Clinical Presentation of a Patient with a Congenital Disorder of Glycosylation, Type IIs (ATP6AP1), and Liver Transplantation
Abstract
:1. Introduction
2. Case Presentation
2.1. Clinical Data
2.2. Genetic Testing
2.3. Ethical Consideration
2.4. Clinical Evaluation
2.5. Genetic Analysis
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Chang, I.J.; He, M.; Lam, C.T. Congenital disorders of glycosylation. Ann. Transl. Med. 2018, 6, 477. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.P.; Matthijs, G. The evolving genetic landscape of congenital disorders of glycosylation. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129976. [Google Scholar] [CrossRef] [PubMed]
- Miles, A.L.; Burr, S.P.; Grice, G.L.; Nathan, J.A. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1α prolyl hydroxylation by regulating cellular iron levels. Elife 2017, 6, e22693. [Google Scholar] [CrossRef] [PubMed]
- Rujano, M.A.; Cannata Serio, M.; Panasyuk, G.; Péanne, R.; Reunert, J.; Rymen, D.; Hauser, V.; Park, J.H.; Freisinger, P.; Souche, E.; et al. Mutations in the X-linked. J. Exp. Med. 2017, 214, 3707–3729. [Google Scholar] [CrossRef] [PubMed]
- Jansen, E.J.; Timal, S.; Ryan, M.; Ashikov, A.; van Scherpenzeel, M.; Graham, L.A.; Mandel, H.; Hoischen, A.; Iancu, T.C.; Raymond, K.; et al. ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat. Commun. 2016, 7, 11600. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Pamarthy, S.; Kulshrestha, A.; Katara, G.K.; Beaman, K.D. The curious case of vacuolar ATPase: Regulation of signaling pathways. Mol. Cancer 2018, 17, 41. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.N.; Skaug, J.; Choate, K.A.; Nayir, A.; Bakkaloglu, A.; Ozen, S.; Hulton, S.A.; Sanjad, S.A.; Al-Sabban, E.A.; Lifton, R.P.; et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat. Genet. 2000, 26, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Kartner, N.; Manolson, M.F. Novel techniques in the development of osteoporosis drug therapy: The osteoclast ruffled-border vacuolar H(+)-ATPase as an emerging target. Expert. Opin. Drug Discov. 2014, 9, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Witters, P.; Breckpot, J.; Foulquier, F.; Preston, G.; Jaeken, J.; Morava, E. Expanding the phenotype of metabolic cutis laxa with an additional disorder of N-linked protein glycosylation. Eur. J. Hum. Genet. 2018, 26, 618–621. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, B.; Himmelreich, N.; Hipgrave Ederveen, A.L.; Lüchtenborg, C.; Okun, J.G.; Breuer, M.; Hutter, A.M.; Carl, M.; Guglielmi, L.; Hellwig, A.; et al. Cutis laxa, exocrine pancreatic insufficiency and altered cellular metabolomics as additional symptoms in a new patient with ATP6AP1-CDG. Mol. Genet. Metab. 2018, 123, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Tvina, A.; Thomsen, A.; Palatnik, A. Prenatal and postnatal phenotype of a pathologic variant in the ATP6AP1 gene. Eur. J. Med. Genet. 2020, 63, 103881. [Google Scholar] [CrossRef] [PubMed]
- Janssen, M.C.; de Kleine, R.H.; van den Berg, A.P.; Heijdra, Y.; van Scherpenzeel, M.; Lefeber, D.J.; Morava, E. Successful liver transplantation and long-term follow-up in a patient with MPI-CDG. Pediatrics 2014, 134, e279–e283. [Google Scholar] [CrossRef] [PubMed]
