An Overview of Factors Affecting the Functional Quality of Common Wheat (Triticum aestivum L.)
Abstract
:1. Introduction
2. Factors Affecting Quality Traits of Common Wheat
3. The Main Groups of Genes Responsible for Wheat Quality Traits
3.1. Starch Properties—Waxy (Wx) Genes
3.2. Lipoxygenase Activity—LOX Genes
3.3. Polyphenol Oxidase Activity—PPOs—Polyphenol Oxidase Genes
3.4. Puroindoline Genes
4. The Impact of Environmental Factors on Quality Traits of Common Wheat
4.1. Influence of Temperature
4.2. Influences of Drought and Water Availability
4.3. Influence of Nitrogen
4.4. Influence of Sulfur
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D-PAGE | two-dimensional polyacrylamide gel electrophoresis |
Arg | arginine |
Asn | asparagine |
Asp | aspartic acid |
Cys | cysteine |
GBSSI/Waxy | granule-bound starch synthase I |
GMP | glutenin (gluten) macropolymer |
Gsp-1 | grain softness protein—1 |
HMW-GS | high molecular weight subunits |
LMW-GS | low molecular weight subunits |
Locus Ha | locus Hardness |
Locus Wx | locus Waxy |
LOX | lipoxygenase |
LOX | lipoxygenase gene |
Lys | lysine |
Met | methionine |
NIR | near-infrared reflectance |
PCR | polymerase chain reaction |
PINA | puroindoline a |
PINB | puroindoline b |
PPOs | polyphenol oxidases |
PSI | particle size index |
QTL | quantitative trait loci/locus |
SBEI/ SGP-2 | starch branching enzyme I |
SBEIIa | starch branching enzyme IIa |
SBEIIb | starch branching enzyme IIb |
SDS-PAGE | sodium dodecyl sulfate–polyacrylamide gel electrophoresis |
SGP | starch granule proteins |
SH group | thiol group |
SKCS | single kernel characterization system |
SS bond | disulfide bond |
SSI/SGP-3 | starch synthase I |
SSII/SGP-1 | starch synthase II |
SSIII | starch synthase III |
Thr | threonine |
Wx/Waxy | waxy protein |
Appendix A
Allele Designation | Mutation Type | Genbank Accession | References |
---|---|---|---|
Pina-D1 | Wild type | T. aestivum (X69914) | [213] |
Pina-D1a | Wild type | T. aestivum (DQ33911) T. aestivum (CR626934) | [111] [214] |
Pina-D1b | Gene deletion (deletion of 15-kbp) | T. aestivum (NA) | [103,215] |
Pina-D1c | One SNP (G257A) CGG > CAG | Ae. tauschii (AY252031) | [216] |
Pina-D1d | Two SNPs: G57A (GCG > GCA…SM for Ala) and G257A (CGG > CAG) | Ae. tauschii (AY252043) | [216] |
Pina-D1e | Two SNPs: C66T (AGC > AGT…SM for Ser) and G257A (CGG > CAG) | Ae. tauschii (AY252034) | [216] |
Pina-D1f | Three SNPs: G57A (GCG > GCA…SM for Ala); G156A (CTG > CTA…SM for Leu) G257A (CGG > CAG) | T. aestivum (AY251998) | [216] |
Pina-D1g | SNP. C321G (CTC > CTG…SM for Leu) | Ae. tauschii (AY252029) | [216] |
Pina-D1h | Two SNPs: G57T (GCG > GCT…SM for Ala) and G257A (CGG > CAG) | Synthetic wheat (AY573898) | [217] |
Pina-D1i | Two SNPs: G147C (AGG > AGC) G257A (CGG > CAG) | Synthetic wheat (AY573899) | [217] |
Pina-D1j | Three SNPs: G57A (GCG > GCA…SM for Ala) G257A (CGG > CAG) C407G (CCT > CGT) | Synthetic wheat (AY573900) | [217] |
Pina-D1k | Multiple deletions (Pina-D1b/PinbD1h(t)) ‘double null’ ‘double null’ | T. aestivum Red Egyptian 5D (NA) T. aestivum Chosen 68 (NA) T. aestivum Gaiyuerui (NA) T. aestivum KT020-584 (NA) | [95] [118] [218] [119] |
Pina-D1l | One-base deletion of C265 (CAA > AAA) | T. aestivum Fortuna, Glenman (NA) T. aestivum 5 Chinese varieties (NA) | [219] [220] |
Pina-D1m | One SNP. C187T (CCG > TCG) | T. aestivum 1 Chinese variety (EF620907) | [220] |
Pina-D1n | One SNP. G212A (TGG > TAG) | T. aestivum 5 Chinese varieties (EF620908) | [220] |
Pina-D1o | Two SNPs:T30C (CTT > CTC) SM for Leu. and G257A (CGG > CAG) | T. tauschii RM0182 (AY608595) | [220] |
Pina-D1p | One SNP. T38A (GTA > GAA) One base deletion of C411 (CCC > CCT) | T. aestivum Jing 771 (AY599893) | [220,221] |
Pina-D1q | α2, Pina-D1p Two SNPs: C417A (AAC > AAA) and A418C(ATC > CTC) | T. aestivum μu-27 (AB181238) | [218] |
Pina-D1r | Gene deletion. Deletion of 4.4-kbp | T. aestivum—1 Korean and 2 Chinese varieties (NA) | [215] |
Pina-D1s | Gene deletion. Deletion of 10.4-kbp | T. aestivum—3 Chinese and 9 Japanese varieties (NA) | [215] |
Pina-D1t | One SNP. G207A (TGG > TGA) | T. aestivum (JN680739) | [222] |
Pina-D1u | Gene deletion. Deletion of 10.6-kbp | Chinese spring (CT009735) | [101] |
Pina-D1v | Gene deletion. | Chinese spring | [101] |
Pina-D1 | One SNP. C41T (GCG > GTG) | Cultivar HS277 | [223] |
Pina-D1w | Two SNPs: G156A (CTG > CTA…SM for Leu) > G257A (CGG > CAG) | Synthetic wheat | [224] |
Pina-D1w | Two SNPs: G65C (AGC > ACC) and A86G (GAT > GGT) | Cultivar Sarbati Sonora | [223] |
Pina-D1x | Three SNPs: G257A (CGG > CAG); C330T (ATC > ATT… SM for Ile) and C333T (TTC > TTT… SM for Phe) | Synthetic wheat | [224] |
Pina-D1y | Two SNPs: G242T (GGG > GTG) and G257A (CGG > CAG) | Synthetic wheat | [224] |
Allele Designation | Mutation Type | Genbank Accession | References |
---|---|---|---|
Pinb-D1 | Wild type | T. aestivum (X69912) | [213] |
Pinb-D1a | Wild type | T. aestivum (DQ363913) | [111] |
Pinb-D1b | One SNP (G223A) GGC > AGC | T. aestivum (DQ363914) T. aestivum (CR626934) | [111] [214] |
Pinb-D1c | One SNP (T266C) CTG > CCG | T. aestivum (NA) | [109] |
Pinb-D1d | One SNP (T217A) TGG > AGG | T. aestivum (NA) | [109] |
Pinb-D1e | One SNP (G204A) TGG > TGA | T. aestivum (NA) | [103] |
Pinb-D1f | One SNP (G219A) TGG > TGA | T. aestivum (NA) | [103] |
Pinb-D1g | One SNP (C255A) TGC > TGA | T. aestivum (NA) | [103] |
(Pina-D1k) | Multiple deletions (Pinb-D1h(t)) | T. aestivum—3 Korean and 2 North American varieties | [118] |
Pinb-D1h | 48 SNPs—14 amino acid substitutions | Ae. tauschii (AY251983) | [216] |
Pinb-D1i | 30 SNPs 14 amino acid substitutions Pinb-D1w Allele 2, Pinb-D1w | Ae. tauschii (AY251989) Ae. tauschii TA1704, TA2381 (AY649747) Ae. tauschii Q03-002 (DQ257533) Ae. tauschii CR626926 | [216] [103] [225] [226,227] [214] |
Pinb-D1j | 19 SNPs—9 amino acid substitutions | Ae. tauschii (AY251962) | [216] |
Pinb-D1k | 31 SNPs—14 amino acid substitutions | Ae. tauschii (AJ302108) | [228] |
Pinb-D1l | One SNP (A220G) AAG > GAG | T. aestivum GaoCheng 8901 (NA) | [229] |
Pinb-D1m | 28 SNPs—14 amino acid substitutions | Synthetic wheat (AY573901) | [217] |
Pinb-D1n | 29 SNPs—14 amino acid substitutions | Synthetic wheat (AY573902) | [217] |
Pinb-D1o | 28 SNPs—14 amino acid substitutions | Synthetic wheat (AY573903) | [217] |
Pinb-D1p | One base deletion of A213—reading frame shift (AAA > AAT), then stop codon at position 60 Pinb-D1i(t), Pinb-D1v Pinb-D1z b3, Pib-D1u | T. aestivum several Chinese varieties (NA) T. aestivum Chinese landrace Qingdao 1 T. aestivum dahuangpi (AY581889) T. aestivum dahuangpi (AB177391) | [230] [118] [218] |
Pinb-D1q | One SNP (G218T) TGG > TTG | T. aestivum Chinese variety Jingdong 11 (EF620909) | [226] |
(Pina-D1k) | Gene Pinb-D1q deletion | T. aestivum CS (Red Egyptian 5D) (NA) | [95,221] |
Pinb-D1r | One base deletion of A128—reading frame shift (GAG > GGC), then stop codon at position 48 Pinb-D1h | T. aestivum Hyb65 (AJ619022) | [113,221] |
Pinb-D1s | One base deletion of A128 + one SNP (G204A) TGG > TGA—reading frame shift (GAG > GGC), then stop codon at position 48 Pinb-D1h | T. aestivum NI5439 (AJ619021) | [113,221] |
Pinb-D1t | One SNP (G226C) GGC > CGC | T. aestivum Guangtouxiamai (EF620910) | [220] |
Pinb-D1u | One base deletion of G127—reading frame shift (GAG > AGC), then stop codon at position 18 | T. aestivum spp. yunnanense Tiekemai (EF620911) | [100] |
Pinb-D1v | Two SNPs: G22A (GCT > ACT) and C25A (CTC > ATC) in the leader peptide b5, Pinb-D1y | T. aestivum Tachun 3 (AY598029) T. aestivum (AB177390) | [218] [221] |
Pinb-D1w | One SNP (G431T) AGT > ATT | T. aestivum Jing 771 (AY640304) | [218] |
Pinb-D1aa | One base deletion of A213 + one SNP (C96A) GGC > GGA—reading frame shift (AAA > AAT), then stop codon at position 60 | T. aestivum Changmangtoulongbai (EF620912) | [231] |
Pinb-D1ab | One SNP (C382T) CAG > TAG—stop codon at position 99 | T. aestivum KU3062, KU3069 (AB302894) | [119] |
