Nanoparticle-Based Interventions for Liver Transplantation
Abstract
:1. Introduction
2. Organ Preconditioning to Improve Allocation of Marginal Livers for Transplant
2.1. Expanding the Donor Pool by Inhibiting IRI with Nanotechnology
2.2. Nanoparticle-Based Tolerance Induction through Donor Graft Preconditioning
2.3. Tolerance Induction through Recipient Conditioning with Nanoparticles
2.4. Preconditioning with Hyperthermia Can Avoid Chemotherapy Toxicity
Preconditioning with Whole-Body Hyperthermia
2.5. Whole-Body vs. Local Hyperthermia: the Case for Expanding the Liver Donor Pool by Conditioning with Nanoparticle Hyperthermia
Study | Tissue/Model | Nanoparticle | Functionality | Results |
---|---|---|---|---|
Tietjen et al. [48] | Human kidneys. | PLA-PEG nanoparticles, 170 nm mean diameter. | Anti-CD31 conjugated nanoparticles to target endothelial cells. | 5- to 10-fold enhancement of localization of nanoparticles vs. unconjugated nanoparticles. |
Cui et al. [50] | Human umbilical vein endothelial cells (HUVECs), arterial allografts. | Poly (amine co-ester) nanoparticles, 288 nm mean diameter. | Loaded with non-self MHC II specific siRNA. | Attenuation of MHC II molecules, reduced T cell infiltration and T cell-mediated inflammation and improved allograft histology. |
Zhu et al. [56] | Mouse aortic and tracheal allografts. | Polyethylene glycol micelles, 15.3 nm mean diameter. | Rapamycin (tolerogenic drug) loaded | Reduced the secretion of inflammatory cytokines and prevented allograft rejection post-transplantation with a 10-fold lower rapamycin dose vs. free Rapamycin. |
Stead et al. [72] | Murine and non-human primate (marmosets) dendritic cells in vivo targeting. | Porous silicon nanoparticles, 21 nm mean diameter. | Nanoparticles coated with DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN), monoclonal antibody CD11c, ovalbumin (OVA) and loaded with Rapamycin. | Upregulated donor-specific regulatory Treg populations in the spleen. |
Zhang et al. [73] | Hemophilia A C57BL/6 mice in vivo therapy. | PLGA nanoparticles. | Nanoparticles containing rapamycin and blood clotting factor FVIII | Tolerized B cells against FVIII on the nanoparticles, thereby more effective vs. free FVIII. |
Shahzad et al. [76] | Single MHC-mismatched murine model of skin transplantation | PLGA nanoparticles, 80 and 200 nm. | Nanoparticles coated with target donor alloantigen H-2Kb-Ig dimer, modulators anti-Fas mAb, PD-L1-Fc, TGF-β (to induce apoptosis, inhibit activation and proliferation of targeted cells and induce Tregs) and CD47-Fc to inhibit phagocytosis from macrophages. | Nanoparticles could specifically target and deplete donor antigen-specific CD8+ T cells in the graft, spleen and peripheral blood (>90% reduction compared to blank nanoparticles), thereby increasing the survival of previously implanted skin allograft. |
Hlavaty et al. [77] | Sex-mismatched murine model of bone marrow transplant. | Poly(lactide-co-glycolide; PLG) nanoparticle, 500 nm mean diameter. | Donor Hy peptide antigens CD4 epitope Dby, grafter nanoparticles. | Coated nanoparticles provide a 200-fold dose enhancement vs. free peptide in inducing tolerance to male bone marrow. |
3. Advantages and Disadvantages of Nanotechnology
4. Summary and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Serracino-Inglott, F.; Habib, N.A.; Mathie, R.T. Hepatic Ischemia-Reperfusion Injury. Am. J. Surg. 2001, 181, 160–166. [Google Scholar] [CrossRef]
- Chatauret, N.; Badet, L.; Barrou, B.; Hauet, T. Ischemia-Reperfusion: From Cell Biology to Acute Kidney Injury. Prog. Urol. 2014, 24 (Suppl. S1), S4–S12. [Google Scholar] [CrossRef]
- Lisa, F.D.; Canton, M.; Menabò, R.; Kaludercic, N.; Bernardi, P. Mitochondria and Cardioprotection. Heart Fail Rev. 2007, 12, 249–260. [Google Scholar] [CrossRef]
- Joung, J.; Cho, J.; Kim, Y.; Choi, S.; Son, C. A Literature Review for the Mechanisms of Stress-induced Liver Injury. Brain Behav. 2019, 9, e01235. [Google Scholar] [CrossRef]
- Wertheim, J.A.; Petrowsky, H.; Saab, S.; Kupiec-Weglinski, J.W.; Busuttil, R.W. Major Challenges Limiting Liver Transplantation in the United States. Am. J. Transpl. 2011, 11, 1773–1784. [Google Scholar] [CrossRef]
- Vodkin, I.; Kuo, A. Extended Criteria Donors in Liver Transplantation. Clin. Liver Dis. 2017, 21, 289–301. [Google Scholar] [CrossRef]
