In the SARS-CoV-2 Pandora Pandemic: Can the Stance of Premorbid Intestinal Innate Immune System as Measured by Fecal Adnab-9 Binding of p87:Blood Ferritin, Yielding the FERAD Ratio, Predict COVID-19 Susceptibility and Survival in a Prospective Population Database?
Abstract
:1. Introduction
2. Results
2.1. Patient Accrual
2.2. Specimen Collection and Diagnostic Procedures in Test and Control Populations
2.3. Ferritin, Lysozyme Levels, and p87 ELISA Estimations
2.4. FERAD Ratios and Lysozyme
2.5. Immunohistochemistry
2.6. The Western Blotting, Colonic Effluent, Severity of Disease Prediction by FERAD, and Absolute Neutrophil/Absolute Lymphocyte Ratio
2.7. Neonatal Src and Abl and Relationships to COVID-19
2.8. Medications and COVID-19
2.9. COVID-19 and Diabetes Mellitus
3. Discussion
4. Materials and Methods
4.1. Sites and Participants
4.2. Chemicals and Antibodies
4.2.1. Stool Extraction and Antibodies
4.2.2. ELISA, Western Blotting and Chemicals
4.3. Statistical Analysis
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batty, G.D.; Deary, I.J.; Altschul, D. Pre-pandemic mental and physical health as predictors of COVID-19 vaccine hesitancy: Evidence from a UK-wide cohort study. Ann. Med. 2022, 54, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Batty, G.D.; Deary, I.J.; Fawns-Ritchie, C.; Gale, C.R.; Altschul, D. Pre-pandemic cognitive function and COVID-19 vaccine hesitancy: Cohort study. Brain Behav. Immun. 2021, 96, 100–105. [Google Scholar] [CrossRef]
- Batty, G.D.; Deary, I.J.; Gale, C.R. Pre-pandemic cognitive function and COVID-19 mortality: Prospective cohort study. medRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Batty, G.D.; Deary, I.J.; Gale, C.R. Pre-pandemic cognitive function and COVID-19 mortality: Prospective cohort study. Eur. J. Epidemiol. 2021, 36, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Batty, G.D.; Deary, I.J.; Luciano, M.; Altschul, D.M.; Kivimaki, M.; Gale, C.R. Psychosocial factors and hospitalisations for COVID-19: Prospective cohort study based on a community sample. Brain Behav. Immun. 2020, 89, 569–578. [Google Scholar] [CrossRef]
- Bhaskaran, K.; Rentsch, C.T.; MacKenna, B.; Schultze, A.; Mehrkar, A.; Bates, C.J.; Eggo, R.M.; Morton, C.E.; Bacon, S.C.; Inglesby, P. HIV infection and COVID-19 death: A population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform. Lancet HIV 2021, 8, e24–e32. [Google Scholar] [CrossRef]
- Niedzwiedz, C.L.; O’Donnell, C.A.; Jani, B.D.; Demou, E.; Ho, F.K.; Celis-Morales, C.; Nicholl, B.I.; Mair, F.S.; Welsh, P.; Sattar, N. Ethnic and socioeconomic differences in SARS-CoV-2 infection: Prospective cohort study using UK Biobank. BMC Med. 2020, 18, 1–14. [Google Scholar] [CrossRef]
- Gremi, T.; Ginesy, É.; Payen, D.; Lefrant, J.-Y.; Marin, B. COVID-19 studies registration worldwide for prospective studies with a specific focus on the fast-tracking of French ethic procedures. Anaesth. Crit. Care Pain Med. 2020, 39, 481. [Google Scholar] [CrossRef]
- Benchimol, E.I.; Moher, D.; Ehrenstein, V.; Langan, S.M. Retraction of COVID-19 pharmacoepidemiology research could have been avoided by effective use of reporting guidelines. Clin. Epidemiol. 2020, 12, 1403. [Google Scholar] [CrossRef]
- Available online: https://chaucertales.blogspot.com/2019/12/meaning-of-if-gold-rusts-what-then-can-iron-do.html (accessed on 13 December 2020).