0 m | 3 m | 5 m | 7 m | 10 m | 1 y 1 m | 1 y 4 m | ||
---|---|---|---|---|---|---|---|---|
Weight, g/SD | 3670/0.64 | 7100/0.26 | 7800/1.44 | 7900/−0.06 | 8300/−1.58 | 8600/−1.1 | ||
Length, cm/SD | 53/1.65 | 62/0.25 | 69/1.44 | 72/2.01 | 74.5/−1.0 | 76.5/−0.77 | ||
Blood tests | ||||||||
No data | 3 m | 5 m | 7 m | Liver transplantation | 1 y 1 m | 1 y 4 m | Normal ranges | |
hemoglobin | 105 | 102 | 90 | 84 | 114 | 110–140 g/L | ||
red blood cells | - | 3.28 | 3.24 | 2.85 | 4.04 | 3.5–4.5 × 1012/L | ||
white blood cells | - | 6.6 | 5.8 | 6.9 | 5.28 | 6–17.5 × 109/L | ||
platelets | - | 100 | - | 96 | 174 | 160–390 × 109/L | ||
total bilirubin | 80 | 98.1 | 54.5 | 5.8 | 8.2 | 5–21 mkM/ | ||
direct bilirubin | 23.8 | 75.6 | 24.1 | 2.9 | 4.5 | <3.4 mkM/L | ||
ALT | 69 | 51 | 50.6 | 17.3 | 42 | 0–40 U/L | ||
AST | 190 | 183 | 133.5 | 33.9 | 34 | 0–40 U/L | ||
ALP | 4164 | 2523 | 1754 | 387 | 612 | 82–383 U/L | ||
GGT | - | - | 29.4 | 45.4 | 187 | 0–6 m: <204; 6–12 m: <34; 1–3 y:< 18 U/L | ||
glucose | 1.9 | 2.81 | 5.01 | 5.03 | 5.12 | 3.3–5.5 mM/L | ||
urea | - | - | 3.1 | 4.2 | 2.4 | 2.8–7.2 mM/L | ||
cholesterol | - | 5.1 | 2.26 | 1.86 | 1.86 | 3.2–5.2 mM/L | ||
total protein | - | - | 61.5 | 54.8 | 65.6 | 64–83 g/L | ||
albumin | - | - | 39.8 | 35.3 | 38.9 | 35–52 g/L | ||
AFP | 47,241 | 85,602 | 6306 | - | - | 0.5–50,000 IU/mL | ||
fibrinogen | - | 1.1 | - | 3.18 | 2–4 g/L | |||
prothrombin index | 58.1 | 32 | 38 | 85 | - | 81–138% | ||
aPTT | 75.6 | 100.2 | 51 | 27 | 44.3 | 25–35 s | ||
INR | 1.36 | - | 3.2 | 1.13 | 1.1 | 0.88–1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenova, N.; Shatokhina, O.; Shchagina, O.; Kamenec, E.; Marakhonov, A.; Degtyareva, A.; Taran, N.; Strokova, T. Clinical Presentation of a Patient with a Congenital Disorder of Glycosylation, Type IIs (ATP6AP1), and Liver Transplantation. Int. J. Mol. Sci. 2023, 24, 7449. https://doi.org/10.3390/ijms24087449
Semenova N, Shatokhina O, Shchagina O, Kamenec E, Marakhonov A, Degtyareva A, Taran N, Strokova T. Clinical Presentation of a Patient with a Congenital Disorder of Glycosylation, Type IIs (ATP6AP1), and Liver Transplantation. International Journal of Molecular Sciences. 2023; 24(8):7449. https://doi.org/10.3390/ijms24087449
Chicago/Turabian StyleSemenova, Natalia, Olga Shatokhina, Olga Shchagina, Elena Kamenec, Andrey Marakhonov, Anna Degtyareva, Natalia Taran, and Tatiana Strokova. 2023. "Clinical Presentation of a Patient with a Congenital Disorder of Glycosylation, Type IIs (ATP6AP1), and Liver Transplantation" International Journal of Molecular Sciences 24, no. 8: 7449. https://doi.org/10.3390/ijms24087449
APA StyleSemenova, N., Shatokhina, O., Shchagina, O., Kamenec, E., Marakhonov, A., Degtyareva, A., Taran, N., & Strokova, T. (2023). Clinical Presentation of a Patient with a Congenital Disorder of Glycosylation, Type IIs (ATP6AP1), and Liver Transplantation. International Journal of Molecular Sciences, 24(8), 7449. https://doi.org/10.3390/ijms24087449