- Lentsch, A.B.; Kato, A.; Yoshidome, H.; McMasters, K.M.; Edwards, M.J. Inflammatory Mechanisms and Therapeutic Strategies for Warm Hepatic Ischemia/Reperfusion Injury. Hepatology 2000, 32, 169–173. [Google Scholar] [CrossRef]
- Zhai, Y.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Liver Ischemia and Reperfusion Injury: New Insights into Mechanisms of Innate-Adaptive Immune-Mediated Tissue Inflammation. Am. J. Transpl. 2011, 11, 1563–1569. [Google Scholar] [CrossRef]
- Vollmar, B.; Glasz, J.; Leiderer, R.; Post, S.; Menger, M.D. Hepatic Microcirculatory Perfusion Failure Is a Determinant of Liver Dysfunction in Warm Ischemia-Reperfusion. Am. J. Pathol. 1994, 145, 1421–1431. [Google Scholar]
- Marzi, I.; Rücker, M.; Walcher, F.; Takei, Y. Endothelin-1 Is Involved in Hepatic Sinusoidal Vasoconstriction after Ischemia and Reperfusion. Transpl. Int. 1994, 7, 503–506. [Google Scholar] [CrossRef]
- Cywes, R.; Packham, M.A.; Tietze, L.; Sanabria, J.R.; Harvey, P.R.C.; Phillips, M.J.; Strasberg, S.M. Role of Platelets in Hepatic Allograft Preservation Injury in the Rat. Hepatology 1993, 18, 635–647. [Google Scholar] [CrossRef]
- Ikeda, T.; Yanaga, K.; Kishikawa, K.; Kakizoe, S.; Shimada, M.; Sugimachi, K. Ischemic Injury in Liver Transplantation: Difference in Injury Sites between Warm and Cold Ischemia in Rats. Hepatology 1992, 16, 454–461. [Google Scholar] [CrossRef]
- Tsung, A.; Klune, J.R.; Zhang, X.; Jeyabalan, G.; Cao, Z.; Peng, X.; Stolz, D.B.; Geller, D.A.; Rosengart, M.R.; Billiar, T.R. HMGB1 Release Induced by Liver Ischemia Involves Toll-like Receptor 4 Dependent Reactive Oxygen Species Production and Calcium-Mediated Signaling. J. Exp. Med. 2007, 204, 2913–2923. [Google Scholar] [CrossRef]
- Shen, X.D.; Ke, B.; Ji, H.; Gao, F.; Freitas, M.C.; Chang, W.W.; Lee, C.; Zhai, Y.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Disruption of Type-I IFN Pathway Ameliorates Preservation Damage in Mouse Orthotopic Liver Transplantation via HO-1 Dependent Mechanism. Am. J. Transpl. 2012, 12, 1730–1739. [Google Scholar] [CrossRef]
- Lakkis, F.G.; Li, X.C. Innate Allorecognition by Monocytic Cells and Its Role in Graft Rejection. Am. J. Transpl. 2018, 18, 289–292. [Google Scholar] [CrossRef]
- Oberbarnscheidt, M.H.; Zeng, Q.; Li, Q.; Dai, H.; Williams, A.L.; Shlomchik, W.D.; Rothstein, D.M.; Lakkis, F.G. Non-Self Recognition by Monocytes Initiates Allograft Rejection. J. Clin. Investig. 2014, 124, 3579–3589. [Google Scholar] [CrossRef]
- Zecher, D.; van Rooijen, N.; Rothstein, D.M.; Shlomchik, W.D.; Lakkis, F.G. An Innate Response to Allogeneic Nonself Mediated by Monocytes. J. Immunol. 2009, 183, 7810–7816. [Google Scholar] [CrossRef]
- Cai, J.; Terasaki, P.I. Induction Immunosuppression Improves Long-Term Graft and Patient Outcome in Organ Transplantation: An Analysis of United Network for Organ Sharing Registry Data. Transplantation 2010, 90, 1511–1515. [Google Scholar] [CrossRef]
- Maira, T.D.; Little, E.C.; Berenguer, M. Immunosuppression in Liver Transplant. Best Pract. Res. Clin. Gastroenterol. 2020, 46, 101681. [Google Scholar] [CrossRef]
- Uemura, T.; Schaefer, E.; Hollenbeak, C.S.; Khan, A.; Kadry, Z. Outcome of Induction Immunosuppression for Liver Transplantation Comparing Anti-Thymocyte Globulin, Daclizumab, and Corticosteroid. Transpl. Int. 2011, 24, 640–650. [Google Scholar] [CrossRef]
- Gojo, S.; Niwaya, K.; Taniguchi, S.; Nishizaki, K.; Kitamura, S. Gene Transfer into the Donor Heart During Cold Preservation for Heart Transplantation. Ann. Thorac. Surg. 1998, 65, 647–652. [Google Scholar] [CrossRef]
- Sandovici, M.; Henning, R.H.; van Goor, H.; Helfrich, W.; de Zeeuw, D.; Deelman, L.E. Systemic Gene Therapy with Interleukin-13 Attenuates Renal Ischemia–Reperfusion Injury. Kidney Int. 2008, 73, 1364–1373. [Google Scholar] [CrossRef]
- Vassalli, G.; Roehrich, M.-E.; Vogt, P.; Pedrazzini, G.B.; Siclari, F.; Moccetti, T.; Segesser, L.K. von Modalities and Future Prospects of Gene Therapy in Heart Transplantation. Eur. J. Cardio-Thorac. 2009, 35, 1036–1044. [Google Scholar] [CrossRef]
- Zheng, X.; Zang, G.; Jiang, J.; He, W.; Johnston, N.J.; Ling, H.; Chen, R.; Zhang, X.; Liu, Y.; Haig, A.; et al. Attenuating Ischemia-Reperfusion Injury in Kidney Transplantation by Perfusing Donor Organs with SiRNA Cocktail Solution. Transplantation 2016, 100, 743–752. [Google Scholar] [CrossRef]
