J, Xu W. Low Serum Cholesterol Level Is a Significant Prognostic Factor That Improves CLL-IPI in Chronic Lymphocytic Leukaemia. International Journal of Molecular Sciences. 2023; 24(8):7396. https://doi.org/10.3390/ijms24087396
Chicago/Turabian StyleGao, Rui, Kaixin Du, Jinhua Liang, Yi Xia, Jiazhu Wu, Yue Li, Bihui Pan, Li Wang, Jianyong Li, and Wei Xu. 2023. "Low Serum Cholesterol Level Is a Significant Prognostic Factor That Improves CLL-IPI in Chronic Lymphocytic Leukaemia" International Journal of Molecular Sciences 24, no. 8: 7396. https://doi.org/10.3390/ijms24087396
APA StyleGao, R., Du, K., Liang, J., Xia, Y., Wu, J., Li, Y., Pan, B., Wang, L., Li, J., & Xu, W. (2023). Low Serum Cholesterol Level Is a Significant Prognostic Factor That Improves CLL-IPI in Chronic Lymphocytic Leukaemia. International Journal of Molecular Sciences, 24(8), 7396. https://doi.org/10.3390/ijms24087396