- Tobi, M.; Elitsur, Y.; Moyer, M.P.; Halline, A.; Deutsch, M.; Nochomovitz, L.; Luk, G.D. Mucosal origin and shedding of an early colonic tumor marker defined by Adnab-9 monoclonal antibody. Scand. J. Gastroenterol. 1993, 28, 1025–1034. [Google Scholar] [CrossRef]
- Junqueira, C.; Crespo, A.; Ranjbar, S.; De Lacerda, L.B.; Lewandrowski, M.; Ingber, J.; Parry, B.; Ravid, S.; Clark, S.; Schrimpf, M.R.; et al. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature 2022, 606, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; Cavalcanti, A.B.; et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA 2020, 324, 1330–1341. [Google Scholar] [PubMed]
- Mantovani, A.; Garlanda, C. Humeral innate immunity and acute-phase proteins. N. Engl. J. Med. 2023, 338, 439–452. [Google Scholar]
- National Center for Veterans Analysis and Statistics. Profile of Women Veterans: 2016. Available online: https://catalog.data.gov/dataset/profile-of-women-veterans-2016 (accessed on 22 January 2022).
- Monday, L.M.M.; Abu-Heija, A.; Shatta, M.; Ilyas, S.; Bazzy, K.; Natesan, S.K.; Brown, P.D. Characteristics, Clinical Course, and Outcomes of Veterans Admitted with COVID-19 in Detroit, Michigan. Infect. Dis. Clin. Pract. 2020, 28, 342–348. [Google Scholar] [CrossRef]
- Tobi, M.; Hatfield, J.; Adsay, V.; Galagan, K.; Kozarek, R.; Inagaki, M.; Kasai, S.; Tokusashi, Y.; Obara, T.; Hruban, R.H. Prognostic significance of the labeling of Adnab-9 in pancreatic intraductal papillary mucinous neoplasms. Int. J. Pancreatol. 2001, 29, 141–150. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E. Iron homeostasis in host defence and inflammation. Nat. Rev. Immunol. 2015, 15, 500–510. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Y.; Wang, L.; Guo, J.; Liu, W.; Meng, G.; Zhang, L.; Li, M.; Cong, L.; Sun, M. Recent Insights into the Prognostic and Therapeutic Applications of Lysozymes. Front. Pharmacol. 2021, 12, 767642. [Google Scholar] [CrossRef]
- Sellak, H.; Franzini, E.; Hakim, J.; Pasquier, C. Mechanism of lysozyme inactivation and degradation by iron. Arch. Biochem. Biophys. 1992, 299, 172–178. [Google Scholar] [CrossRef]
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588, 315–320. [Google Scholar] [CrossRef]
- Tobi, M.; Zhao, X.; Jhala, D.; Rodriguez, R.; Antaki, F.; Levi, E.; Sochacki, P.; Lieb, J.; Rambus, M.; Ganguly, T. Jak3 mutations in colorectal neoplasia-Preliminary data on a not so silent minority. Cancer Res. 2017, 77, 3689. [Google Scholar] [CrossRef]
- Yang, A.-P.; Liu, J.-P.; Tao, W.-Q.; Li, H.-M. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int. Immunopharmacol. 2020, 84, 106504. [Google Scholar] [CrossRef] [PubMed]
- Tobi, M.; Maliakkal, B.J.; Alousi, M.A.; Voruganti, V.; Shafiuddin, M.; Yang, S.; Gesell, M.S.; An, T.; Hatfield, J.S.; Fugiel, S.; et al. Cellular Distribution of a Colonic Adenoma-Associated Antigen as Defined by Monoclonal Antibody Adnab-9. Scand. J. Gastroenterol. 1992, 27, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Baral, R.; Tsampasian, V.; Debski, M.; Moran, B.; Garg, P.; Clark, A.; Vassiliou, V.S. Association Between Renin-Angiotensin-Aldosterone System Inhibitors and Clinical Outcomes in Patients With COVID-19: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e213594. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Banerjee, M. Are people with uncontrolled diabetes mellitus at high risk of reinfections with COVID-19? Prim. Care Diabetes 2021, 15, 18–20. [Google Scholar] [CrossRef]