- Carini, R.; Albano, E. Recent Insights on the Mechanisms of Liver Preconditioning. Gastroenterology 2003, 125, 1480–1491. [Google Scholar] [CrossRef]
- Kume, M.; Yamamoto, Y.; Saad, S.; Gomi, T.; Kimoto, S.; Shimabukuro, T.; Yagi, T.; Nakagami, M.; Takada, Y.; Morimoto, T.; et al. Ischemic Preconditioning of the Liver in Rats: Implications of Heat Shock Protein Induction to Increase Tolerance of Ischemia-Reperfusion Injury. J. Lab Clin. Med. 1996, 128, 251–258. [Google Scholar] [CrossRef]
- Fudaba, Y.; Ohdan, H.; Tashiro, H.; Ito, H.; Fukuda, Y.; Dohi, K.; Asahara, T. Geranylgeranylacetone, A Heat Shock Protein Inducer, Prevents Primary Graft Nonfunction In Rat Liver Transplantation. Transplantation 2001, 72, 184–189. [Google Scholar] [CrossRef]
- Tashiro, S.; Miyake, H.; Rokutan, K. Role of Geranylgeranylacetone as Non-toxic HSP70 Inducer in Liver Surgery: Clinical Application. J. Hepato Biliary Pancreat. Sci. 2018, 25, 269–274. [Google Scholar] [CrossRef]
- Latchman, D.S. Heat Shock Proteins and Cardiac Protection. Cardiovasc. Res. 2001, 51, 637–646. [Google Scholar] [CrossRef]
- Sõti, C.; Nagy, E.; Giricz, Z.; Vígh, L.; Csermely, P.; Ferdinandy, P. Heat Shock Proteins as Emerging Therapeutic Targets. Brit. J. Pharm. 2005, 146, 769–780. [Google Scholar] [CrossRef]
- Overgaard, J.; Nielsen, O.S. The Importance of Thermotolerance for the Clinical Treatment with Hyperthermia. Radiother. Oncol. 1983, 1, 167–178. [Google Scholar] [CrossRef]
- Land, W.G. The Role of Postischemic Reperfusion Injury and Other Nonantigen-Dependent Inflammatory Pathways in Transplantation. Transplantation 2005, 79, 505–514. [Google Scholar] [CrossRef]
- Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef]
- Akira, S.; Takeda, K. Toll-like Receptor Signalling. Nat. Rev. Immunol. 2004, 4, 499–511. [Google Scholar] [CrossRef]
- Baccala, R.; Gonzalez-Quintial, R.; Lawson, B.R.; Stern, M.E.; Kono, D.H.; Beutler, B.; Theofilopoulos, A.N. Sensors of the Innate Immune System: Their Mode of Action. Nat. Rev. Rheumatol. 2009, 5, 448–456. [Google Scholar] [CrossRef]
- Trinchieri, G.; Sher, A. Cooperation of Toll-like Receptor Signals in Innate Immune Defence. Nat. Rev. Immunol. 2007, 7, 179–190. [Google Scholar] [CrossRef]
- Tsung, A.; Hoffman, R.A.; Izuishi, K.; Critchlow, N.D.; Nakao, A.; Chan, M.H.; Lotze, M.T.; Geller, D.A.; Billiar, T.R. Hepatic Ischemia/Reperfusion Injury Involves Functional TLR4 Signaling in Nonparenchymal Cells. J. Immunol. 2005, 175, 7661–7668. [Google Scholar] [CrossRef]
- Zhai, Y.; Shen, X.D.; O’Connell, R.; Gao, F.; Lassman, C.; Busuttil, R.W.; Cheng, G.; Kupiec-Weglinski, J.W. Cutting Edge: TLR4 Activation Mediates Liver Ischemia/Reperfusion Inflammatory Response via IFN Regulatory Factor 3-Dependent MyD88-Independent Pathway. J. Immunol. 2004, 173, 7115–7119. [Google Scholar] [CrossRef]
- Hui, W.; Jinxiang, Z.; Heshui, W.; Zhuoya, L.; Qichang, Z. Bone Marrow and Non-Bone Marrow TLR4 Regulates Hepatic Ischemia/Reperfusion Injury. Biochem. Biophys. Res. Commun. 2009, 389, 328–332. [Google Scholar] [CrossRef]
- Tsung, A.; Sahai, R.; Tanaka, H.; Nakao, A.; Fink, M.P.; Lotze, M.T.; Yang, H.; Li, J.; Tracey, K.J.; Geller, D.A.; et al. The Nuclear Factor HMGB1 Mediates Hepatic Injury after Murine Liver Ischemia-Reperfusion. J. Exp. Med. 2005, 201, 1135–1143. [Google Scholar] [CrossRef]
- Huang, H.; Tohme, S.; Al-Khafaji, A.B.; Tai, S.; Loughran, P.; Chen, L.; Wang, S.; Kim, J.; Billiar, T.; Wang, Y.; et al. Damage-associated Molecular Pattern–Activated Neutrophil Extracellular Trap Exacerbates Sterile Inflammatory Liver Injury. Hepatology 2015, 62, 600–614. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Dun, H.; Ippagunta, N.; Rosario, R.; Zhang, Q.Y.; Lefkowitch, J.; Yan, S.F.; Schmidt, A.M.; Emond, J.C. Receptor for Advanced Glycation End Product (RAGE)-Dependent Modulation of Early Growth Response-1 in Hepatic Ischemia/Reperfusion Injury. J. Hepatol. 2009, 50, 929–936. [Google Scholar] [CrossRef]
- Takada, M.; Chandraker, A.; Nadeau, K.C.; Sayegh, M.H.; Tilney, N.L. The Role of the B7 Costimulatory Pathway in Experimental Cold Ischemia/Reperfusion Injury. J. Clin. Investig. 1997, 100, 1199–1203. [Google Scholar] [CrossRef]