Pinb-D1ac | Two SNPs: G257T (TGC > TTC) and C382T (CAG > TAG)—stop codon at position 99 | Chinese wheat cultivar | [101] |
Pinb-D1ad | One SNP (T92C) GTT > GCT | WH1073 | [223] |
Pinb-D1ae | One SNP (T93A) GTT > GTA…SM for Val | DBW17 | [223] |
Pinb-D1af | One SNP (G232T) GAG > TAG—stop codon at position 49 | K53, NP715 | [223] |
Pinb-D1ag | One SNP (T371C) CTT > CCT | K0710 | [223] |
Kernel Phenotype | Genotype Pina-D1/Pinb-D1 | Molecular Change | References |
---|---|---|---|
Soft | Pina-D1a/Pinb-D1a | Wild type | [101] |
Hard | Pina-D1b/Pinb-D1a | 15,380 bp delection | [101] |
Pina-D1k/- | ≈33 kb deletion | [101] | |
Pina-D1l/Pinb-D1a | ORF shift: C deletion at position 265 of Pinb | [101] | |
Pina-D1m/Pinb-D1a | Pro-35→Ser | [101] | |
Pina-D1n/Pinb-D1a | Trp-43→Stop codon | [218] | |
Pina-D1p/Pinb-D1a | Val-13→Glu | [218] | |
Pina-D1r/Pinb-D1a | 10,415 bp deletion | [218] | |
Pina-D1q/Pinb-D1a | Asn-139→Lys; Ile-140→Leu | [101] | |
Pina-D1s/Pinb-D1a | 4422 bp deletion | [222] | |
Pina-D1t/Pinb-D1a | Trp-41→Stop codon | [101] | |
Pina-D1u/Pinb-D1a | 6640 bp deletion | [101] | |
Pina-D1a/Pinb-D1b | GGC→AGC, Gly-46 to Ser-46 | [101] | |
Pina-D1a/Pinb-D1c | CTG→CCG, Leu-60 to Pro-60 | [109] | |
Pina-D1a/Pinb-D1d | TGG→AGG, Trp-44 to Arg-44 | [109] | |
Pina-D1a/Pinb-D1e | TGG→TGA, Trp-39 to stop codon | [103] | |
Pina-D1a/Pinb-D1f | TGG→TGA, Trp-44 to stop codon | [103] | |
Pina-D1a/Pinb-D1g | TGC→TGA, Cys-56 to stop codon | [103] | |
Pina-D1a/Pinb-D1p | ORF shift: A deletion at position 210 of Pinb | [230] | |
Pina-D1a/Pinb-D1q | Ser-44→Leu | [115] | |
Pina-D1a/Pinb-D1r | ORF shift: G insertion at position 127 | [115] | |
Pina-D1a/Pinb-D1s | ORF shift: G insertion and C→A at position 205 | [101] | |
Pina-D1a/Pinb-D1t | Gly-47→Arg | [101] | |
Pina-D1a/Pinb-D1u | ORF shift: G insertion at position 126 | [218] | |
Pina-D1a/Pinb-D1v | Leu-9→Ile | [218] | |
Pina-D1a/Pinb-D1w | Pro-114→Ile | [218] | |
Pina-D1a/Pinb-D1x | C→A at position 257 and A deletion at position 210 | [114] | |
Pina-D1a/Pinb-D1aa | ORF shift: C→A at position 96 and A deletion at position 210 | [101] | |
Pina-D1a/Pinb-D1ab | Gln-99→Stop codon | [119] | |
Pina-D1a/Pinb-D1ac | G→T at position 257 and Gln-99→stop codon | [101] |
References
- Goutam, U.; Kukreja, S.; Tiwari, R.; Chaudhury, A.; Gupta, R.K.; Dholakia, B.B.; Yadav, R. Biotechnological Approaches for Grain Quality Improvement in Wheat: Present Status and Future Possibilities. Aust. J. Crop. Sci. 2013, 7, 469–483. [Google Scholar]
- Battenfield, S.D.; Sheridan, J.L.; Silva, L.D.C.E.; Miclaus, K.J.; Dreisigacker, S.; Wolfinger, R.D.; Peña, R.J.; Singh, R.P.; Jackson, E.W.; Fritz, A.K.; et al. Breeding-assisted genomics: Applying meta-GWAS for milling and baking quality in CIMMYT wheat breeding program. PLoS ONE 2018, 13, e0204757. [Google Scholar] [CrossRef] [PubMed]
- Gil-Humanes, J.; Pistón, F.; Shewry, P.R.; Tosi, P.; Barro, F. Suppression of gliadins results in altered protein body morphology in wheat. J. Exp. Bot. 2011, 62, 4203–4213. [Google Scholar] [CrossRef] [PubMed]
- Balla, K.; Rakszegi, M.; Li, Z.; Békés, F.; Bencze, S.; Veisz, O. Quality of Winter Wheat in Relation to Heat and Drought Shock after Anthesis. Czech J. Food Sci. 2011, 29, 117–128. [Google Scholar] [CrossRef]
- Guzmán, C.; Alvarez, J.B. Wheat Waxy Proteins: Polymorphism, Molecular Characterization and Effects on Starch Properties. Theor. Appl. Genet. 2016, 129, 1–16. [Google Scholar] [CrossRef]
- Onipe, O.O.; Jideani, A.I.O.; Beswa, D. Composition and Functionality of Wheat Bran and Its Application in Some Cereal Food Products. Int. J. Food Sci. Technol. 2015, 50, 2509–2518. [Google Scholar] [CrossRef]
- Dupont, F.M.; Altenbach, S.B. Molecular and Biochemical Impacts of Environmental Factors on Wheat Grain Development and Protein Synthesis. J. Cereal Sci. 2003, 38, 133–146. [Google Scholar] [CrossRef]
- Chung, O.K.; Ohm, J.B.; Ram, M.S.; Park, S.H.; Howitt, C.A. Wheat Lipids. In Wheat: Chemistry and Technology: Fourth Edition; Shewry Peter, R., Ed.; Associate of Cereal Chemists International: Washington, DC, USA, 2009; pp. 363–399. [Google Scholar]
- Woźniak, A.; Rachoń, L. Effect of Tillage Systems on the Yield and Quality of Winter Wheat Grain and Soil Properties. Agriculture 2020, 10, 405. [Google Scholar] [CrossRef]
- Dreisigacker, S.; Xiao, Y.; Sehgal, D.; Guzman, C.; He, Z.; Xia, X.; Peña, R.J. SNP markers for low molecular glutenin subunits (LMW-GSs) at the Glu-A3 and Glu-B3 loci in bread wheat. PLoS ONE 2020, 15, e0233056. [Google Scholar] [CrossRef]
- Naeem, H.A.; Paulon, D.; Irmak, S.; MacRitchie, F. Developmental and Environmental Effects on the Assembly of Glutenin Polymers and the Impact on Grain Quality of Wheat. J. Cereal Sci. 2012, 56, 51–57. [Google Scholar] [CrossRef]
- Dhaka, V.; Khatkar, B.S. Effects of Gliadin/Glutenin and HMW-GS/LMW-GS Ratio on Dough Rheological Properties and Bread-Making Potential of Wheat Varieties. J. Food Qual. 2015, 38, 71–82. [Google Scholar] [CrossRef]
- Mihàlikovà, D.; Gàlovà, Z.; Petrovičovà, L.; Chňapek, M. Polymorphism of Proteins in Selected Slovak Winter Wheat Genotypes Using SDS-PAGE. J. Cent. Eur. Agric. 2016, 17, 970–985. [Google Scholar] [CrossRef]
- Torbica, A.; Mastilović, J. Influence of Different Factors on Wheat Proteins Quality. Food Process. Qual. Saf. 2008, 35, 47–52. [Google Scholar]
- Nadeem, M.; Anjum, F.M.; Khan, M.R.; Sajjad, M.; Hussain, S.; Arshad, M.S. Electrophoretic Characteristics of Gluten Proteins as Influenced by Crop Year and Variety. Int. J. Food Prop. 2016, 19, 897–910. [Google Scholar] [CrossRef]
- Yamamori, M.; Quynh, N.T. Differential Effects of Wx-A1, -B1 and -D1 Protein Deficiencies on Apparent Amylose Content and Starch Pasting Properties in Common Wheat. Theor. Appl. Genet. 2000, 100, 32–38. [Google Scholar] [CrossRef]
- Finnie, S.; Atwell, W.A. Composition of Commercial Flour. In Wheat Flour; Sean, F., Atwell William, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 31–48. [Google Scholar]
- Hurkman, W.J.; McCue, K.F.; Altenbach, S.B.; Korn, A.; Tanaka, C.K.; Kothari, K.M.; Johnson, E.L.; Bechtel, D.B.; Wilson, J.D.; Anderson, O.D.; et al. Effect of Temperature on Expression of Genes Encoding Enzymes for Starch Biosynthesis in Developing Wheat Endosperm. Plant. Sci. 2003, 164, 873–881. [Google Scholar] [CrossRef]
- Qin, P.; Kong, Z.; Liu, Y. Effects of the Wx Gene on Starch Biosynthesis, Physicochemical Wheat Flour Properties, and Dry Noodle Quality. Food Sci. Technol. Res. 2018, 24, 443–453. [Google Scholar] [CrossRef]
- Lloyd, J.R. The A to B of starch granule formation in wheat endosperm. J. Exp. Bot. 2020, 71, 1–3. [Google Scholar] [CrossRef]
- Yan, L.; Bhave, M.; Fairclough, R.; Konik, C.; Rahman, S.; Appels, R. The genes encoding granule-bound starch synthases at the waxy loci of the A, B, and D progenitors of common wheat. Genome 2000, 43, 264–272. [Google Scholar] [CrossRef]
- Hellemans, T.; Nekhudzhiga, H.; van Bockstaele, F.; Wang, Y.J.; Emmambux, M.N.; Eeckhout, M. Variation in Amylose Concentration to Enhance Wheat Flour Extrudability. J. Cereal Sci. 2020, 95, 102992. [Google Scholar] [CrossRef]
- Nakamura, T.; Vrinten, P.; Saito, M.; Konda, M. Rapid Classification of Partial Waxy Wheats Using PCR-Based Markers. Genome 2002, 45, 1150–1156. [Google Scholar] [CrossRef] [PubMed]
- Yamamori, M.; Yamamoto, K. Effects of Two Novel Wx-A1 Alleles of Common Wheat (Triticum aestivum L.) on Amylose and Starch Properties. J. Cereal Sci. 2011, 54, 229–235. [Google Scholar] [CrossRef]
- Araki, E.; Miura, H.; Sawada, S. Differential Effects of the Null Alleles at the Three Wx Loci on the Starch-Pasting Properties of Wheat. Theor. Appl. Genet. 2000, 100, 1113–1120. [Google Scholar] [CrossRef]