- Jia, X.; Gesualdo, P.; Geno Rasmussen, C.; Alkanani, A.A.; He, L.; Dong, F.; Rewers, M.J.; Michels, A.W.; Yu, L. Prevalence of SARS-CoV-2 Antibodies in Children and Adults with Type 1 Diabetes. Diabetes Technol. Ther. 2021, 23, 517–521. [Google Scholar] [CrossRef]
- Pugliese, G.; Vitale, M.; Resi, V.; Orsi, E. Is diabetes mellitus a risk factor for CoronaVIrus Disease 19 (COVID-19)? Acta Diabetol. 2020, 57, 1275–1285. [Google Scholar] [CrossRef]
- Mitchell, W.M.; Nicodemus, C.F.; Carter, W.A.; Horvath, J.C.; Strayer, D.R. Discordant biological and toxicological species responses to TLR3 activation. Am. J. Pathol. 2014, 184, 1062–1072. [Google Scholar] [CrossRef]
- Kriszta, G.; Kriszta, Z.; Váncsa, S.; Hegyi, P.J.; Frim, L.; Erőss, B.; Pethő, G.; Pintér, E. Effects of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers on Angiotensin-Converting Enzyme 2 Levels: A Comprehensive Analysis Based on Animal Studies. Front. Pharmacol. 2021, 12, 619524. [Google Scholar] [CrossRef]
- Zhang, L.-K.; Sun, Y.; Zeng, H.; Wang, Q.; Jiang, X.; Shang, W.-J.; Wu, Y.; Li, S.; Zhang, Y.-L.; Hao, Z.-N.; et al. Calcium channel blocker amlodipine besylate therapy is associated with reduced case fatality rate of COVID-19 patients with hypertension. Cell Discov. 2020, 6, 96. [Google Scholar] [CrossRef]
- Kocayigit, I.; Kocayigit, H.; Yaylaci, S.; Can, Y.; Erdem, A.F.; Karabay, O. Impact of antihypertensive agents on clinical course and in-hospital mortality: Analysis of 169 hypertensive patients hospitalized for COVID-19. Rev. Assoc. Médica Bras. 2020, 66, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Godfraind, T. Discovery and Development of Calcium Channel Blockers. Front. Pharmacol. 2017, 8, 286. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, R.W.; Christiansen, C.F.; Heide-Jørgensen, U.; Vogelstein, J.T.; Vogelstein, B.; Bettegowda, C.; Tamang, S.; Athey, S.; Sørensen, H.T. Association of α1-Blocker Receipt With 30-Day Mortality and Risk of Intensive Care Unit Admission Among Adults Hospitalized with Influenza or Pneumonia in Denmark. JAMA Netw. Open 2021, 4, e2037053. [Google Scholar] [CrossRef] [PubMed]
- McCullough, K.; Bolisetty, S. Ferritins in Kidney Disease. Semin. Nephrol. 2020, 40, 160–172. [Google Scholar] [CrossRef]
- Holly, M.K.; Smith, J.G. Paneth cells during viral infection and pathogenesis. Viruses 2018, 10, 225. [Google Scholar] [CrossRef]
- Kelly, P.; Feakins, R.; Domizio, P.; Murphy, J.; Bevins, C.; Wilson, J.; McPhail, G.; Poulsom, R.; Dhaliwal, W. Paneth cell granule depletion in the human small intestine under infective and nutritional stress. Clin. Exp. Immunol. 2004, 135, 303–309. [Google Scholar] [CrossRef]
- Evans, C.M.; Bowen, J.G. Immunological tests in carcinoma of the prostate. Proc. R Soc. Med. 1977, 70, 417–420. [Google Scholar] [CrossRef]
- Peleg, N.; Schmilovitz-Weiss, H.; Shamah, S.; Schwartz, A.; Dotan, I.; Sapoznikov, B. Neutrophil to lymphocyte ratio and risk of neoplastic progression in patients with Barrett’s esophagus. Endoscopy 2021, 53, 774–781. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Yang, L.; Hu, J.; Yao, Y. Value of the Neutrophil-Lymphocyte Ratio in Predicting COVID-19 Severity: A Meta-analysis. Dis. Markers 2021, 2021, 2571912. [Google Scholar] [CrossRef]
