Local Immune Biomarker Expression Depending on the Uterine Microbiota in Patients with Idiopathic Infertility
Abstract
:1. Introduction
2. Results
2.1. Vaginal and Endometrial Microbiota Composition
2.2. Evaluation of Cytokines and α-Defensin in Endometrial Samples
2.3. Patient Follow-Up
3. Discussion
4. Materials and Methods
4.1. General Study Design
4.2. Clinical and Social Characteristics of Patients Included
4.3. Patients Investigation
4.4. Sample Testing
4.5. Sample Testing
4.6. Patient Follow-Up
Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreno, I.; Garcia-Grau, I.; Perez-Villaroya, D.; Gonzalez-Monfort, M.; Bahçeci, M.; Barrionuevo, M.J.; Taguchi, S.; Puente, E.; Dimattina, M.; Lim, M.W.; et al. Endometrial microbiota composition is associated with reproductive outcome in infertile patients. Microbiome 2022, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Pirtea, P.; Cicinelli, E.; De Nola, R.; de Ziegler, D.; Ayoubi, J.M. Endometrial causes of recurrent pregnancy losses: Endometriosis, adenomyosis, and chronic endometritis. Fertil. Steril. 2021, 115, 546–560. [Google Scholar] [CrossRef] [PubMed]
- Tapilskaya, N.I.; Budilovskaya, O.V.; Krysanova, A.A.; Tolibova, G.K.; Kopylova, A.A.; Tsypurdeeva, N.D.; Gzgzyan, A.M.; Savicheva, A.M.; Kogan, I.Y. Endometrial microbiota of women with chronic endometritis and idiopathic infertility. Akusherstvo I Ginekol. 2020, 4, 72–81. [Google Scholar] [CrossRef]
- Espinós, J.J.; Fabregues, F.; Fontes, J.; García-Velasco, J.A.; Llácer, J.; Requena, A.; Checa, M.Á.; Bellver, J.; Spanish Infertility SWOT Group (SISG). Impact of chronic endometritis in infertility: A SWOT analysis. Reprod. Biomed. Online 2021, 42, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Sirota, I.; Zarek, S.M.; Segars, J.H. Potential influence of the microbiome on infertility and assisted reproductive technology. Semin. Reprod. Med. 2014, 32, 35–42. [Google Scholar] [CrossRef]
- Robertson, S.A.; Moldenhauer, L.M.; Green, E.S.; Care, A.S.; Hull, M.L. Immune determinants of endometrial receptivity: A biological perspective. Fertil. Steril. 2022, 117, 1107–1120. [Google Scholar] [CrossRef]
- Tortorella, C.; Piazzolla, G.; Matteo, M.; Pinto, V.; Tinelli, R.; Sabbà, C.; Fanelli, M.; Cicinelli, E. Interleukin-6, interleukin-1β, and tumor necrosis factor α in menstrual effluents as biomarkers of chronic endometritis. Fertil. Steril. 2014, 101, 242–247. [Google Scholar] [CrossRef]
- Gao, X.; Ding, J.; Liao, C.; Xu, J.; Liu, X.; Lu, W. Defensins: The natural peptide antibiotic. Adv. Drug. Deliv. Rev. 2021, 179, 114008. [Google Scholar] [CrossRef]
- Zhai, Y.J.; Feng, Y.; Ma, X.; Ma, F. Defensins: Defenders of human reproductive health. Hum. Reprod. Update 2023, 29, 126–154. [Google Scholar] [CrossRef]
- Park, M.S.; Kim, J.I.; Lee, I.; Park, S.; Bae, J.Y.; Park, M.S. Towards the Application of Human Defensins as Antivirals. Biomol. Ther. 2018, 26, 242–254. [Google Scholar] [CrossRef]
- Pace, B.T.; Lackner, A.A.; Porter, E.; Pahar, B. The role of defensins in HIV pathogenesis. Mediators Inflamm. 2017, 2017, 5186904. [Google Scholar] [CrossRef] [PubMed]
- Shigemura, T.; Yamazaki, T.; Shiohara, M.; Kobayashi, N.; Naganuma, K.; Koike, K.; Agematsu, K. Clinical course in a patient with neutrophil-specific granule deficiency and rapid detection of neutrophil granules as a screening test. J. Clin. Immunol. 2014, 34, 780–783. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zheng, L.; Yuan, Q.; Zhen, G.; Crane, J.L.; Zhou, X.; Cao, X. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res. 2018, 6, 2. [Google Scholar] [CrossRef]