- Caldwell, C.C.; Tschoep, J.; Lentsch, A.B. Lymphocyte Function during Hepatic Ischemia/Reperfusion Injury. J. Leukoc. Biol. 2007, 82, 457–464. [Google Scholar] [CrossRef]
- Dangi, A.; Yu, S.; Luo, X. Emerging Approaches and Technologies in Transplantation: The Potential Game Changers. Cell Mol. Immunol. 2019, 16, 334–342. [Google Scholar] [CrossRef]
- Piotti, G.; Palmisano, A.; Maggiore, U.; Buzio, C. Vascular Endothelium as a Target of Immune Response in Renal Transplant Rejection. Front. Immunol. 2014, 5, 505. [Google Scholar] [CrossRef]
- Pober, J.S.; Tellides, G. Participation of Blood Vessel Cells in Human Adaptive Immune Responses. Trends Immunol. 2012, 33, 49–57. [Google Scholar] [CrossRef]
- Tietjen, G.T.; Hosgood, S.A.; DiRito, J.; Cui, J.; Deep, D.; Song, E.; Kraehling, J.R.; Piotrowski-Daspit, A.S.; Kirkiles-Smith, N.C.; Al-Lamki, R.; et al. Nanoparticle Targeting to the Endothelium during Normothermic Machine Perfusion of Human Kidneys. Sci. Transl. Med. 2017, 9, eaam6764. [Google Scholar] [CrossRef]
- Muro, S.; Dziubla, T.; Qiu, W.; Leferovich, J.; Cui, X.; Berk, E.; Muzykantov, V.R. Endothelial Targeting of High-Affinity Multivalent Polymer Nanocarriers Directed to Intercellular Adhesion Molecule 1. J. Pharm. Exp. 2006, 317, 1161–1169. [Google Scholar] [CrossRef]
- Cui, J.; Qin, L.; Zhang, J.; Abrahimi, P.; Li, H.; Li, G.; Tietjen, G.T.; Tellides, G.; Pober, J.S.; Saltzman, W.M. Ex Vivo Pretreatment of Human Vessels with SiRNA Nanoparticles Provides Protein Silencing in Endothelial Cells. Nat. Commun. 2017, 8, 191. [Google Scholar] [CrossRef]
- Sharma, A.; Cressman, E.; Attaluri, A.; Kraitchman, D.L.; Ivkov, R. Current Challenges in Image-Guided Magnetic Hyperthermia Therapy for Liver Cancer. Nanomaterials 2022, 12, 2768. [Google Scholar] [CrossRef] [PubMed]
- Healy, S.; Bakuzis, A.F.; Goodwill, P.W.; Attaluri, A.; Bulte, J.W.M.; Ivkov, R. Clinical Magnetic Hyperthermia Requires Integrated Magnetic Particle Imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1779. [Google Scholar] [CrossRef]
- Attaluri, A.; Seshadri, M.; Mirpour, S.; Wabler, M.; Marinho, T.; Furqan, M.; Zhou, H.; Paoli, S.D.; Gruettner, C.; Gilson, W.; et al. Image-Guided Thermal Therapy with a Dual-Contrast Magnetic Nanoparticle Formulation: A Feasibility Study. Int. J. Hyperther. 2016, 32, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, K.; Moon, S.H.; Lee, Y.; Park, T.G.; Cheon, J. All-in-One Target-Cell-Specific Magnetic Nanoparticles for Simultaneous Molecular Imaging and SiRNA Delivery. Angewandte Chemie 2009, 48, 4174–4179. [Google Scholar] [CrossRef]
- Sharma, A.; Lee, C.Y.; Namsrai, B.-E.; Han, Z.; Tobolt, D.; Rao, J.S.; Gao, Z.; Etheridge, M.L.; Garwood, M.; Clemens, M.G.; et al. Cryopreservation of Whole Rat Livers by Vitrification and Nanowarming. Ann. Biomed. Eng. 2023, 51, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Atkinson, C.; Dixit, S.; Cheng, Q.; Tran, D.; Patel, K.; Jiang, Y.-L.; Esckilsen, S.; Miller, K.; Bazzle, G.; et al. Organ Preservation with Targeted Rapamycin Nanoparticles: A Pre-Treatment Strategy Preventing Chronic Rejection in Vivo. Rsc. Adv. 2018, 8, 25909–25919. [Google Scholar] [CrossRef] [PubMed]
- Oishi, K.; Noguchi, H.; Saito, H.; Yukawa, H.; Miyamoto, Y.; Ono, K.; Murase, K.; Sawada, M.; Hayashi, S. Novel Positive-Charged Nanoparticles for Efficient Magnetic Resonance Imaging of Islet Transplantation. Cell Med. 2012, 3, 43–49. [Google Scholar] [CrossRef]
- Hwang, J.H.; Noh, Y.; Choi, J.; Noh, J.; Kim, Y.; Gang, G.; Kim, K.; Park, H.S.; Lim, Y.T.; Moon, H.; et al. In Vivo Imaging of Islet Transplantation Using PLGA Nanoparticles Containing Iron Oxide and Indocyanine Green. Magn. Reson. Med. 2014, 71, 1054–1063. [Google Scholar] [CrossRef]
- Zheng, X.X.; Sanchez-Fueyo, A.; Domenig, C.; Strom, T.B. The Balance of Deletion and Regulation in Allograft Tolerance. Immunol. Rev. 2003, 196, 75–84. [Google Scholar] [CrossRef]
- Lechler, R.I.; Garden, O.A.; Turka, L.A. The Complementary Roles of Deletion and Regulation in Transplantation Tolerance. Nat. Rev. Immunol. 2003, 3, 147–158. [Google Scholar] [CrossRef]