- Abassi, Z.; Knaney, Y.; Karram, T.; Heyman, S.N. The Lung Macrophage in SARS-CoV-2 Infection: A Friend or a Foe? Front. Immunol. 2020, 11, 1312. [Google Scholar] [CrossRef]
- Schultze, J.L.; Aschenbrenner, A.C. COVID-19 and the human innate immune system. Cell 2021, 184, 1671–1692. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, S.; Li, D.; Wei, D.Q.; Zhao, J.; Wang, J. Human Intestinal Defensin 5 Inhibits SARS-CoV-2 Invasion by Cloaking ACE2. Gastroenterology 2020, 159, 1145–1147. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Hou, H.; Luo, Y.; Tang, G.; Wu, S.; Huang, M.; Liu, W.; Zhu, Y.; Lin, Q.; Mao, L.; et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. J. Clin. Investig. 2020, 5, e137799. [Google Scholar] [CrossRef] [PubMed]
- Devaux, C.A.; Lagier, J.-C.; Raoult, D. New insights into the physiopathology of COVID-19: SARS-CoV-2-associated gastrointestinal illness. Front. Med. 2021, 8, 99. [Google Scholar] [CrossRef]
- McCray, P.B., Jr.; Bentley, L. Human airway epithelia express a beta-defensin. Am. J. Respir. Cell Mol. Biol. 1997, 16, 343–349. [Google Scholar] [CrossRef]
- Tobi, M.; Darmon, C.E.; Rozen, P.; Harpaz, N.; Fink, A.; Maliakkal, B.; Halline, A.; Mobarhan, S.; Bentwich, Z. Urinary organ specific neoantigen. A potentially diagnostic test for colorectal cancer. Am. J. Dig. Dis. 1995, 40, 1531–1537. [Google Scholar]
- Jehi, L.; Ji, X.; Milinovich, A.; Erzurum, S.; Rubin, B.P.; Gordon, S.; Young, J.B.; Kattan, M.W. Individualizing Risk Prediction for Positive Coronavirus Disease 2019 Testing: Results From 11,672 Patients. Chest 2020, 158, 1364–1375. [Google Scholar] [CrossRef]
- Lippi, G.; Plebani, M. Laboratory abnormalities in patients with COVID-2019 infection. Clin. Chem. Lab. Med. 2020, 58, 1131–1134. [Google Scholar] [CrossRef]
- Marchetti, M. COVID-19-driven endothelial damage: Complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann. Hematol. 2020, 99, 1701–1707. [Google Scholar] [CrossRef]
- Burkard, C.; Verheije, M.H.; Haagmans, B.L.; van Kuppeveld, F.J.; Rottier, P.J.; Bosch, B.-J.; de Haan, C.A. ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells. J. Virol. 2015, 89, 4434–4448. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Akbari, H. The powerful immune system against powerful COVID-19: A hypothesis. Med. Hypotheses 2020, 140, 109762. [Google Scholar] [CrossRef] [PubMed]
- Pierce, C.A.; Sy, S.; Galen, B.; Goldstein, D.Y.; Orner, E.; Keller, M.J.; Herold, K.C.; Herold, B.C. Natural mucosal barriers and COVID-19 in children. medRxiv 2021, 6, e148694. [Google Scholar] [CrossRef]
- Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, D.; Beane, A.; Berry, L.R.; Bhimani, Z. Interleukin-6 receptor antagonists in critically ill patients with COVID-19. N. Engl. J. Med. 2021, 385, 1147. [Google Scholar]
- Rosas, I.O.; Bräu, N.; Waters, M.; Go, R.C.; Hunter, B.D.; Bhagani, S.; Skiest, D.; Aziz, M.S.; Cooper, N.; Douglas, I.S.; et al. Tocilizumab in Hospitalized Patients with Severe COVID-19 Pneumonia. N. Engl. J. Med. 2021, 384, 1503–1516. [Google Scholar] [CrossRef] [PubMed]