- Miura, H.; Tanii, S.; Nakamura, T.; Watanabe, N. Genetic Control of Amylose Content in Wheat Endosperm Starch and Differential Effects of Three Wx Genes. Theor. Appl. Genet. 1994, 89, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Hu, Y.; Hu, M.; Sun, L.; Chen, X.; Li, Q.; Wang, P.; Wang, L.; Zhang, Y.; Li, H. Identification and Molecular Characterization of Mutant Line Deficiency in Three Waxy Proteins of Common Wheat (Triticum aestivum L.). Sci. Rep. 2021, 11, 3510. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Vrinten, P.; Nakamura, T. DNA Markers for Identifying Waxy Mutations and Improving Noodle Quality in Wheat. Jpn. Agric. Res. Q. 2010, 44, 109–115. [Google Scholar] [CrossRef]
- Purna, G.S.K.; Miller, R.A.; Seib, P.A.; Graybosch, R.A.; Shi, Y.-C. Volume, Texture, and Molecular Mechanism behind the Collapse of Bread Made with Different Levels of Hard Waxy Wheat Flours. J. Cereal Sci. 2011, 54, 37–43. [Google Scholar] [CrossRef]
- Guzmán, C.; Caballero, L.; Martín, L.M.; Alvarez, J.B. Waxy Genes from Spelt Wheat: New Alleles for Modern Wheat Breeding and New Phylogenetic Inferences about the Origin of This Species. Ann. Bot. 2012, 110, 1161–1171. [Google Scholar] [CrossRef]
- Hatcher, D.W.; Anderson, M.J.; Desjardins, R.G.; Edwards, N.M.; Dexter, J.E. Effects of Flour Particle Size and Starch Damage on Processing and Quality of White Salted Noodles. Cereal Chem. J. 2002, 79, 64–71. [Google Scholar] [CrossRef]
- Saito, M.; Vrinten, P.; Ishikawa, G.; Graybosch, R.; Nakamura, T. A Novel Codominant Marker for Selection of the Null Wx-B1 Allele in Wheat Breeding Programs. Mol. Breed. 2009, 23, 209–217. [Google Scholar] [CrossRef]
- Guo, G.; Jackson, D.S.; Graybosch, R.A.; Parkhurst, A.M. Asian Salted Noodle Quality: Impact of Amylose Content Adjustments Using Waxy Wheat Flour. Cereal Chem. J. 2003, 80, 437–445. [Google Scholar] [CrossRef]
- Peng, S.; Tang, Q.; Zou, Y. Current Status and Challenges of Rice Production in China. Plant. Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef]
- Baik, B.-K.; Lee, M.-R. Effects of Starch Amylose Content of Wheat on Textural Properties of White Salted Noodles. Cereal Chem. J. 2003, 80, 304–309. [Google Scholar] [CrossRef]
- Morita, N.; Maeda, T.; Miyazaki, M.; Yamamori, M.; Miura, H.; Ohtsuka, I. Effect of Substitution of Waxy-Wheat Flour for Common Flour on Dough and Baking Properties. Food Sci. Technol. Res. 2002, 8, 119–124. [Google Scholar] [CrossRef]
- Van Hung, P.; Maeda, T.; Morita, N. Dough and Bread Qualities of Flours with Whole Waxy Wheat Flour Substitution. Food Res. Int. 2007, 40, 273–279. [Google Scholar] [CrossRef]
- Hessler, T.G.; Thomson, M.J.; Benscher, D.; Nachit, M.M.; Sorrells, M.E. Association of a Lipoxygenase Locus, Lpx-B1, with Variation in Lipoxygenase Activity in Durum Wheat Seeds. Crop. Sci. 2002, 42, 1695–1700. [Google Scholar] [CrossRef]
- Wei, C.Y.; Zhu, D.; Nyström, L. Improving Wholegrain Product Quality by Selecting Lipid-Stable Wheat Varieties. Food Chem. 2021, 345, 128683. [Google Scholar] [CrossRef]
- Doblado-Maldonado, A.F.; Pike, O.A.; Sweley, J.C.; Rose, D.J. Key Issues and Challenges in Whole Wheat Flour Milling and Storage. J. Cereal Sci. 2012, 56, 119–126. [Google Scholar] [CrossRef]
- Guo, M.; Jin, Y.; Du, J.; Zhang, K.; Zhao, D. Effects of Wheat Protein Compositions on Malt Quality. Qual. Assur. Saf. Crops Foods 2014, 6, 73–80. [Google Scholar] [CrossRef]
- Bahal, G.; Sudha, M.L.; Ramasarma, P.R. Wheat Germ Lipoxygenase: Its Effect on Dough Rheology, Microstructure, and Bread Making Quality. Int. J. Food Prop. 2013, 16, 1730–1739. [Google Scholar] [CrossRef]
- Pescador-Piedra, J.C.; Garrido-Castro, A.; Chanona-Pérez, J.; Farrera-Rebollo, R.; Gutiérrez-López, G.; Calderón-Domínguez, G. Effect of the Addition of Mixtures of Glucose Oxidase, Peroxidase and Xylanase on Rheological and Breadmaking Properties of Wheat Flour. Int. J. Food Prop. 2009, 12, 748–765. [Google Scholar] [CrossRef]
- Feng, B.; Dong, Z.; Xu, Z.; An, X.; Qin, H.; Wu, N.; Wang, D.; Wang, T. Molecular Analysis of Lipoxygenase (LOX) Genes in Common Wheat and Phylogenetic Investigation of LOX Proteins from Model and Crop Plants. J. Cereal Sci. 2010, 52, 387–394. [Google Scholar] [CrossRef]
- Permyakova, M.D.; Trufanov, V.A.; Pshenichnikova, T.A.; Ermakova, M.F. Role of Lipoxygenase in the Determination of Wheat Grain Quality. Appl. Biochem. Microbiol. 2010, 46, 87–92. [Google Scholar] [CrossRef]
- Mares, D.J.; Cheong, J.; Goonetilleke, S.N.; Mather, D.E. Lipoxygenase in Wheat: Genetic Control and Impact on Stability of Lutein and Lutein Esters. Foods 2021, 10, 1149. [Google Scholar] [CrossRef]
- Rani, K.U.; Prasada Rao, U.J.S.; Leelavathi, K.; Haridas Rao, P. Distribution of Enzymes in Wheat Flour Mill Streams. J. Cereal Sci. 2001, 34, 233–242. [Google Scholar] [CrossRef]
- Garbus, I.; Soresi, D.; Romero, J.; Echenique, V. Identification, Mapping and Evolutionary Course of Wheat Lipoxygenase-1 Genes Located on the A Genome. J. Cereal Sci. 2013, 58, 298–304. [Google Scholar] [CrossRef]
- Feng, B.; Dong, Z.; Xu, Z.; Wang, D.; Wang, T. Molecular Characterization of a Novel Type of Lipoxygenase (LOX) Gene from Common Wheat (Triticum aestivum L.). Mol. Breed. 2012, 30, 113–124. [Google Scholar] [CrossRef]
- Geng, H.; Xia, X.; Zhang, L.; Qu, Y.; He, Z. Development of Functional Markers for a Lipoxygenase Gene TaLox-B1 on Chromosome 4BS in Common Wheat. Crop. Sci. 2012, 52, 568–576. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, F.; Wu, P.; Zhang, N.; Cui, D. Molecular Characterization of Lipoxygenase Genes on Chromosome 4BS in Chinese Bread Wheat (Triticum aestivum L.). Theor. Appl. Genet. 2015, 128, 1467–1479. [Google Scholar] [CrossRef]
- Collar, C.; Martínez, J.C.; Rosell, C.M. Lipid Binding of Fresh and Stored Formulated Wheat Breads. Relationships with Dough and Bread Technological Performance. Food Sci. Technol. Int. 2001, 7, 501–510. [Google Scholar] [CrossRef]
- Viswanath, K.K.; Varakumar, P.; Pamuru, R.R.; Basha, S.J.; Mehta, S.; Rao, A.D. Plant Lipoxygenases and Their Role in Plant Physiology. J. Plant. Biol. 2020, 63, 83–95. [Google Scholar] [CrossRef]
- Leenhardt, F.; Lyan, B.; Rock, E.; Boussard, A.; Potus, J.; Chanliaud, E.; Remesy, C. Wheat Lipoxygenase Activity Induces Greater Loss of Carotenoids than Vitamin E during Breadmaking. J. Agric. Food Chem. 2006, 54, 1710–1715. [Google Scholar] [CrossRef] [PubMed]
- Lamsal, B.P.; Faubion, J.M. Effect of an Enzyme Preparation on Wheat Flour and Dough Color, Mixing, and Test Baking. LWT-Food Sci. Technol. 2009, 42, 1461–1467. [Google Scholar] [CrossRef]
- Sidhu, J.; Nordin, P.; Hoseney, R. Mixograph Studies. III. Reaction of Fumaric Acid with Gluten Proteins during Dough Mixing. Cereal Chem. 1980, 57, 159–163. [Google Scholar]
- Morris, C.F.; Jeffers, H.C.; Engle, D.A. Effect of Processing, Formula and Measurement Variables on Alkaline Noodle Color—Toward An Optimized Laboratory System. Cereal Chem. J. 2000, 77, 77–85. [Google Scholar] [CrossRef]
- Raman, R.; Raman, H.; Martin, P. Functional Gene Markers for Polyphenol Oxidase Locus in Bread Wheat (Triticum aestivum L.). Mol. Breed. 2007, 19, 315–328. [Google Scholar] [CrossRef]
- Wang, X.B.; Ma, C.X.; Si, H.Q.; Qiao, Y.Q.; Chang, C.; He, X.F.; Xia, Y.X. Gene Markers for Grain Polyphenol Oxidase Activity in Common Wheat. Mol. Breed. 2009, 23, 163–170. [Google Scholar] [CrossRef]
- Anderson, J.V.; Morris, C.F. An Improved Whole-Seed Assay for Screening Wheat Germplasm for Polyphenol Oxidase Activity. Crop. Sci. 2001, 41, 1697–1705. [Google Scholar] [CrossRef]
- Naqvi, S.M.S.; Batool, I.; Farooq, M.U.; Deeba, F.; Hyder, M.Z.; Mahmood, T. Polyphenol Oxidase Activities in Wheat (Triticum aestivum L.). Grain. Pak. J. Bot. 2013, 45, 407–410. [Google Scholar]
- Jukanti, A.K.; Bruckner, P.L.; Fischer, A.M. Evaluation of Wheat Polyphenol Oxidase Genes. Cereal Chem. J. 2004, 81, 481–485. [Google Scholar] [CrossRef]
- Li, L.; Steffens, J. Overexpression of Polyphenol Oxidase in Transgenic Tomato Plants Results in Enhanced Bacterial Disease Resistance. Planta 2002, 215, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Massa, A.N.; Beecher, B.; Morris, C.F. Polyphenol Oxidase (PPO) in Wheat and Wild Relatives: Molecular Evidence for a Multigene Family. Theor. Appl. Genet. 2007, 114, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.-J.; Han, X.-H.; Xiao, X.-G. Purification and Characterisation of Polyphenol Oxidase from Red Swiss Chard (Beta Vulgaris Subspecies Cicla) Leaves. Food Chem. 2009, 117, 342–348. [Google Scholar] [CrossRef]