- Wood, K.J.; Sakaguchi, S. Regulatory Lymphocytes: Regulatory T Cells in Transplantation Tolerance. Nat. Rev. Immunol. 2003, 3, nri1027. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, C.I.; Karim, M.; Bushell, A.R.; Wood, K.J. CD25+CD4+ Regulatory T Cells Prevent Graft Rejection: CTLA-4- and IL-10-Dependent Immunoregulation of Alloresponses. J. Immunol. 2002, 168, 1080–1086. [Google Scholar] [CrossRef]
- Zheng, X.X.; Sánchez-Fueyo, A.; Sho, M.; Domenig, C.; Sayegh, M.H.; Strom, T.B. Favorably Tipping the Balance between Cytopathic and Regulatory T Cells to Create Transplantation Tolerance. Immunity 2003, 19, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Fueyo, A.; Strom, T.B. Immunological Tolerance and Liver Transplantation. J. Hepatol. 2004, 41, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Calne, R.Y.; Sells, R.A.; Pena, J.R.; Davis, D.R.; Millard, P.R.; Herbertson, B.M.; Binns, R.M.; Davies, D.A.L. Induction of Immunological Tolerance By Porcine Liver Allografts. Nature 1969, 223, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Demetris, A.J.; Murase, N.; Rao, A.S.; Fung, J.J.; Starzl, T.E. Murine Liver Allograft Transplantation: Tolerance and Donor Cell Chimerism. Hepatology 1994, 19, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Starzl, T.E.; Demetris, A.J.; Trucco, M.; Murase, N.; Ricordi, C.; Ildstad, S.; Ramos, H.; Todo, S.; Tzakis, A.; Fung, J.J.; et al. Cell Migration and Chimerism after Whole-organ Transplantation: The Basis of Graft Acceptance. Hepatology 1993, 17, 1127–1152. [Google Scholar] [CrossRef]
- Jiang, X.; Morita, M.; Sugioka, A.; Harada, M.; Kojo, S.; Wakao, H.; Watarai, H.; Ohkohchi, N.; Taniguchi, M.; Seino, K. The Importance of CD25+CD4+ Regulatory T Cells in Mouse Hepatic Allograft Tolerance. Liver Transpl. 2006, 12, 1112–1118. [Google Scholar] [CrossRef]
- Gassel, H.-J.; Hutchinson, I.V.; Engemann, R.; Morris, P.J. The Role Of T Suppressor Cells In The Maintenance Of Spontaneously Accepted Orthotopic Rat Liver Allografts. Transplantation 1992, 54, 1048–1052. [Google Scholar] [CrossRef]
- Gomes, A.C.; Mohsen, M.; Bachmann, M.F. Harnessing Nanoparticles for Immunomodulation and Vaccines. Vaccines 2017, 5, 6. [Google Scholar] [CrossRef]
- Kishimoto, T.K.; Maldonado, R.A. Nanoparticles for the Induction of Antigen-Specific Immunological Tolerance. Front. Immunol. 2018, 9, 230. [Google Scholar] [CrossRef] [PubMed]
- Stead, S.O.; Kireta, S.; McInnes, S.J.P.; Kette, F.D.; Sivanathan, K.N.; Kim, J.; Cueto-Diaz, E.J.; Cunin, F.; Durand, J.-O.; Drogemuller, C.J.; et al. Murine and Non-Human Primate Dendritic Cell Targeting Nanoparticles for in Vivo Generation of Regulatory T-Cells. ACS Nano 2018, 12, 6637–6647. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.-H.; Rossi, R.J.; Yoon, J.; Wang, H.; Scott, D.W. Tolerogenic Nanoparticles to Induce Immunologic Tolerance: Prevention and Reversal of FVIII Inhibitor Formation. Cell Immunol. 2016, 301, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Lassailly, G.; Saleh, M.B.; Leleu-Chavain, N.; Ningarhari, M.; Gantier, E.; Carpentier, R.; Artru, F.; Gnemmi, V.; Bertin, B.; Maboudou, P.; et al. Nucleotide-Binding Oligomerization Domain 1 (NOD1) Modulates Liver Ischemia Reperfusion through the Expression Adhesion Molecules. J. Hepatol. 2019, 70, 1159–1169. [Google Scholar] [CrossRef]
- Shirali, A.C.; Look, M.; Du, W.; Kassis, E.; Stout-Delgado, H.W.; Fahmy, T.M.; Goldstein, D.R. Nanoparticle Delivery of Mycophenolic Acid Upregulates PD-L1 on Dendritic Cells to Prolong Murine Allograft Survival. Am. J. Transpl. 2011, 11, 2582–2592. [Google Scholar] [CrossRef]
- Shahzad, K.A.; Wan, X.; Zhang, L.; Pei, W.; Zhang, A.; Younis, M.; Wang, W.; Shen, C. On-Target and Direct Modulation of Alloreactive T Cells by a Nanoparticle Carrying MHC Alloantigen, Regulatory Molecules and CD47 in a Murine Model of Alloskin Transplantation. Drug Deliv. 2018, 25, 703–715. [Google Scholar] [CrossRef]
- Hlavaty, K.A.; McCarthy, D.P.; Saito, E.; Yap, W.T.; Miller, S.D.; Shea, L.D. Tolerance Induction Using Nanoparticles Bearing HY Peptides in Bone Marrow Transplantation. Biomaterials 2016, 76, 1–10. [Google Scholar] [CrossRef]
- Martinez, J.O.; Evangelopoulos, M.; Bhavane, R.; Acciardo, S.; Salvatore, F.; Liu, X.; Ferrari, M.; Tasciotti, E. Multistage Nanovectors Enhance the Delivery of Free and Encapsulated Drugs. Curr. Drug Targets 2014, 16, 1582–1590. [Google Scholar] [CrossRef]