- Reis, G.; Moreira-Silva, E.A.D.S.; Silva, D.C.M.; Thabane, L.; Milagres, A.C.; Ferreira, T.S.; dos Santos, C.V.Q.; Campos, V.H.d.S.; Nogueira, A.M.R.; de Almeida, A.P.F.G.; et al. Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: The TOGETHER randomised, platform clinical trial. Lancet Glob. Health 2021, 10, e42–e51. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.; Khanna, A.; Kethireddy, S.; Yamane, D.; Levine, A.; Jackson, A. Aspirin use is associated with decreased mechanical ventilation, intensive care unit admission, and inhospital mortality in hospitalized patients with coronavirus disease 2019. Anesth. Analg. 2021, 132, 930–941. [Google Scholar] [CrossRef]
- Diz, D.I.; Garcia-Espinosa, M.A.; Gegick, S.; Tommasi, E.N.; Ferrario, C.M.; Ann Tallant, E.; Chappell, M.C.; Gallagher, P.E. Injections of angiotensin-converting enzyme 2 inhibitor MLN4760 into nucleus tractus solitarii reduce baroreceptor reflex sensitivity for heart rate control in rats. Exp. Physiol. 2008, 93, 694–700. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, S.; Nekhai, S.; Liu, S. Depriving iron supply to the virus represents a promising adjuvant therapeutic against viral survival. Curr. Clin. Microbiol. Rep. 2020, 7, 13–19. [Google Scholar] [CrossRef]
- Carota, G.; Ronsisvalle, S.; Panarello, F.; Tibullo, D.; Nicolosi, A.; Li Volti, G. Role of Iron Chelation and Protease Inhibition of Natural Products on COVID-19 Infection. J. Clin. Med. 2021, 10, 2306. [Google Scholar] [CrossRef]
- Sottile, R.; Federico, G.; Garofalo, C.; Tallerico, R.; Faniello, M.C.; Quaresima, B.; Cristiani, C.M.; Di Sanzo, M.; Cuda, G.; Ventura, V. Iron and ferritin modulate MHC class I expression and NK cell recognition. Front. Immunol. 2019, 10, 224. [Google Scholar] [CrossRef]
- Maio, N.; Lafont, B.A.P.; Sil, D.; Li, Y.; Bollinger, J.M., Jr.; Krebs, C.; Pierson, T.C.; Linehan, W.M.; Rouault, T.A. Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science 2021, 373, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Patel, D.; Bittel, B.; Wolski, K.; Wang, Q.; Kumar, A.; Il’Giovine, Z.J.; Mehra, R.; McWilliams, C.; Nissen, S.E. Effect of high-dose zinc and ascorbic acid supplementation vs. usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: The COVID A to Z randomized clinical trial. JAMA Netw. Open 2021, 4, e210369. [Google Scholar] [CrossRef] [PubMed]
- Tobi, M.; Tobi, Y.Y.; Antaki, F.; Rambus, M.; Lawson, M. Preliminary data of a stool test for lung cancer from a prospective study. Cancer Res. 2018, 78, 4519. [Google Scholar] [CrossRef]
- Ching, J.C.; Lobanova, L.; Loewen, M.E. Secreted hCLCA1 is a signaling molecule that activates airway macrophages. PLoS ONE 2013, 8, e83130. [Google Scholar] [CrossRef]
- Poels, K.E.; Schoenfeld, A.J.; Makhnin, A.; Tobi, Y.; Wang, Y.; Frisco-Cabanos, H.; Chakrabarti, S.; Shi, M.; Napoli, C.; McDonald, T.O. Identification of optimal dosing schedules of dacomitinib and osimertinib for a phase I/II trial in advanced EGFR-mutant non-small cell lung cancer. Nat. Commun. 2021, 12, 3697. [Google Scholar] [CrossRef] [PubMed]
- Tobi, M.; Kim, M.; Weinstein, D.H.; Rambus, M.A.; Hatfield, J.; Adsay, N.V.; Levi, E.; Evans, D.; Lawson, M.J.; Fligiel, S. Prospective markers for early diagnosis and prognosis of sporadic pancreatic ductal adenocarcinoma. Dig. Dis. Sci. 2013, 58, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, I.; Shankar, E.M. SARS-CoV-2-indigenous microbiota nexus: Does gut microbiota contribute to inflammation and disease severity in COVID-19? Front. Cell. Infect. Microbiol. 2021, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Tobi, M.; Talwar, H.; McVicker, B. The Celiac Disease Microbiome Depends on the Paneth Cells of the Puzzle. Gastroenterology 2021, 161, 359. [Google Scholar] [CrossRef]