- Kihara, T.; Murata, M.; Homma, S.; Kaneko, S.; Komae, K. Purification and Characterization of Wheat (Triticum aestivum) Polyphenol Oxidase. Food Sci. Technol. Res. 2005, 11, 87–94. [Google Scholar] [CrossRef]
- Anderson, J.V.; Fuerst, E.P.; Hurkman, W.J.; Vensel, W.H.; Morris, C.F. Biochemical and Genetic Characterization of Wheat (Triticum spp.) Kernel Polyphenol Oxidases. J. Cereal Sci. 2006, 44, 353–367. [Google Scholar] [CrossRef]
- Fuerst, E.P.; Xu, S.S.; Beecher, B. Genetic Characterization of Kernel Polyphenol Oxidases in Wheat and Related Species. J. Cereal Sci. 2008, 48, 359–368. [Google Scholar] [CrossRef]
- Jukanti, A.K.; Bruckner, P.L.; Fischer, A.M. Molecular and Biochemical Characterisation of Polyphenol Oxidases in Developing Kernels and Senescing Leaves of Wheat (Triticum aestivum). Funct. Plant. Biol. 2006, 33, 685–696. [Google Scholar] [CrossRef]
- Demeke, T.; Morris, C.F.; Campbell, K.G.; King, G.E.; Anderson, J.A.; Chang, H. Wheat Polyphenol Oxidase. Crop. Sci. 2001, 41, 1750–1757. [Google Scholar] [CrossRef]
- Raman, R.; Raman, H.; Johnstone, K.; Lisle, C.; Smith, A.; Matin, P.; Allen, H. Genetic and in Silico Comparative Mapping of the Polyphenol Oxidase Gene in Bread Wheat (Triticum aestivum L.). Funct. Integr. Genom. 2005, 5, 185–200. [Google Scholar] [CrossRef]
- Taranto, F.; Mangini, G.; Miazzi, M.M.; Stevanato, P.; de Vita, P. Polyphenol Oxidase Genes as Integral Part of the Evolutionary History of Domesticated Tetraploid Wheat. Genomics 2021, 113, 2989–3001. [Google Scholar] [CrossRef]
- Zhang, L.; Ge, X.; He, Z.; Wang, D.; Yan, J.; Xia, X.; Sutherland, M.W. Mapping QTLs for Polyphenol Oxidase Activity in a DH Population from Common Wheat. Acta Agron. Sin. 2005, 31, 7–10. [Google Scholar]
- He, X.Y.; He, Z.H.; Zhang, L.P.; Sun, D.J.; Morris, C.F.; Fuerst, E.P.; Xia, X.C. Allelic Variation of Polyphenol Oxidase (PPO) Genes Located on Chromosomes 2A and 2D and Development of Functional Markers for the PPO Genes in Common Wheat. Theor. Appl. Genet. 2007, 115, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Beecher, B.S.; Carter, A.H.; See, D.R. Genetic Mapping of New Seed-Expressed Polyphenol Oxidase Genes in Wheat (Triticum aestivum L.). Theor. Appl. Genet. 2012, 124, 1463–1473. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Zhang, H.-P.; Xu, J.; You, M.-S.; Li, B.-Y.; Liu, G.-T. Variation in Two PPO Genes Associated with Polyphenol Oxidase Activity in Seeds of Common Wheat. Euphytica 2007, 154, 181–193. [Google Scholar] [CrossRef]
- Nilthong, S.; Graybosch, R.A.; Baenziger, P.S. Enzyme Activity in Wheat Breeding Lines Derived from Matings of Low Polyphenol Oxidase Parents. Euphytica 2013, 190, 65–73. [Google Scholar] [CrossRef]
- Hystad, S.M.; Martin, J.M.; Graybosch, R.A.; Giroux, M.J. Genetic Characterization and Expression Analysis of Wheat (Triticum aestivum) Line 07OR1074 Exhibiting Very Low Polyphenol Oxidase (PPO) Activity. Theor. Appl. Genet. 2015, 128, 1605–1615. [Google Scholar] [CrossRef]
- Martin, J.M.; Berg, J.E.; Hofer, P.; Kephart, K.D.; Nash, D.; Bruckner, P.L. Allelic Variation of Polyphenol Oxidase Genes Impacts on Chinese Raw Noodle Color. J. Cereal Sci. 2011, 54, 387–394. [Google Scholar] [CrossRef]
- Nilthong, S.; Graybosch, R.A.; Baenziger, P.S. Inheritance of Grain Polyphenol Oxidase (PPO) Activity in Multiple Wheat (Triticum aestivum L.) Genetic Backgrounds. Theor. Appl. Genet. 2012, 125, 1705–1715. [Google Scholar] [CrossRef]
- Taranto, F.; Mangini, G.; Pasqualone, A.; Gadaleta, A.; Blanco, A. Mapping and Allelic Variations of Ppo-B1 and Ppo-B2 Gene-Related Polyphenol Oxidase Activity in Durum Wheat. Mol. Breed. 2015, 35, 80. [Google Scholar] [CrossRef]
- Beecher, B.; Skinner, D.Z. Molecular Cloning and Expression Analysis of Multiple Polyphenol Oxidase Genes in Developing Wheat (Triticum aestivum L.) Kernels. J. Cereal Sci. 2011, 53, 371–378. [Google Scholar] [CrossRef]
- Ono, E.; Hatayama, M.; Isono, Y.; Sato, T.; Watanabe, R.; Yonekura-Sakakibara, K.; Fukuchi-Mizutani, M.; Tanaka, Y.; Kusumi, T.; Nishino, T.; et al. Localization of a Flavonoid Biosynthetic Polyphenol Oxidase in Vacuoles. Plant J. 2006, 45, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Beta, T.; Nam, S.; Dexter, J.E.; Sapirstein, H.D. Phenolic Content and Antioxidant Activity of Pearled Wheat and Roller-Milled Fractions. Cereal Chem. J. 2005, 82, 390–393. [Google Scholar] [CrossRef]
- Bottega, G.; Caramanico, R.; Lucisano, M.; Mariotti, M.; Franzetti, L.; Ambrogina Pagani, M. The Debranning of Common Wheat (Triticum aestivum L.) with Innovative Abrasive Rolls. J. Food Eng. 2009, 94, 75–82. [Google Scholar] [CrossRef]
- Mayer, A.M. Polyphenol Oxidases in Plants and Fungi: Going Places? A Review. Phytochemistry 2006, 67, 2318–2331. [Google Scholar] [CrossRef]
- Okot-Kotber, M.; Liavoga, A.; Yong, K.-J.; Bagorogoza, K. Activation of Polyphenol Oxidase in Extracts of Bran from Several Wheat (Triticum aestivum) Cultivars Using Organic Solvents, Detergents, and Chaotropes. J. Agric. Food Chem. 2002, 50, 2410–2417. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; He, Z.; Yang, J.; Zhang, Q. Polyphenol Oxidase Activities of Chinese Winter Wheat Cultivars and Correlations with Quality Characteristics. Acta Agron. Sin. 2003, 29, 481–485. [Google Scholar]
- Demeke, T.; Chang, H.-G.; Morris, C.F. Effect of Germination, Seed Abrasion and Seed Size on Polyphenol Oxidase Assay Activity in Wheat. Plant Breed. 2001, 120, 369–373. [Google Scholar] [CrossRef]
- Tu, M.; Li, Y. Toward the Genetic Basis and Multiple QTLs of Kernel Hardness in Wheat. Plants 2020, 9, 1631. [Google Scholar] [CrossRef]
- Morris, C.F. Puroindolines: The Molecular Genetic Basis of Wheat Grain Hardness. Plant. Mol. Biol. 2002, 48, 633–647. [Google Scholar] [CrossRef]
- Amoroso, M.G.; Longobardo, L.; Capparelli, R. Real Time RT-PCR and Flow Cytometry to Investigate Wheat Kernel Hardness: Role of Puroindoline Genes and Proteins. Biotechnol. Lett. 2004, 26, 1731–1737. [Google Scholar] [CrossRef]
- Wang, G.; Leonard, J.M.; Ross, A.S.; Peterson, C.J.; Zemetra, R.S.; Garland Campbell, K.; Riera-Lizarazu, O. Identification of Genetic Factors Controlling Kernel Hardness and Related Traits in a Recombinant Inbred Population Derived from a Soft × ‘Extra-Soft’ Wheat (Triticum aestivum L.). Cross. Theor. Appl. Genet. 2012, 124, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.G.; Finney, P.L.; Bergman, C.J.; Gualberto, D.G.; Anderson, J.A.; Giroux, M.J.; Siritunga, D.; Zhu, J.; Gendre, F.; Roué, C.; et al. Quantitative Trait Loci Associated with Milling and Baking Quality in a Soft × Hard Wheat Cross. Crop. Sci. 2001, 41, 1275–1285. [Google Scholar] [CrossRef]
- Tranquilli, G.; Heaton, J.; Chicaiza, O.; Dubcovsky, J. Substitutions and Deletions of Genes Related to Grain Hardness in Wheat and Their Effect on Grain Texture. Crop. Sci. 2002, 42, 1812–1817. [Google Scholar] [CrossRef]
- Szabó, B.P.; Gyimes, E.; Véha, A.; Horváth, Z.H. Flour Quality and Kernel Hardness Connection in Winter Wheat. Acta Univ. Sapientiae Aliment. 2016, 9, 33–40. [Google Scholar] [CrossRef]
- Galalcha, S.; Debelo, D.; Girma, B.; Payne, T.; Alemayehu, Z.; Yaie, B. Milling and Baking Quality of Ethiopian Bread Wheat Cultivars. In Proceedings of the Eleventh Regional Wheat Workshop For Eastern, Central and Southern Africa, Addis Ababa, Ethiopia, 18–22 September 2000; pp. 87–96. [Google Scholar]
- Roman-Gutierrez, A.D.; Guilbert, S.; Cuq, B. Distribution of Water between Wheat Flour Components: A Dynamic Water Vapour Adsorption Study. J. Cereal Sci. 2002, 36, 347–355. [Google Scholar] [CrossRef]
- Barrera, G.N.; Pérez, G.T.; Ribotta, P.D.; León, A.E. Influence of Damaged Starch on Cookie and Bread-Making Quality. Eur. Food Res. Technol. 2007, 225, 1–7. [Google Scholar] [CrossRef]