- Corbo, C.; Parodi, A.; Evangelopoulos, M.; Engler, D.; Matsunami, R.; Engler, A.; Molinaro, R.; Scaria, S.; Salvatore, F.; Tasciotti, E. Proteomic Profiling of a Biomimetic Drug Delivery Platform. Curr. Drug Targets 2015, 16, 1540–1547. [Google Scholar] [CrossRef]
- Evangelopoulos, M.; Parodi, A.; Martinez, J.O.; Yazdi, I.K.; Cevenini, A.; van de Ven, A.L.; Quattrocchi, N.; Boada, C.; Taghipour, N.; Corbo, C.; et al. Cell Source Determines the Immunological Impact of Biomimetic Nanoparticles. Biomaterials 2016, 82, 168–177. [Google Scholar] [CrossRef]
- Parodi, A.; Quattrocchi, N.; van de Ven, A.L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J.O.; Brown, B.S.; Khaled, S.Z.; Yazdi, I.K.; Enzo, M.V.; et al. Synthetic Nanoparticles Functionalized with Biomimetic Leukocyte Membranes Possess Cell-like Functions. Nat. Nanotechnol. 2013, 8, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.; Hlavaty, K.A.; Zhang, X.; Yap, W.-T.; Zhang, L.; Shea, L.D.; Luo, X. Nanoparticle Delivery of Donor Antigens for Transplant Tolerance in Allogeneic Islet Transplantation. Biomaterials 2014, 35, 8887–8894. [Google Scholar] [CrossRef] [PubMed]
- Hlavaty, K.A.; Luo, X.; Shea, L.D.; Miller, S.D. Cellular and Molecular Targeting for Nanotherapeutics in Transplantation Tolerance. Clin. Immunol. 2015, 160, 14–23. [Google Scholar] [CrossRef]
- Jayant, K.; Reccia, I.; Virdis, F.; Shapiro, A.M.J. The Role of Normothermic Perfusion in Liver Transplantation (TRaNsIT Study): A Systematic Review of Preliminary Studies. HPB Surg. 2018, 2018, 6360423. [Google Scholar] [CrossRef] [PubMed]
- Nasralla, D.; Coussios, C.C.; Mergental, H.; Akhtar, M.Z.; Butler, A.J.; Ceresa, C.D.L.; Chiocchia, V.; Dutton, S.J.; García-Valdecasas, J.C.; Heaton, N.; et al. A Randomized Trial of Normothermic Preservation in Liver Transplantation. Nature 2018, 557, 50–56. [Google Scholar] [CrossRef]
- Karimian, N.; Matton, A.P.M.; Westerkamp, A.C.; Burlage, L.C.; op den Dries, S.; Leuvenink, H.G.D.; Lisman, T.; Uygun, K.; Markmann, J.F.; Porte, R.J. Ex Situ Normothermic Machine Perfusion of Donor Livers. J. Vis. Exp. 2015, e52688. [Google Scholar] [CrossRef]
- Mosbah, I.B.; Roselló-Catafau, J.; Alfany-Fernandez, I.; Rimola, A.; Parellada, P.P.; Mitjavila, M.T.; Lojek, A.; Abdennebi, H.B.; Boillot, O.; Rodés, J.; et al. Addition of Carvedilol to University Wisconsin Solution Improves Rat Steatotic and Nonsteatotic Liver Preservation. Liver Transpl. 2010, 16, 163–171. [Google Scholar] [CrossRef]
- Serafín, A.; Roselló-Catafau, J.; Prats, N.; Xaus, C.; Gelpí, E.; Peralta, C. Ischemic Preconditioning Increases the Tolerance of Fatty Liver to Hepatic Ischemia-Reperfusion Injury in the Rat. Am. J. Pathol. 2002, 161, 587–601. [Google Scholar] [CrossRef]
- Berthiaume, F.; Barbe, L.; Mokuno, Y.; MacDonald, A.D.; Jindal, R.; Yarmush, M.L. Steatosis Reversibly Increases Hepatocyte Sensitivity to Hypoxia-Reoxygenation Injury. J. Surg. Res. 2009, 152, 54–60. [Google Scholar] [CrossRef]
- Vairetti, M.; Ferrigno, A.; Carlucci, F.; Tabucchi, A.; Rizzo, V.; Boncompagni, E.; Neri, D.; Gringeri, E.; Freitas, I.; Cillo, U. Subnormothermic Machine Perfusion Protects Steatotic Livers against Preservation Injury: A Potential for Donor Pool Increase? Liver Transpl. 2009, 15, 20–29. [Google Scholar] [CrossRef]
- Selzner, M.; Clavien, P.A. Fatty Liver in Liver Transplantation and Surgery. Semin Liver Dis. 2001, 21, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Nakano, H.; Nagasaki, H.; Barama, A.; Boudjema, K.; Jaeck, D.; Kumada, K.; Tatsuno, M.; Baek, Y.; Kitamura, N.; Suzuki, T.; et al. The Effects of N-Acetylcysteine and Anti-Intercellular Adhesion Molecule-1 Monoclonal Antibody against Ischemia-Reperfusion Injury of the Rat Steatotic Liver Produced by a Choline-Methionine-Deficient Diet. Hepatology 1997, 26, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Mokuno, Y.; Berthiaume, F.; Tompkins, R.G.; Balis, U.J.; Yarmush, M.L. Technique for Expanding the Donor Liver Pool: Heat Shock Preconditioning in a Rat Fatty Liver Model. Liver Transpl. 2004, 10, 264–272. [Google Scholar] [CrossRef]