- Cappell, M.S.; Tobi, M.; Friedel, D.M. The Impact of COVID-19 Infection on Miscellaneous Inflammatory Disorders of the Gastrointestinal Tract. Gastroenterol. Clin. N. Am. 2023, 52, 115–138. [Google Scholar] [CrossRef]
- Cohn, S.K., Jr. The Dramaturgy of Epidemics. Bull. Hist. Med. 2020, 94, 578–589. [Google Scholar] [CrossRef]
Demographic n = 2292 | Group 1 | Group 2 | Group 3 | Group 4 |
---|---|---|---|---|
PCR/Symptom Status | COVID-19 + ve/Sx + ve | COVID-19 − ve/Sx+ | COVID-19 − ve/Sx − ve | PCR/Sx Unknown |
Number (percent) | 28 (1.2) | 36 (2) | 90 (3.9) | 2129 (92.9) ^ |
Entry/testing (Age ± SD) | 54 ± 11/72 ± 9.7 years | 54 ± 8/73 ± 8.6 years | 54 ± 8.6/73 ± 9.0 years | 61 ± 12.4 */NA years |
Sex (%male = m) NSS | m = 22 female = 5 (81.5) | m = 36 female = 9 (80) | m = 72 female = 13 (84.7) | m = 1684 female = 209 (89) |
Ethnicity (%AA):White | 17 (63):10 (37) | 33 (73):12 (27) | 54 (60):36 (40) | 96 (51):969 (49) |
Mortality number (%) | 5 (18.5) | 5 (10.9) | 5 (5.6) p = 0.05 vs. 1 | NA |
COVID-19 test (%) | 22 (82%) known | 41 (89%) known | 49 (53%) ** | NA |
Vaccinated (%) | yes 15 (56%) no 12 (44%) | yes 22 (54%) no 19 (46%) | yes 40 (66%) no 21 (34%) | NA |
Clinical Parameters | Group 1 COVID-19 Patients (Data%) cf Denotes First Wave | Group 2 Non-COVID-19 Controls (%) | p-Value * |
---|---|---|---|
Severity of disease | 14 no signs/mild; 12 severe (96) | 29 mild 15 severe (96) | NSS |
Days of hospital stay | 5.81 ± 8.66 cf 6 (4–11.5) | 1.09 ± 4.4 | <0.02 |
ICCU admission | 4 yes 23 no 14.8% cf 37.1% | 0% (OR 7.83 [0.83–76.11]) | =0.017 |
Pulse oximetry % | 94.2 ± 5.2 | 96.1 ± 2.2 p = 0.15 | 0.15 |
Hemoglobin 12.5–15 d/dL | 12.2 ± 2.6 | 12.5 ± 2.5 p = 0.67 | 0.67 |
D-dimer 200–250 ng/dL | 1993 ± 2683 cf median 508 | 1145 ± 1435 | 0.22 |
CRP | 10 yes 0 no (100%) | 8 yes 14 no (36) (RR 2.75 [1.58–9.78]) | <0.002 |
Ferritin ng/mL | 1127 ± 1598 cf 2000 | 167 ± 142 | 0.062 |
Platelets × 107/L | 202,046 ± 56,591 cf 173,000 | 226,222 ± 85,853 | 0.24 |
Absolute monocytes × 107/L | 0.734 ± 0.892 | 0.684 ± 0.330 | 0.71 |
Absolute lymphocyte × 107/L | 1.224 ± 0.646 cf 0.9 | 1.646 ± 0.633 | =0.014 |
Ratio abs m/abs ly | 1.005 ± 1.716 | 0.473 ± 0.374 | 0.17 |
Ratio abs ly/abs m | 2.305 ± 1.179 | 2.863 ± 1.478 | 0.13 |
LDH | 391 ± 142 | 355 ± 162 | 0.60 |
Supplemental oxygen | 11 yes 16 no (41%) cf 83.5% | 2 yes 43 no (4%) OR 14.78 (2.95–74.12) | <0.0002 |
Remdesivir/chloroquine | 3 of 27 each (11% each) cf 69.6% | N/A | N/A |
Steroids | 6 yes 21 no (22%) cf 34.2% | 1 yes 44 no OR 12.86 (1.45–113.68) | <0.009 |
NSAIDs | 14 yes 13 no (56%) | 25 yes 20 no (56%) | NS |
BMI (kg/square meter height) | 32.5 ± 5.823 cf 30.7 ± 7.6 | 30.1 ± 5.4 | 0.20 |
Diabetes mellitus type 2 | 15 yes 11 no (58%) cf 60.8% | 22 yes 24 no (48%) | 0.47 |
Variable | Number | Mean FERAD | p Value of FERAD |
---|---|---|---|
African American | 244 | 19,509 | NSS |
Caucasian American | 164 | 15,885 | |
Age < 60 years of age | 206 | 20,519 | NSS |
Age > 60 years of age | 206 | 15,084 | |
Sex male | 376 | 19,540 | 0.052 * |
Sex female | 40 | 4262 | |
BMI < 28 | 187 | 16,830 | NSS |
BMI > 28 | 211 | 15,197 | |
No Diabetes | 234 | 15,900 | NSS |
Diabetes | 170 | 20,704 |