- Chen, F.; He, Z.; Chen, D.; Zhang, C.; Zhang, Y.; Xia, X. Influence of Puroindoline Alleles on Milling Performance and Qualities of Chinese Noodles, Steamed Bread and Pan Bread in Spring Wheats. J. Cereal Sci. 2007, 45, 59–66. [Google Scholar] [CrossRef]
- Chen, F.; Li, H.; Cui, D. Discovery, Distribution and Diversity of Puroindoline-D1 Genes in Bread Wheat from Five Countries (Triticum aestivum L.). BMC Plant Biol. 2013, 13, 125. [Google Scholar] [CrossRef]
- Bhave, M.; Morris, C.F. Molecular Genetics of Puroindolines and Related Genes: Regulation of Expression, Membrane Binding Properties and Applications. Plant. Mol. Biol. 2008, 66, 221–231. [Google Scholar] [CrossRef]
- Morris, C.F.; Lillemo, M.; Simeone, M.C.; Giroux, M.J.; Babb, S.L.; Kidwell, K.K. Prevalence of Puroindoline Grain Hardness Genotypes among Historically Significant North American Spring and Winter Wheats. Crop. Sci. 2001, 41, 218–228. [Google Scholar] [CrossRef]
- Hogg, A.C.; Sripo, T.; Beecher, B.; Martin, J.M.; Giroux, M.J. Wheat Puroindolines Interact to Form Friabilin and Control Wheat Grain Hardness. Theor. Appl. Genet. 2004, 108, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Bhave, M.; Morris, C.F. Molecular Genetics of Puroindolines and Related Genes: Allelic Diversity in Wheat and Other Grasses. Plant. Mol. Biol. 2008, 66, 205–219. [Google Scholar] [CrossRef]
- Martin, J.M.; Meyer, F.D.; Smidansky, E.D.; Wanjugi, H.; Blechl, A.E.; Giroux, M.J. Complementation of the Pina (Null) Allele with the Wild Type Pina Sequence Restores a Soft Phenotype in Transgenic Wheat. Theor. Appl. Genet. 2006, 113, 1563–1570. [Google Scholar] [CrossRef]
- Iftikhar, A.; Ali, I. Kernel Softness in Wheat Is Determined by Starch Granule Bound Puroindoline Proteins. J. Plant. Biochem. Biotechnol. 2017, 26, 247–262. [Google Scholar] [CrossRef]
- Capparelli, R.; Borriello, G.; Giroux, M.J.; Amoroso, M.G. Puroindoline A-Gene Expression Is Involved in Association of Puroindolines to Starch. Theor. Appl. Genet. 2003, 107, 1463–1468. [Google Scholar] [CrossRef] [PubMed]
- Lillemo, M.; Morris, C.F. A Leucine to Proline Mutation in Puroindoline b Is Frequently Present in Hard Wheats from Northern Europe. Theor. Appl. Genet. 2000, 100, 1100–1107. [Google Scholar] [CrossRef]
- Konopka, I.; Rotkiewicz, D.; Tańska, M. Wheat Endosperm Hardness. Part II. Relationships to Content and Composition of Flour Lipids. Eur. Food Res. Technol. 2005, 220, 20–24. [Google Scholar] [CrossRef]
- Giroux, M.J.; Morris, C.F. A Glycine to Serine Change in Puroindoline b Is Associated with Wheat Grain Hardness and Low Levels of Starch-Surface Friabilin. Theor. Appl. Genet. 1997, 95, 857–864. [Google Scholar] [CrossRef]
- Presinszká, M.; Štiasna, K.; Vyhnánek, T.; Trojan, V.; Mrkvicová, E.; Hřivna, L.; Havel, L. Identification of Alleles for Puroindoline Genes and Their Effect on Grain Texture in Wheat (Triticum aestivum L.). Food Technol. Biotechnol. 2016, 54, 103–107. [Google Scholar] [CrossRef]
- Ram, S.; Jain, N.; Shoran, J.; Singh, R. New Frame Shift Mutation in Puroindoline B in Indian Wheat Cultivars Hyb65 and NI5439. J. Plant Biochem. Biotechnol. 2005, 14, 45–48. [Google Scholar] [CrossRef]
- Ma, X.; Sajjad, M.; Wang, J.; Yang, W.; Sun, J.; Li, X.; Zhang, A.; Liu, D. Diversity, Distribution of Puroindoline Genes and Their Effect on Kernel Hardness in a Diverse Panel of Chinese Wheat Germplasm. BMC Plant Biol. 2017, 17, 158. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, F.; Morris, C.; He, Z.; Xia, X.; Cui, D. Molecular Characterization of the Puroindoline A-D1b Allele and Development of an STS Marker in Wheat (Triticum aestivum L.). J. Cereal Sci. 2010, 52, 80–82. [Google Scholar] [CrossRef]
- Martin, J.M.; Sherman, J.D.; Lanning, S.P.; Talbert, L.E.; Giroux, M.J. Effect of Variation in Amylose Content and Puroindoline Composition on Bread Quality in a Hard Spring Wheat Population. Cereal Chem. J. 2008, 85, 266–269. [Google Scholar] [CrossRef]
- Hogg, A.C.; Beecher, B.; Martin, J.M.; Meyer, F.; Talbert, L.; Lanning, S.; Giroux, M.J. Hard Wheat Milling and Bread Baking Traits Affected by the Seed-Specific Overexpression of Puroindolines. Crop. Sci. 2005, 45, 871–878. [Google Scholar] [CrossRef]
- Ikeda, T.M.; Ohnishi, N.; Nagamine, T.; Oda, S.; Hisatomi, T.; Yano, H. Identification of New Puroindoline Genotypes and Their Relationship to Flour Texture among Wheat Cultivars. J. Cereal Sci. 2005, 41, 1–6. [Google Scholar] [CrossRef]
- Tanaka, H.; Morris, C.F.; Haruna, M.; Tsujimoto, H. Prevalence of Puroindoline Alleles in Wheat Varieties from Eastern Asia Including the Discovery of a New SNP in Puroindoline b. Plant. Genet. Resour. 2008, 6, 142–152. [Google Scholar] [CrossRef]
- Huertas-García, A.B.; Guzmán, C.; Tabbita, F.; Alvarez, J.B. Allelic Variation of Puroindolines Genes in Iranian Common Wheat Landraces. Agriculture 2022, 12, 1196. [Google Scholar] [CrossRef]
- Przyborowski, M.; Gasparis, S.; Kala, M.; Orczyk, W.; Nadolska-Orczyk, A. The Variability of Puroindoline-Encoding Alleles and Their Influence on Grain Hardness in Modern Wheat Cultivars Cultivated in Poland, Breeding Lines and Polish Old Landraces (Triticum aestivum L.). Agronomy 2020, 10, 1075. [Google Scholar] [CrossRef]
- Kumar, M.; Kherawat, B.S.; Dey, P.; Saha, D.; Singh, A.; Bhatia, S.K.; Ghodake, G.S.; Kadam, A.A.; Kim, H.U.; Manorama; et al. Genome-Wide Identification and Characterization of PIN-FORMED (PIN) Gene Family Reveals Role in Developmental and Various Stress Conditions in Triticum aestivum L. Int. J. Mol. Sci. 2021, 22, 7396. [Google Scholar] [CrossRef]
- Pasha, I.; Anjum, F.M.; Morris, C.F. Grain Hardness: A Major Determinant of Wheat Quality. Food Sci. Technol. Int. 2010, 16, 511–522. [Google Scholar] [CrossRef]
- Faměra, O.; Hrušková, M.; Novotná, D. Evaluation of Methods for Wheat Grain Hardness Determination. Plant. Soil. Environ. 2011, 50, 489–493. [Google Scholar] [CrossRef]
- Spoladore, S.F.; Brígida dos Santos Scholz, M.; Bona, E. Genotypic Classification of Wheat Using Near-Infrared Spectroscopy and PLS-DA. Appl. Food Res. 2021, 1, 100019. [Google Scholar] [CrossRef]
- Dowell, F.E.; Maghirang, E.B.; Xie, F.; Lookhart, G.L.; Pierce, R.O.; Seabourn, B.W.; Bean, S.R.; Wilson, J.D.; Chung, O.K. Predicting Wheat Quality Characteristics and Functionality Using Near-Infrared Spectroscopy. Cereal Chem. J. 2006, 83, 529–536. [Google Scholar] [CrossRef]
- Majoul, T.; Bancel, E.; Triboï, E.; ben Hamida, J.; Branlard, G. Proteomic Analysis of the Effect of Heat Stress on Hexaploid Wheat Grain: Characterization of Heat-Responsive Proteins from Total Endosperm. Proteomics 2003, 3, 175–183. [Google Scholar] [CrossRef]
- Kim, T.D.; Ryu, H.J.; Cho, H.I.; Yang, C.-H.; Kim, J. Thermal Behavior of Proteins: Heat-Resistant Proteins and Their Heat-Induced Secondary Structural Changes. Biochemistry 2000, 39, 14839–14846. [Google Scholar] [CrossRef]
- Skylas, D.J.; Cordwell, S.J.; Hains, P.G.; Larsen, M.R.; Basseal, D.J.; Walsh, B.J.; Blumenthal, C.; Rathmell, W.; Copeland, L.; Wrigley, C.W. Heat Shock of Wheat During Grain Filling: Proteins Associated with Heat-Tolerance. J. Cereal Sci. 2002, 35, 175–188. [Google Scholar] [CrossRef]
- Viswanathan, C.; Khanna-Chopra, R. Effect of Heat Stress on Grain Growth, Starch Synthesis and Protein Synthesis in Grains of Wheat (Triticum aestivum L.) Varieties Differing in Grain Weight Stability. J. Agron. Crop. Sci. 2001, 186, 1–7. [Google Scholar] [CrossRef]
- Altenbach, S.B.; DuPont, F.M.; Kothari, K.M.; Chan, R.; Johnson, E.L.; Lieu, D. Temperature, Water and Fertilizer Influence the Timing of Key Events During Grain Development in a US Spring Wheat. J. Cereal Sci. 2003, 37, 9–20. [Google Scholar] [CrossRef]
- Labuschagne, M.T.; Elago, O.; Koen, E. The Influence of Temperature Extremes on Some Quality and Starch Characteristics in Bread, Biscuit and Durum Wheat. J. Cereal Sci. 2009, 49, 184–189. [Google Scholar] [CrossRef]