- Yang, D.; Dai, F.; Yuan, M.; Zheng, Y.; Liu, S.; Deng, Z.; Tan, W.; Chen, L.; Zhang, Q.; Zhao, X.; et al. Role of Transforming Growth Factor-β1 in Regulating Fetal-Maternal Immune Tolerance in Normal and Pathological Pregnancy. Front. Immunol. 2021, 12, 689181. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Maurya, V.K.; Joshi, A.; Meeran, S.M.; Jha, R.K. Integrin Beta 8 (ITGB8) Regulates Embryo Implantation Potentially via Controlling the Activity of TGF-B1 in Mice. Biol. Reprod. 2015, 92, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wollenhaupt, K.; Welter, H.; Einspanier, R.; Manabe, N.; Brüssow, K.P. Expression of epidermal growth factor receptor (EGF-R), vascular endothelial growth factor receptor (VEGF-R) and fibroblast growth factor receptor (FGF-R) systems in porcine oviduct and endometrium during the time of implantation. J. Reprod. Dev. 2004, 50, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Parrilla, I.; Gil, M.A.; Cuello, C.; Cambra, J.M.; Gonzalez-Plaza, A.; Lucas, X.; Vazquez, J.L.; Vazquez, J.M.; Rodriguez-Martinez, H.; Martinez, E.A. Immunological uterine response to pig embryos before and during implantation. Reprod. Domest. Anim. 2022, 57, 4–13. [Google Scholar] [CrossRef]
- Pantos, K.; Grigoriadis, S.; Maziotis, E.; Pistola, K.; Xystra, P.; Pantou, A.; Kokkali, G.; Pappas, A.; Lambropoulou, M.; Sfakianoudis, K.; et al. The Role of interleukins in recurrent implantation failure: A comprehensive review of the literature. Int. J. Mol. Sci. 2022, 23, 2198. [Google Scholar] [CrossRef]
- Inversetti, A.; Zambella, E.; Guarano, A.; Dell’Avanzo, M.; Di Simone, N. Endometrial microbiota and immune tolerance in pregnancy. Int. J. Mol. Sci. 2023, 24, 2995. [Google Scholar] [CrossRef]
- Yoshihara, M.; Mizutani, S.; Kato, Y.; Matsumoto, K.; Mizutani, E.; Mizutani, H.; Fujimoto, H.; Osuka, S.; Kajiyama, H. Recent insights into human endometrial peptidases in blastocyst implantation via shedding of microvesicles. Int. J. Mol. Sci. 2021, 22, 13479. [Google Scholar] [CrossRef]
- Governini, L.; Luongo, F.P.; Haxhiu, A.; Piomboni, P.; Luddi, A. Main actors behind the endometrial receptivity and successful implantation. Tissue Cell. 2021, 73, 101656. [Google Scholar] [CrossRef] [PubMed]
- Whitby, S.; Zhou, W.; Dimitriadis, E. Alterations in epithelial cell polarity during endometrial receptivity: A systematic review. Front. Endocrinol. 2020, 11, 596324. [Google Scholar] [CrossRef] [PubMed]
- Egbase, P.E.; al-Sharhan, M.; al-Othman, S.; al-Mutawa, M.; Udo, E.E.; Grudzinskas, J.G. Incidence of microbial growth from the tip of the embryo transfer catheter after embryo transfer in relation to clinical pregnancy rate following in-vitro fertilization and embryo transfer. Hum. Reprod. 1996, 11, 1687–1689. [Google Scholar] [CrossRef] [PubMed]
- Swidsinski, A.; Loening-Baucke, V.; Mendling, W.; Dörffel, Y.; Schilling, J.; Halwani, Z.; Jiang, X.F.; Verstraelen, H.; Swidsinski, S. Infection through structured polymicrobial Gardnerella biofilms (StPM-GB). Histol. Histopathol. 2014, 29, 567–587. [Google Scholar] [PubMed]