Quartile Parameters | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 |
---|---|---|---|---|
FERAD mean ± SD | 6816 ± 7822 | 69,575 ± 132,844 | 41,880 ± 89,230 | 50,704 ± 114,298 |
Number total 445 | 111 | 111 | 112 | 111 |
% Males | 80 | 99 | 96 | 92 |
Age mean ± SD years | 60.3 ± 12.3 | 63.8 ± 11.1 | 62.2 ± 11.4 | 62.7 ± 11.4 |
Ethnicity %AA | 58 | 62 | 62 | 62 |
BMI mean ± SD | 27.9 ± 4.8 | 28.6 ± 5.9 | 27.7 ± 5.9 | 29.0 ± 6.0 |
Mean Effluent p87 | 0.070 ± 0.123 | 0.200 ± 0.333 * | 0.163 ± 0.289 | 0.283 ± 0.441 ** |
Drug Class | Mechanism of Action | Receptor | COVID-19 Action |
---|---|---|---|
Angiotensin converting enzyme-1 inhibitors | Increase in ACE expression | Angiotensin converting enzyme 2 (ACE2) | Reduced susceptibility and lung protection [30] |
Angiotensin II receptor blockers | Possible Increase in ACE expression | Angiotensin II receptor | Reduced susceptibility and lung protection [31] |
Calcium Channel Blockers | Blocks Cav1.2 L-channel pores—external and internal surfaces | Cav1.2 L-channel pores | Antiviral effect [32,33] |
Diuretics | Blockade of resorption of sodium/water block Cl-receptor channel | Tubule or connecting/loop/collecting duct vasopressin receptors | No effect [34] |
Beta-blockers | Blocks macrophage catecholamine receptors | Alpha-1-adrenergic receptor | Beneficial effect in pneumonia by reducing hyperinflammation [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobi, M.; Bluth, M.H.; Rossi, N.F.; Demian, E.; Talwar, H.; Tobi, Y.Y.; Sochacki, P.; Levi, E.; Lawson, M.; McVicker, B. In the SARS-CoV-2 Pandora Pandemic: Can the Stance of Premorbid Intestinal Innate Immune System as Measured by Fecal Adnab-9 Binding of p87:Blood Ferritin, Yielding the FERAD Ratio, Predict COVID-19 Susceptibility and Survival in a Prospective Population Database? Int. J. Mol. Sci. 2023, 24, 7536. https://doi.org/10.3390/ijms24087536
Tobi M, Bluth MH, Rossi NF, Demian E, Talwar H, Tobi YY, Sochacki P, Levi E, Lawson M, McVicker B. In the SARS-CoV-2 Pandora Pandemic: Can the Stance of Premorbid Intestinal Innate Immune System as Measured by Fecal Adnab-9 Binding of p87:Blood Ferritin, Yielding the FERAD Ratio, Predict COVID-19 Susceptibility and Survival in a Prospective Population Database? International Journal of Molecular Sciences. 2023; 24(8):7536. https://doi.org/10.3390/ijms24087536
Chicago/Turabian StyleTobi, Martin, Martin H. Bluth, Noreen F. Rossi, Ereny Demian, Harvinder Talwar, Yosef Y. Tobi, Paula Sochacki, Edi Levi, Michael Lawson, and Benita McVicker. 2023. "In the SARS-CoV-2 Pandora Pandemic: Can the Stance of Premorbid Intestinal Innate Immune System as Measured by Fecal Adnab-9 Binding of p87:Blood Ferritin, Yielding the FERAD Ratio, Predict COVID-19 Susceptibility and Survival in a Prospective Population Database?" International Journal of Molecular Sciences 24, no. 8: 7536. https://doi.org/10.3390/ijms24087536
APA StyleTobi, M., Bluth, M. H., Rossi, N. F., Demian, E., Talwar, H., Tobi, Y. Y., Sochacki, P., Levi, E., Lawson, M., & McVicker, B. (2023). In the SARS-CoV-2 Pandora Pandemic: Can the Stance of Premorbid Intestinal Innate Immune System as Measured by Fecal Adnab-9 Binding of p87:Blood Ferritin, Yielding the FERAD Ratio, Predict COVID-19 Susceptibility and Survival in a Prospective Population Database? International Journal of Molecular Sciences, 24(8), 7536. https://doi.org/10.3390/ijms24087536