- Yamagami, K.; Yamamoto, Y.; Kume, M.; Kimoto, S.; Yamamoto, H.; Ozaki, N.; Yamamoto, M.; Shimahara, Y.; Toyokuni, S.; Yamaoka, Y. Heat Shock Preconditioning Ameliorates Liver Injury Following Normothermic Ischemia–Reperfusion in Steatotic Rat Livers. J. Surg. Res. 1998, 79, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.H.; Bhatti, T.R.; Fouraschen, S.; Chakravorty, S.; Wang, L.; Kurian, S.; Salomon, D.; Olthoff, K.M.; Hancock, W.W.; Levine, M.H. Heat Shock Protein 70 Is Required for Optimal Liver Regeneration after Partial Hepatectomy in Mice. Liver Transpl. 2014, 20, 376–385. [Google Scholar] [CrossRef]
- Deckers, R.; Debeissat, C.; Fortin, P.-Y.; Moonen, C.T.W.; Couillaud, F. Arrhenius Analysis of the Relationship between Hyperthermia and Hsp70 Promoter Activation: A Comparison between Ex Vivo and in Vivo Data. Int. J. Hyperther. 2012, 28, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Honda, K.; Kobayashi, N. Protective effect of heat preconditioning of rat liver graft resulting in improved transplant survival. Transplantation 2001, 71, 862–868. [Google Scholar] [CrossRef]
- Thorne, A.M.; Ubbink, R.; Brüggenwirth, I.M.A.; Nijsten, M.W.; Porte, R.J.; de Meijer, V.E. Hyperthermia-Induced Changes in Liver Physiology and Metabolism: A Rationale for Hyperthermic Machine Perfusion. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 319, G43–G50. [Google Scholar] [CrossRef]
- Lucke, J.N. Liver metabolism during malignant hyperthermia in the pietrain pig. Vet Anaesth. Analg. 1978, 8, 70–72. [Google Scholar] [CrossRef]
- Glehen, O.; Cotte, E.; Kusamura, S.; Deraco, M.; Baratti, D.; Passot, G.; Beaujard, A.; Noel, G.F. Hyperthermic Intraperitoneal Chemotherapy: Nomenclature and Modalities of Perfusion. J. Surg. Oncol. 2008, 98, 242–246. [Google Scholar] [CrossRef]
- Lehmann, K.; Rickenbacher, A.; Jang, J.-H.; Oberkofler, C.E.; Vonlanthen, R.; von Boehmer, L.; Humar, B.; Graf, R.; Gertsch, P.; Clavien, P.-A. New Insight Into Hyperthermic Intraperitoneal Chemotherapy. Ann. Surg. 2012, 256, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Horn, C.; Minor, T. Transient Hyperthermia during Oxygenated Rewarming of Isolated Rat Livers. Transpl. Int. 2020, 33, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Rylander, M.N.; Feng, Y.; Zimmermann, K.; Diller, K.R. Measurement and Mathematical Modeling of Thermally Induced Injury and Heat Shock Protein Expression Kinetics in Normal and Cancerous Prostate Cells. Int. J. Hyperther. 2010, 26, 748–764. [Google Scholar] [CrossRef]
- Morano, W.F.; Khalili, M.; Chi, D.S.; Bowne, W.B.; Esquivel, J. Clinical Studies in CRS and HIPEC: Trials, Tribulations, and Future Directions—A Systematic Review. J. Surg. Oncol. 2018, 117, 245–259. [Google Scholar] [CrossRef]
- Neuwirth, M.G.; Alexander, H.R.; Karakousis, G.C. Then and Now: Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy (HIPEC), a Historical Perspective. J. Gastrointest. Oncol. 2016, 7, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Soetaert, F.; Korangath, P.; Serantes, D.; Fiering, S.; Ivkov, R. Cancer Therapy with Iron Oxide Nanoparticles: Agents of Thermal and Immune Therapies. Adv. Drug Deliver Rev. 2020, 163–164, 65–83. [Google Scholar] [CrossRef]
- Simamora, P.; Alvarez, J.M.; Yalkowsky, S.H. Solubilization of Rapamycin. Int. J. Pharm. 2001, 213, 25–29. [Google Scholar] [CrossRef]
- Grattoni, A.; Shen, H.; Fine, D.; Ziemys, A.; Gill, J.S.; Hudson, L.; Hosali, S.; Goodall, R.; Liu, X.; Ferrari, M. Nanochannel Technology for Constant Delivery of Chemotherapeutics: Beyond Metronomic Administration. Pharm. Res. 2011, 28, 292–300. [Google Scholar] [CrossRef]
- Ferrati, S.; Nicolov, E.; Zabre, E.; Geninatti, T.; Shirkey, B.A.; Hudson, L.; Hosali, S.; Crawley, M.; Khera, M.; Palapattu, G.; et al. The Nanochannel Delivery System for Constant Testosterone Replacement Therapy. J. Sex. Med. 2015, 12, 1375–1380. [Google Scholar] [CrossRef]
- Ananta, J.S.; Godin, B.; Sethi, R.; Moriggi, L.; Liu, X.; Serda, R.E.; Krishnamurthy, R.; Muthupillai, R.; Bolskar, R.D.; Helm, L.; et al. Geometrical Confinement of Gadolinium-Based Contrast Agents in Nanoporous Particles Enhances T1 Contrast. Nat. Nanotechnol. 2010, 5, 815–821. [Google Scholar] [CrossRef]
- Misra, R.D.K. Magnetic Nanoparticle Carrier for Targeted Drug Delivery: Perspective, Outlook and Design. Mater. Sci. Tech. Ser. 2013, 24, 1011–1019. [Google Scholar] [CrossRef]