- Edgell, T.A.; Evans, J.; Lazzaro, L.; Boyes, K.; Sridhar, M.; Catt, S.; Rombauts, L.J.F.; Vollenhoven, B.J.; Salamonsen, L.A. Assessment of potential biomarkers of pre-receptive and receptive endometrium in uterine fluid and a functional evaluation of the potential role of CSF3 in fertility. Cytokine 2018, 111, 222–229. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, A.; Feng, L.; Wang, Y.; Zhang, H.; Zhang, I.; Bany, B.M.; Ma, L. Heparan Sulfate Proteoglycan Sulfation Regulates Uterine Differentiation and Signaling During Embryo Implantation. Endocrinology 2018, 159, 2459–2472. [Google Scholar] [CrossRef]
- Ni, N.; Gao, Y.; Fang, X.; Melgar, M.; Vincent, D.F.; Lydon, J.P.; Bartholin, L.; Li, Q. Glandular defects in the mouse uterus with sustained activation of TGF-beta signaling is associated with altered differentiation of endometrial stromal cells and formation of stromal compartment. PLoS ONE 2018, 13, e0209417. [Google Scholar] [CrossRef]
- Hultmark, D.; Steiner, H.; Rasmuson, T.; Boman, H.G. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 1980, 106, 7–16. [Google Scholar] [CrossRef]
- Ganz, T.; Selsted, M.E.; Szklarek, D.; Harwig, S.S.; Daher, K.; Bainton, D.F.; Lehrer, R.I. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Investig. 1985, 76, 1427–1435. [Google Scholar] [CrossRef]
- Dlozi, P.N.; Gladchuk, A.; Crutchley, R.D.; Keuler, N.; Coetzee, R.; Dube, A. Cathelicidins and defensins antimicrobial host defense peptides in the treatment of TB and HIV: Pharmacogenomic and nanomedicine approaches towards improved therapeutic outcomes. Biomed. Pharmacother. 2022, 151, 113189. [Google Scholar] [CrossRef]
- Solanki, S.S.; Singh, P.; Kashyap, P.; Sansi, M.S.; Ali, S.A. Promising role of defensins peptides as therapeutics to combat against viral infection. Microb. Pathog. 2021, 155, 104930. [Google Scholar] [CrossRef] [PubMed]
- Cicinelli, E.; Vitagliano, A.; Loizzi, V.; De Ziegler, D.; Fanelli, M.; Bettocchi, S.; Nardelli, C.; Trojano, G.; Cicinelli, R.; Minervini, C.F.; et al. Altered gene expression encoding cytochines, grow factors and cell cycle regulators in the endometrium of women with chronic endometritis. Diagnostics 2021, 11, 471. [Google Scholar] [CrossRef] [PubMed]
Microorganism | Endometrium | Vagina | Concordance (K, %; a/b) |
---|---|---|---|
Bifidobacterium spp. | 11 | 15 | 36.8%; 7/12 |
Gardnerella vaginalis | 23 | 30 | 33.3%; 13/26 |
Mycoplasma hominis | 2 | 2 | 33.3%; 1/2 |
Lactobacillus spp. | 27 | 15 | 28.1%; 9/23 |
HPV | 10 | 9 | 26.7%; 4/11 |
Enterobacteriaceae spp. | 12 | 20 | 23.1%; 6/20 |
Bacteroides spp., Porphyromonas spp., Prevotella spp. | 22 | 23 | 21.6%; 8/29 |
Enterococcus spp. | 11 | 16 | 17.4%; 4/19 |
Mobiluncus spp., Corynebacterium spp. | 4 | 9 | 8.3%; 1/11 |
Streptococcus spp. | 7 | 7 | 7.7%; 1/12 |
Sneathia spp., Leptotrichia spp., Fusobacterium spp. | 2 | 13 | 15.4%; 2/11 |
Atopobium vaginae | 10 | 7 | 13.3%; 2/13 |
Peptostreptococcus spp. | 7 | 19 | 13.0%; 3/20 |
Megasphaera spp., Velionella spp. | 6 | 14 | 11.8%; 2/15 |
Clostridium spp., Lachnobacterium spp. | 3 | 12 | 7.1%; 1/13 |
Staphylococcus spp. | 0 | 7 | 0%; 0/7 |
Streptococcus agalactiae | 4 | 2 | 0%; 0/6 |
Candida spp. | 1 | 11 | 0%; 0/12 |
Ureaplasma parvum | 2 | 6 | 0%; 0/8 |
Haemophilus spp. | 0 | 1 | 0%; 0/1 |
Anaerococcus spp. | 3 | 3 | 0%; 0/6 |
Parameter | Infertile Group | Fertile Group | U | W | Z | p |
---|---|---|---|---|---|---|
bFGF2, pg/mL | 19.931 [16.18; 40.65] | 48.8 [40.0; 50.83] | 159.5 | 2304.5 | −3.79 | <0.0001 |
TGFβ1, pg/mL | 5.28 [2.93; 8.4] | 8.02 [6.008; 10.6] | 252.0 | 2397.0 | −2.61 | 0.009 |