- Wardlaw, I.F. Interaction Between Drought and Chronic High Temperature During Kernel Filling in Wheat in a Controlled Environment. Ann. Bot. 2002, 90, 469–476. [Google Scholar] [CrossRef]
- Daniel, C.; Triboï, E. Changes in Wheat Protein Aggregation during Grain Development: Effects of Temperatures and Water Stress. Eur. J. Agron. 2002, 16, 1–12. [Google Scholar] [CrossRef]
- Zhao, H.; Dai, T.; Jiang, D.; Cao, W. Effects of High Temperature on Key Enzymes Involved in Starch and Protein Formation in Grains of Two Wheat Cultivars. J. Agron. Crop. Sci. 2008, 194, 47–54. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Khanna-Chopra, R. Effect of Heat Stress on Grain Starch Content in Diploid, Tetraploid and Hexaploid Wheat Species. J. Agron. Crop. Sci. 2003, 189, 242–249. [Google Scholar] [CrossRef]
- Dias, A.; Lidon, F. Bread and Durum Wheat Tolerance under Heat Stress: A Synoptical Overview. Emir. J. Food Agric. 2010, 22, 412. [Google Scholar] [CrossRef]
- Özdemir, E.; Soylu, S. Protein Structure of Wheat and Factors Effect on Wheat Protein Quality. In Proceedings of the International Conference on Chemical, Agricultural and Biological Sciences, Istanbul, Turkey, 4–5 September 2015; pp. 90–95. [Google Scholar]
- Park, H.; Clay, D.E.; Hall, R.G.; Rohila, J.S.; Kharel, T.P.; Clay, S.A.; Lee, S. Winter Wheat Quality Responses to Water, Environment, and Nitrogen Fertilization. Commun. Soil. Sci. Plant. Anal. 2014, 45, 1894–1905. [Google Scholar] [CrossRef]
- Zahedi, M.; Jenner, C.F. Analysis of Effects in Wheat of High Temperature on Grain Filling Attributes Estimated from Mathematical Models of Grain Filling. J. Agric. Sci. 2003, 141, 203–212. [Google Scholar] [CrossRef]
- Khan, N.; Naqvi, F.N. Effect of Water Stress in Bread Wheat Hexaploids. J. Biol. Sci. 2011, 3, 487–498. [Google Scholar]
- Gusta, L.v.; Chen, T.H.H. The Physiology of Water and Temperature Stress. In Wheat and Wheat Improvement—Agronomy Monograph; Heyne, E.G., Ed.; American Society of Agronomy, Inc./Crop Science Society of America, Inc./Soil Science Society of America, Inc.: Madison, WI, USA, 1987; Volume 13, pp. 115–150. [Google Scholar]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate Change and Drought: A Perspective on Drought Indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Latini, A.; Cantale, C.; Thiyagarajan, K.; Ammar, K.; Galeffi, P. Expression Analysis of the TdDRF1 Gene in Field-Grown Durum Wheat under Full and Reduced Irrigation. Genes 2022, 13, 555. [Google Scholar] [CrossRef]
- Latini, A.; Sperandei, M.; Cantale, C.; Arcangeli, C.; Ammar, K.; Galeffi, P. Variability and expression profile of the DRF1 gene in four cultivars of durum wheat and one triticale under moderate water stress conditions. Planta 2013, 237, 967–978. [Google Scholar] [CrossRef]
- Saint Pierre, C.; Peterson, C.J.; Ross, A.S.; Ohm, J.B.; Verhoeven, M.C.; Larson, M.; Hoefer, B. Winter Wheat Genotypes under Different Levels of Nitrogen and Water Stress: Changes in Grain Protein Composition. J. Cereal Sci. 2008, 47, 407–416. [Google Scholar] [CrossRef]
- Khan, F.; Feng, Y.; Palta, J.A.; Chen, Y.; Sadras, V.O.; Siddique, K.H.M. Selection for Yield over Five Decades Favored Anisohydric and Phenological Adaptations to Early-Season Drought in Australian Wheat. Plant. Soil. 2022, 476, 511–526. [Google Scholar] [CrossRef]
- Schmidt, J.; Claussen, J.; Wörlein, N.; Eggert, A.; Fleury, D.; Garnett, T.; Gerth, S. Drought and Heat Stress Tolerance Screening in Wheat Using Computed Tomography. Plant. Methods 2020, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, Z.; Yin, Y.; Cai, R.; Yan, S.; Li, W. Starch Content and Granule Size Distribution in Grains of Wheat in Relation to Post-Anthesis Water Deficits. J. Agron. Crop. Sci. 2010, 196, 1–8. [Google Scholar] [CrossRef]
- Ozturk, A.; Aydin, F. Effect of Water Stress at Various Growth Stages on Some Quality Characteristics of Winter Wheat. J. Agron. Crop. Sci. 2004, 190, 93–99. [Google Scholar] [CrossRef]
- Weldearegay, D.F.; Yan, F.; Jiang, D.; Liu, F. Independent and Combined Effects of Soil Warming and Drought Stress During Anthesis on Seed Set and Grain Yield in Two Spring Wheat Varieties. J. Agron. Crop. Sci. 2012, 198, 245–253. [Google Scholar] [CrossRef]
- Guttieri, M.J.; Stark, J.C.; O’Brien, K.; Souza, E. Relative Sensitivity of Spring Wheat Grain Yield and Quality Parameters to Moisture Deficit. Crop. Sci. 2001, 41, 327–335. [Google Scholar] [CrossRef]
- Gooding, M.J.; Ellis, R.H.; Shewry, P.R.; Schofield, J.D. Effects of Restricted Water Availability and Increased Temperature on the Grain Filling, Drying and Quality of Winter Wheat. J. Cereal Sci. 2003, 37, 295–309. [Google Scholar] [CrossRef]
- Shah, N.H.; Paulsen, G.M. Interaction of Drought and High Temperature on Photosynthesis and Grain-Filling of Wheat. Plant. Soil. 2003, 257, 219–226. [Google Scholar] [CrossRef]
- Ahmadi, A.; Baker, D.A. The Effect of Water Stress on Grain Filling Processes in Wheat. J. Agric. Sci. 2001, 136, 257–269. [Google Scholar] [CrossRef]
- Tura, H.; Edwards, J.; Gahlaut, V.; Garcia, M.; Sznajder, B.; Baumann, U.; Shahinnia, F.; Reynolds, M.; Langridge, P.; Balyan, H.S.; et al. QTL Analysis and Fine Mapping of a QTL for Yield-Related Traits in Wheat Grown in Dry and Hot Environments. Theor. Appl. Genet. 2020, 133, 239–257. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Y.; Xiong, Y.-C.; Li, F.-M.; Siddique, K.H.M.; Turner, N.C. Effects of Drought Stress on Morphophysiological Traits, Biochemical Characteristics, Yield, and Yield Components in Different Ploidy Wheat. Adv. Agron. 2017, 143, 139–173. [Google Scholar]
- Royo, C.; Soriano, J.M.; Rufo, R.; Guzmán, C. Are the agronomic performance and grain quality characteristics of bread wheat Mediterranean landraces related to the climate prevalent in their area of origin? J. Cereal Sci. 2022, 105, 103478. [Google Scholar] [CrossRef]
- Sehgal, A.; Sita, K.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; HanumanthaRao, B.; Nair, R.M.; Prasad, P.V.V.; Nayyar, H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front. Plant. Sci. 2018, 9, 1705. [Google Scholar] [CrossRef]
- Potopová, V.; Boroneanţ, C.; Boincean, B.; Soukup, J. Impact of Agricultural Drought on Main Crop Yields in the Republic of Moldova. Int. J. Climatol. 2016, 36, 2063–2082. [Google Scholar] [CrossRef]
- Nemati, F.; Ghanati, F.; Gavlighi, H.; Sharifi, M. Comparison of Sucrose Metabolism in Wheat Seedlings during Drought Stress and Subsequent Recovery. Biol. Plant. 2018, 62, 595–599. [Google Scholar] [CrossRef]
- Chakwizira, E.; Brown, H.E.; Meenken, E.D.; Gillespie, R.N.; Maley, S.; George, M.J.; Michel, A.J.; Dellow, S.J. Effects of Timing of Drought Stress on Grain Yield of Feed Wheat. Agronomy N. Z. 2014, 44, 1–13. [Google Scholar]
- Xu, J.; Lowe, C.; Hernandez-Leon, S.G.; Dreisigacker, S.; Reynolds, M.P.; Valenzuela-Soto, E.M.; Paul, M.J.; Heuer, S. The Effects of Brief Heat During Early Booting on Reproductive, Developmental, and Chlorophyll Physiological Performance in Common Wheat (Triticum aestivum L.). Front. Plant Sci. 2022, 13, 886541. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Hernandez-Espinosa, N.; Peña, R.J. The Influence of Drought and Heat Stress on the Expression of End-Use Quality Parameters of Common Wheat. J. Cereal Sci. 2013, 57, 73–78. [Google Scholar] [CrossRef]
- Rakszegi, M.; Darkó, É.; Lovegrove, A.; Molnár, I.; Láng, L.; Bedő, Z.; Molnár-Láng, M.; Shewry, P. Drought Stress Affects the Protein and Dietary Fiber Content of Wholemeal Wheat Flour in Wheat/Aegilops Addition Lines. PLoS ONE 2019, 14, e0211892. [Google Scholar] [CrossRef]
- Fan, X.-M.; Jiang, D.; Dai, T.-B.; Jing, Q.; Cao, W.-X. Effects of Post-Anthesis Drought and Waterlogging on the Quality of Grain Formation in Different Wheat Varieties. Chin. J. Plant. Ecol. 2004, 28, 680–685. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, A.K.; Kaur, N. Influence of Drought and Sowing Time on Protein Composition, Antinutrients, and Mineral Contents of Wheat. Sci. World J. 2012, 2012, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, X.; Wang, L.; Wei, L.; Wu, Z.; You, M.; Li, B. Proteomic Analysis of Wheat Seed in Response to Drought Stress. J. Integr. Agric. 2014, 13, 919–925. [Google Scholar] [CrossRef]