- Hom, C.; Lu, J.; Liong, M.; Luo, H.; Li, Z.; Zink, J.I.; Tamanoi, F. Mesoporous Silica Nanoparticles Facilitate Delivery of SiRNA to Shutdown Signaling Pathways in Mammalian Cells. Small 2010, 6, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Muyldermans, S. Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 2013, 82, 775–797. [Google Scholar] [CrossRef]
- Kijanka, M.; Dorresteijn, B.; Oliveira, S.; Henegouwen, P.M. van B. en Nanobody-Based Cancer Therapy of Solid Tumors. Nanomed. Lond. Engl. 2015, 10, 161–174. [Google Scholar] [CrossRef]
- Li, T.Z.; Gong, F.; Zhang, B.Y.; Sun, J.D.; Zhang, T.; Kong, L.; Xue, Y.Y.; Tang, M. Acute Toxicity and Bio-Distribution of Silver Nitrate and Nano-Silver with Different Particle Diameters in Rats. Zhonghua Shao Shang Za Zhi Zhonghua Shaoshang Zazhi Chin. J. Burn. 2016, 32, 606–612. [Google Scholar] [CrossRef]
- Chinde, S.; Grover, P. Toxicological Assessment of Nano and Micron-Sized Tungsten Oxide after 28days Repeated Oral Administration to Wistar Rats. Mutat. Res. Genet. Toxicol. Env. Mutagen 2017, 819, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chang, X.; Tian, M.; Zhu, A.; Zou, L.; Han, A.; Su, L.; Li, S.; Sun, Y. Nano NiO Induced Liver Toxicity via Activating the NF-ΚB Signaling Pathway in Rats. Toxicol. Res. 2017, 6, 242–250. [Google Scholar] [CrossRef]
- Sha, B.; Gao, W.; Wang, S.; Gou, X.; Li, W.; Liang, X.; Qu, Z.; Xu, F.; Lu, T.J. Oxidative Stress Increased Hepatotoxicity Induced by Nano-titanium Dioxide in BRL-3A Cells and Sprague–Dawley Rats. J. Appl. Toxicol. 2014, 34, 345–356. [Google Scholar] [CrossRef]
- Magaye, R.R.; Yue, X.; Zou, B.; Shi, H.; Yu, H.; Liu, K.; Lin, X.; Xu, J.; Yang, C.; Wu, A.; et al. Acute Toxicity of Nickel Nanoparticles in Rats after Intravenous Injection. Int. J. Nanomed. 2014, 9, 1393–1402. [Google Scholar] [CrossRef]
- Recordati, C.; Maglie, M.D.; Bianchessi, S.; Argentiere, S.; Cella, C.; Mattiello, S.; Cubadda, F.; Aureli, F.; D’Amato, M.; Raggi, A.; et al. Tissue Distribution and Acute Toxicity of Silver after Single Intravenous Administration in Mice: Nano-Specific and Size-Dependent Effects. Part Fibre Toxicol. 2016, 13, 12. [Google Scholar] [CrossRef]
- Suker, D.K.; Jasim, F.A. Liver Histopathological Alteration after Repeated Intra-Tracheal Instillation of Titanium Dioxide in Male Rats. Gastroenterol. Hepatol. Bed Bench 2018, 11, 159–168. [Google Scholar] [PubMed]
- Bartneck, M.; Ritz, T.; Keul, H.A.; Wambach, M.; Bornemann, J.; Gbureck, U.; Ehling, J.; Lammers, T.; Heymann, F.; Gassler, N.; et al. Peptide-Functionalized Gold Nanorods Increase Liver Injury in Hepatitis. ACS Nano 2012, 6, 8767–8777. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.C.; Rippstein, P.; Tayabali, A.F.; Willmore, W.G. Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes. Toxicol. Sci. 2015, 146, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Maurer, L.L.; Meyer, J.N. A Systematic Review of Evidence for Silver Nanoparticle-Induced Mitochondrial Toxicity. Env. Sci. Nano 2016, 3, 311–322. [Google Scholar] [CrossRef]
- Kuang, H.; Yang, P.; Yang, L.; Aguilar, Z.P.; Xu, H. Size Dependent Effect of ZnO Nanoparticles on Endoplasmic Reticulum Stress Signaling Pathway in Murine Liver. J. Hazard. Mater. 2016, 317, 119–126. [Google Scholar] [CrossRef]
- Yu, K.-N.; Sung, J.H.; Lee, S.; Kim, J.-E.; Kim, S.; Cho, W.-Y.; Lee, A.Y.; Park, S.J.; Lim, J.; Park, C.; et al. Inhalation of Titanium Dioxide Induces Endoplasmic Reticulum Stress-Mediated Autophagy and Inflammation in Mice. Food Chem. Toxicol. 2015, 85, 106–113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, J.S.; Ivkov, R.; Sharma, A. Nanoparticle-Based Interventions for Liver Transplantation. Int. J. Mol. Sci. 2023, 24, 7496. https://doi.org/10.3390/ijms24087496
Rao JS, Ivkov R, Sharma A. Nanoparticle-Based Interventions for Liver Transplantation. International Journal of Molecular Sciences. 2023; 24(8):7496. https://doi.org/10.3390/ijms24087496
Chicago/Turabian StyleRao, Joseph Sushil, Robert Ivkov, and Anirudh Sharma. 2023. "Nanoparticle-Based Interventions for Liver Transplantation" International Journal of Molecular Sciences 24, no. 8: 7496. https://doi.org/10.3390/ijms24087496
APA StyleRao, J. S., Ivkov, R., & Sharma, A. (2023). Nanoparticle-Based Interventions for Liver Transplantation. International Journal of Molecular Sciences, 24(8), 7496. https://doi.org/10.3390/ijms24087496