- Panozzo, J.F.; Eagles, H.A.; Wootton, M. Changes in Protein Composition during Grain Development in Wheat. Aust. J. Agric. Res. 2001, 52, 485–493. [Google Scholar] [CrossRef]
- Parchin, R.A.; Najaphy, A.; Shaban, M.; Mohebodini, M.; Vaseghi, A.; Sohrabi-Babahadi, F.; Mostafaie, A. Comparing Protein Pattern and Drought Tolerant Indicators as Screening Techniques for Drought Tolerance in Common Wheat Genotypes. Int. J. Plant Anim. Environ. Sci. 2014, 4, 251–258. [Google Scholar]
- Sancho, A.I.; Gillabert, M.; Tapp, H.; Shewry, P.R.; Skeggs, P.K.; Mills, E.N.C. Effect of Environmental Stress during Grain Filling on the Soluble Proteome of Wheat (Triticum aestivum) Dough Liquor. J. Agric. Food Chem. 2008, 56, 5386–5393. [Google Scholar] [CrossRef]
- Panozzo, J.F.; Eagles, H.A. Cultivar and Environmental Effects on Quality Characters in Wheat. II. Protein. Aust. J. Agric. Res. 2000, 51, 629–636. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, D.; Deng, X.; Zhen, S.; Wang, Z.; Yan, Y. Effects of Water Deficit on Breadmaking Quality and Storage Protein Compositions in Bread Wheat (Triticum aestivum L.). J. Sci. Food Agric. 2018, 98, 4357–4368. [Google Scholar] [CrossRef]
- Houshmand, S.; Arzani, A.; Mirmohammadi-Maibody, S.A.M. Effects of Salinity and Drought Stress on Grain Quality of Durum Wheat. Commun. Soil. Sci. Plant Anal. 2014, 45, 297–308. [Google Scholar] [CrossRef]
- Zhao, C.-X.; He, M.-R.; Wang, Z.-L.; Wang, Y.-F.; Lin, Q. Effects of Different Water Availability at Post-Anthesis Stage on Grain Nutrition and Quality in Strong-Gluten Winter Wheat. C. R. Biol. 2009, 332, 759–764. [Google Scholar] [CrossRef]
- Singh, S.; Singh, G.; Singh, P.; Singh, N. Effect of Water Stress at Different Stages of Grain Development on the Characteristics of Starch and Protein of Different Wheat Varieties. Food Chem. 2008, 108, 130–139. [Google Scholar] [CrossRef]
- Sallam, A.; Alqudah, A.M.; Dawood, M.F.A.; Baenziger, P.S.; Börner, A. Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research. Int. J. Mol. Sci. 2019, 20, 3137. [Google Scholar] [CrossRef] [PubMed]
- Dalirie, M.S.; Sharifi, R.S.; Farzaneh, S. Evaluation of Yield, Dry Matter Accumulation and Leaf Area Index in Wheat Genotypes as Affected by Terminal Drought Stress. Not. Bot. Horti Agrobot. Cluj. Napoca 2010, 38, 182–186. [Google Scholar]
- Guóth, A.; Tari, I.; Gallé, Á.; Csiszár, J.; Pécsváradi, A.; Cseuz, L.; Erdei, L. Comparison of the Drought Stress Responses of Tolerant and Sensitive Wheat Cultivars During Grain Filling: Changes in Flag Leaf Photosynthetic Activity, ABA Levels, and Grain Yield. J. Plant Growth Regul. 2009, 28, 167–176. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Specht, J.E.; Cassman, K.G.; Walters, D.T.; Weiss, A.; Dobermann, A. Growth and Nitrogen Fixation in High-Yielding Soybean: Impact of Nitrogen Fertilization. Agron. J. 2009, 101, 958–970. [Google Scholar] [CrossRef]
- Ramírez-Wong, B.; Rodríguez-Félix, F.; Torres-Chávez, P.I.; Medina-Rodríguez, C.L.; Matus-Barba, E.A.; Ledesma-Osuna, A.I. Effects of Nitrogen and Irrigation on Gluten Protein Composition and Their Relationship to “Yellow Berry” Disorder in Wheat (Triticum aestivum). Pak. J. Bot. 2014, 46, 1797–1804. [Google Scholar]
- Pechanek, U.; Karger, A.; Gröger, S.; Charvat, B.; Schöggl, G.; Lelley, T. Effect of Nitrogen Fertilization on Quantity of Flour Protein Components, Dough Properties, and Breadmaking Quality of Wheat. Cereal Chem. J. 1997, 74, 800–805. [Google Scholar] [CrossRef]
- Johansson, E.; Prieto-Linde, M.L.; Jönsson, J.Ö. Effects of Wheat Cultivar and Nitrogen Application on Storage Protein Composition and Breadmaking Quality. Cereal Chem. J. 2001, 78, 19–25. [Google Scholar] [CrossRef]
- Altenbach, S.B.; Tanaka, C.K.; Hurkman, W.J.; Whitehand, L.C.; Vensel, W.H.; Dupont, F.M. Differential Effects of a Post-Anthesis Fertilizer Regimen on the Wheat Flour Proteome Determined by Quantitative 2-DE. Proteome Sci. 2011, 9, 46. [Google Scholar] [CrossRef]
- Johansson, E.; Prieto-Linde, M.L.; Svensson, G. Influence of Nitrogen Application Rate and Timing on Grain Protein Composition and Gluten Strength in Swedish Wheat Cultivars. J. Plant Nutr. Soil. Sci. 2004, 167, 345–350. [Google Scholar] [CrossRef]
- Triboï, E.; Abad, A.; Michelena, A.; Lloveras, J.; Ollier, J.L.; Daniel, C. Environmental Effects on the Quality of Two Wheat Genotypes: 1. Quantitative and Qualitative Variation of Storage Proteins. Eur. J. Agron. 2000, 13, 47–64. [Google Scholar] [CrossRef]
- Luo, C.; Branlard, G.; Griffin, W.; McNeil, D. The Effect of Nitrogen and Sulphur Fertilisation and Their Interaction with Genotype on Wheat Glutenins and Quality Parameters. J. Cereal Sci. 2000, 31, 185–194. [Google Scholar] [CrossRef]
- Zhu, J.; Khan, K. Quantitative Variation of HMW Glutenin Subunits from Hard Red Spring Wheats Grown in Different Environments. Cereal Chem. J. 2002, 79, 783–786. [Google Scholar] [CrossRef]
- Wooding, A.R.; Kavale, S.; MacRitchie, F.; Stoddard, F.L.; Wallace, A. Effects of Nitrogen and Sulfur Fertilizer on Protein Composition, Mixing Requirements, and Dough Strength of Four Wheat Cultivars. Cereal Chem. J. 2000, 77, 798–807. [Google Scholar] [CrossRef]
- Wuest, S.B.; Cassman, K.G. Fertilizer-Nitrogen Use Efficiency of Irrigated Wheat: I. Uptake Efficiency of Preplant versus Late-Season Application. Agron. J. 1992, 84, 682–688. [Google Scholar] [CrossRef]
- Järvan, M.; Lukme, L.; Adamson, A.; Akk, A. Responses of Wheat Yield, Quality and Bread-Making Properties on the Sulphur Fertilization. Acta Agric. Scand. B. Soil. Plant. Sci. 2017, 67, 444–452. [Google Scholar] [CrossRef]
- Flæte, N.E.S.; Hollung, K.; Ruud, L.; Sogn, T.; Færgestad, E.M.; Skarpeid, H.J.; Magnus, E.M.; Uhlen, A.K. Combined Nitrogen and Sulphur Fertilisation and Its Effect on Wheat Quality and Protein Composition Measured by SE-FPLC and Proteomics. J. Cereal Sci. 2005, 41, 357–369. [Google Scholar] [CrossRef]
- Glass, A.D.M. Nitrogen Use Efficiency of Crop Plants: Physiological Constraints upon Nitrogen Absorption. CRC Crit. Rev. Plant. Sci. 2003, 22, 453–470. [Google Scholar] [CrossRef]
- Győri, Z. Sulphur Content of Winter Wheat Grain in Long Term Field Experiments. Commun. Soil. Sci. Plant Anal. 2005, 36, 373–382. [Google Scholar] [CrossRef]
- Reinbold, J.; Rychlik, M.; Asam, S.; Wieser, H.; Koehler, P. Concentrations of Total Glutathione and Cysteine in Wheat Flour as Affected by Sulfur Deficiency and Correlation to Quality Parameters. J. Agric. Food Chem. 2008, 56, 6844–6850. [Google Scholar] [CrossRef]
- Tea, I.; Genter, T.; Naulet, N.; Lummerzheim, M.; Kleiber, D. Interaction between Nitrogen and Sulfur by Foliar Application and Its Effects on Flour Bread-Making Quality. J. Sci. Food Agric. 2007, 87, 2853–2859. [Google Scholar] [CrossRef]
- Wieser, H.; Gutser, R.; von Tucher, S. Influence of Sulphur Fertilisation on Quantities and Proportions of Gluten Protein Types in Wheat Flour. J. Cereal Sci. 2004, 40, 239–244. [Google Scholar] [CrossRef]
- Kurmanbayeva, M.; Sekerova, T.; Tileubayeva, Z.; Kaiyrbekov, T.; Kusmangazinov, A.; Shapalov, S.; Madenova, A.; Burkitbayev, M.; Bachilova, N. Influence of New Sulfur-Containing Fertilizers on Performance of Wheat Yield. Saudi J. Biol. Sci. 2021, 28, 4644–4655. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Juhasz, A.; Islam, S.; Diepeveen, D.; Zhang, J.; Wang, P.; Ma, W. Impact of Mid-Season Sulphur Deficiency on Wheat Nitrogen Metabolism and Biosynthesis of Grain Protein. Sci. Rep. 2018, 8, 2499. [Google Scholar] [CrossRef]
- Luo, L.; Hui, X.; He, G.; Wang, S.; Wang, Z.; Siddique, K.H.M. Benefits and Limitations to Plastic Mulching and Nitrogen Fertilization on Grain Yield and Sulfur Nutrition: Multi-Site Field Trials in the Semiarid Area of China. Front. Plant. Sci. 2022, 13, 799093. [Google Scholar] [CrossRef]
- Naeem, H.A.; MacRitchie, F. Effect of Sulphur Nutrition on Agronomic and Quality Attributes of Wheat. In Sulphur in Plants; Springer Netherlands: Dordrecht, The Netherlands, 2003; pp. 305–322. [Google Scholar]
- Wieser, H. Chemistry of Gluten Proteins. Food Microbiol. 2007, 24, 115–119. [Google Scholar] [CrossRef]
- Aspel, C.; Murphy, P.N.C.; McLaughlin, M.J.; Forrestal, P.J. Sulfur Fertilization Strategy Affects Grass Yield, Nitrogen Uptake, and Nitrate Leaching: A Field Lysimeter Study. J. Plant. Nutr. Soil. Sci. 2022, 185, 209–220. [Google Scholar] [CrossRef]
- Järvan, M.; Edesi, L.; Adamson, A.; Lukme, L.; Akk, A. The Effect of Sulphur Fertilization on Yield, Quality of Protein and Baking Properties of Winter Wheat. Agron. Res. 2008, 6, 459–469. [Google Scholar]
- Granvogl, M.; Wieser, H.; Koehler, P.; von Tucher, S.; Schieberle, P. Influence of Sulfur Fertilization on the Amounts of Free Amino Acids in Wheat. Correlation with Baking Properties as Well as with 3-Aminopropionamide and Acrylamide Generation during Baking. J. Agric. Food Chem. 2007, 55, 4271–4277. [Google Scholar] [CrossRef]
- Wrigley, C.; Cros, D.; Archer, M.; Downie, P.; Roxburgh, C. The Sulfur Content of Wheat Endosperm Proteins and Its Relevance to Grain Quality. Funct. Plant. Biol. 1980, 7, 755–766. [Google Scholar] [CrossRef]
- Zörb, C.; Steinfurth, D.; Seling, S.; LangenkÄmper, G.; Koehler, P.; Wieser, H.; Lindhauer, M.G.; Mühling, K.H. Quantitative Protein Composition and Baking Quality of Winter Wheat as Affected by Late Sulfur Fertilization. J. Agric. Food Chem. 2009, 57, 3877–3885. [Google Scholar] [CrossRef] [PubMed]
- De Ruiter, J.M.; Karl, D.P. The Influence of Nitrogen and Sulphur Fertiliser on Amino Acid Composition of Wheat and Barley Grain. Agronomy N. Z. 2001, 31, 88–98. [Google Scholar]
- Salvagiotti, F.; Castellarín, J.M.; Miralles, D.J.; Pedrol, H.M. Sulfur Fertilization Improves Nitrogen Use Efficiency in Wheat by Increasing Nitrogen Uptake. Field Crops Res. 2009, 113, 170–177. [Google Scholar] [CrossRef]
- Antes, S.; Wieser, H. Effects of High and Low Molecular Weight Glutenin Subunits on Rheological Dough Properties and Breadmaking Quality of Wheat. Cereal Chem. J. 2001, 78, 157–159. [Google Scholar] [CrossRef]
- Hagel, I. Sulfur and Baking-Quality of Bread Making Wheat. Landbauforschung Völkenrode Sonderheft 2005, 283, 23–36. [Google Scholar]
- Li, X.; Tyl, C.E.; Kaiser, D.E.; Annor, G.A. Effect of Sulfur Fertilization Rates on Wheat (Triticum aestivum L.) Functionality. J. Cereal Sci. 2019, 87, 292–300. [Google Scholar] [CrossRef]
- Gautier, M.-F.; Aleman, M.-E.; Guirao, A.; Marion, D.; Joudrier, P. Triticum aestivum Puroindolines, Two Basic Cystine-Rich Seed Proteins: CDNA Sequence Analysis and Developmental Gene Expression. Plant. Mol. Biol. 1994, 25, 43–57. [Google Scholar] [CrossRef]
- Chantret, N.; Salse, J.; Sabot, F.; Rahman, S.; Bellec, A.; Laubin, B.; Dubois, I.; Dossat, C.; Sourdille, P.; Joudrier, P.; et al. Molecular Basis of Evolutionary Events That Shaped the Hardness Locus in Diploid and Polyploid Wheat Species (Triticum and Aegilops). Plant. Cell. 2005, 17, 1033–1045. [Google Scholar] [CrossRef]
- Ikeda, T.M.; Cong, H.; Suzuki, T.; Takata, K. Identification of New Pina Null Mutations among Asian Common Wheat Cultivars. J. Cereal Sci. 2010, 51, 235–237. [Google Scholar] [CrossRef]
- Massa, A.N.; Morris, C.F.; Gill, B.S. Sequence Diversity of Puroindoline-a, Puroindoline-b, and the Grain Softness Protein Genes in Aegilops Tauschii Coss. Crop. Sci. 2004, 44, 1808–1816. [Google Scholar] [CrossRef]
- Gedye, K.R.; Morris, C.F.; Bettge, A.D. Determination and Evaluation of the Sequence and Textural Effects of the Puroindoline a and Puroindoline b Genes in a Population of Synthetic Hexaploid Wheat. Theor. Appl. Genet. 2004, 109, 1597–1603. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Zhang, H.; Xu, J.; Li, W.; Liu, G.; You, M.; Li, B. Identification of Allelic Variations of Puroindoline Genes Controlling Grain Hardness in Wheat Using a Modified Denaturing PAGE. Euphytica 2006, 152, 225–234. [Google Scholar] [CrossRef]
- Gazza, L.; Nocente, F.; Ng, P.K.W.; Pogna, N.E. Genetic and Biochemical Analysis of Common Wheat Cultivars Lacking Puroindoline a. Theor. Appl. Genet. 2005, 110, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Xia, X.C.; Wang, D.S.; Lillemo, M.; He, Z.H. Detection of Allelic Variation for Puroindoline Alleles in CIMMYT Germplasm Developed from Synthetic Wheat Crossing with Common Wheats. Sci. Agric. Sin. 2006, 39, 440–447. [Google Scholar]
- Mcintosh, R.A.; Devos, K.M.; Dubcovsky, J.; Rogers, W.J.; Morris, C.F.; Appels, R.; Anderson, O.A. Catalogue of Gene Symbols for Wheat: 2006 Supplement. Annu. Wheat Newsl. 2007, 55, 256–278. [Google Scholar]
- Ramalingam, A.; Palombo, E.A.; Bhave, M. The Pinb-2 Genes in Wheat Comprise a Multigene Family with Great Sequence Diversity and Important Variants. J. Cereal Sci. 2012, 56, 171–180. [Google Scholar] [CrossRef]
- Kumar, R.; Arora, S.; Singh, K.; Garg, M. Puroindoline Allelic Diversity in Indian Wheat Germplasm and Identification of New Allelic Variants. Breed. Sci. 2015, 65, 319–326. [Google Scholar] [CrossRef]
- Ali, I.; Sardar, Z.; Rasheed, A.; Mahmood, T. Molecular Characterization of the Puroindoline-a and b Alleles in Synthetic Hexaploid Wheats and in Silico Functional and Structural Insights into Pina-D1. J. Theor. Biol. 2015, 376, 1–7. [Google Scholar] [CrossRef]
- Simeone, M.C.; Lafiandra, D. Isolation and Characterisation of Friabilin Genes in Rye. J. Cereal Sci. 2005, 41, 115–122. [Google Scholar] [CrossRef]
- Chen, F.; He, Z.; Xia, X.; Lillemo, M.; Morris, C. A New Puroindoline b Mutation Present in Chinese Winter Wheat Cultivar Jingdong 11. J. Cereal Sci. 2005, 42, 267–269. [Google Scholar] [CrossRef]
- Chen, M.; Wilkinson, M.; Tosi, P.; He, G.; Shewry, P. Novel Puroindoline and Grain Softness Protein Alleles in Aegilops Species with the C, D, S, M and U Genomes. Theor. Appl. Genet. 2005, 111, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Lillemo, M.; Simeone, M.C.; Morris, C.F. Analysis of Puroindoline a and b Sequences from Triticum aestivum Cv. “Penawawa” and Related Diploid Taxa. Euphytica 2002, 126, 321–331. [Google Scholar] [CrossRef]
- Pan, Z.; Song, W.; Meng, F.; Xu, L.; Liu, B.; Zhu, J. Characterization of Genes Encoding Wheat Grain Hardness from Chinese Cultivar GaoCheng 8901. Cereal Chem. J. 2004, 81, 287–289. [Google Scholar] [CrossRef]
- Xia, L.; Chen, F.; He, Z.; Chen, X.; Morris, C.F. Occurrence of Puroindoline Alleles in Chinese Winter Wheats. Cereal Chem. J. 2005, 82, 38–43. [Google Scholar] [CrossRef]
- Li, G.; He, Z.; Lillemo, M.; Sun, Q.; Xia, X. Molecular Characterization of Allelic Variations at Pina and Pinb Loci in Shandong Wheat Landraces, Historical and Current Cultivars. J. Cereal Sci. 2008, 47, 510–517. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filip, E.; Woronko, K.; Stępień, E.; Czarniecka, N. An Overview of Factors Affecting the Functional Quality of Common Wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2023, 24, 7524. https://doi.org/10.3390/ijms24087524
Filip E, Woronko K, Stępień E, Czarniecka N. An Overview of Factors Affecting the Functional Quality of Common Wheat (Triticum aestivum L.). International Journal of Molecular Sciences. 2023; 24(8):7524. https://doi.org/10.3390/ijms24087524
Chicago/Turabian StyleFilip, Ewa, Karolina Woronko, Edyta Stępień, and Natalia Czarniecka. 2023. "An Overview of Factors Affecting the Functional Quality of Common Wheat (Triticum aestivum L.)" International Journal of Molecular Sciences 24, no. 8: 7524. https://doi.org/10.3390/ijms24087524
APA StyleFilip, E., Woronko, K., Stępień, E., & Czarniecka, N. (2023). An Overview of Factors Affecting the Functional Quality of Common Wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 24(8), 7524. https://doi.org/10.3390/ijms24087524