DEFa1, pg/mL | 0.746 [0.532; 1.159] | 0.615 [0.493; 0.672] | 297.5 | 402.5 | −2.022 | 0.042 |
Microorganism/ Positive History | Presence in Endometrium/ Positive History | bFGF2, pg/mL | TGFβ1, pg/mL | DEFa1, pg/mL |
---|---|---|---|---|
Microbiological data | ||||
Lactobacillus spp. | Yes (n = 27) | 20.3 [16.81; 42.55] | 5.28 [2.2; 9.23] | 0.83 [0.63; 1.23] |
No (n = 38) | 19.71 [17; 25.41] | 5.13 [3.22; 7.95] | 0.69 [0.52; 0.92] | |
stat. | t = 1.0724 p = 0.261 | t = 1.2 p = 0.234 | t = 1.818 p = 0.068 | |
Peptostreptococcus spp. | Yes (n = 7) | 40.9 [19.49; 42.6] | 5.86 [5.35; 7.21] | 0.653 [0.588; 0.687] |
No (n = 58) | 19.71 [15.52; 25.79] | 4.76 [2.83; 8.5] | 0.75 [0.53; 1.12] | |
stat. | U = 134.5 p = 0.149 | t = 0.198 p = 0.797 | U = 137.5 p = 0.171 F = 1562.7 p = 0.0011 | |
HPV | Yes (n = 10) | 19.34 [12.99; 29.66] | 5.57 [4.73; 7.67] | 0.97 [0.54; 4.36] |
no (n = 55) | 19.93 [17.16; 40.65] | 5.12 [2.86; 8.63] | 0.75 [0.55; 1.01] | |
stat. | U = 232.5 p = 0.44 | t = 1.75 p = 0.086 | t = 3.132 p = 0.003 | |
Anamnestic data | ||||
Recurrent genital HSV infection | Yes (n = 21) | 19.49 [15.52; 42.59] | 5.42 [2.05; 9.8] | 1.27 [0.9; 5.42] |
No (n = 44) | 20.12 [17.32; 38.45] | 5.205 [3.22; 8.18] | 0.65 [0.49; 0.77] | |
stat. | t = 0.573 p = 0.57 | U = 460.5 p = 0.989; F = 9.6 p = 0.028 | t = 4.255 p = 0.008 | |
Ectopic pregnancy | Yes (n = 8) | 8.77 [5.4; 19.184] | 0.81 [0; 4.21] | 0.453 [0.256; 0.73] |
No (n = 57) | 20.52 [18.11; 42] | 5.28 [3.22; 8.2] | 0.75 [0.59; 1.15] | |
stat. | U = 80.5 p = 0.002 | U = 71.5 p = 0.0012 | U = 93 p = 0.005 |
Microorganism | Patient’s Identification Number | |||||||
---|---|---|---|---|---|---|---|---|
6 | 14 | 17 | 23 | 42 | 55 | 56 | 62 | |
Lactobacillus spp. | + | + | + | + | + | |||
Bifidobacterium spp. | + | + | ||||||
Gardnerella vaginalis | + | + | + | + | ||||
Atopobium vaginae | + | + | + | |||||
Bacteroides spp., Porphyromonas spp., Prevotella spp. | + | + | ||||||
Enterobacteriaceae spp. | + | + | + | + | + | |||
Enterococcus spp. | + | |||||||
Megasphaera spp., Velionella spp. | + | |||||||
Peptostreptococcus spp. | + | |||||||
Streptococcus spp. | + | + | + | + | ||||
Anaerococcus spp. | + | |||||||
Human papillomavirus (HPV) | + | |||||||
Immune biomarkers | ||||||||
bFGF2, pg/mL | 3.373 | 5.397 | 15.52 | 25.41 | 0.675 | 6.071 | 18.73 | 5.399 |
TGFβ1, pg/mL | 49.19 | 2.052 | 8.65 | 3.079 | 2.345 | 0 | 6.3 | 0 |
DEFa1, pg/mL | 16.12 | 0.665 | 2.098 | 0.996 | 0 | 0.25 | 0.486 | 0.425 |
Number of microorganisms | 4 | 2 | 3 | 5 | 2 | 10 | 1 | 3 |
Parameter | Infertile Group | Fertile Group |
---|---|---|
Number of patients, n | 65 | 14 |
Age [min; max], yo | 25–37 | 25–38 |
Median [25th percentile; 75th percentile], yo | 33 [28; 35] | 34 [29; 35] |
Education: | ||
Higher education | 27 (41.5%) | 14 (100%) |
Intermediate vocational education | 21 (32.3%) | - |
Secondary-level education | 17 (26.2%) | - |
Social status: | ||
Married | 32 (49.2%) | 8 (57.1%) |
Single | 33 (50.8%) | 6 (42.9%) |
Body mass index (kg/m2) | ||
18.5–19.9 | 9 (13.8%) | - |
20.0–25.0 | 29 (44.6%) | 10 (71.4%) |
25.0–29.9 | 26 (40.0%) | 4 (28.6%) |
Smoking: | ||
Yes | 22 (33.8%) | 3 (21.4%) |
No | 43 (66.2%) | 11 (78.6%) |
Parameter | Infertile Group | Fertile Group |
---|---|---|
Number of deliveries 1 2 | 65 (100%) 43 (66.2%) 22 (33.8%) | 14 (100%) 0 14 (100%) |
History of miscarriage followed by: uterine abrasion medication-induced abortion | 45 (69.2%) 34 (52.3%) 11 (16.9%) | 0 0 0 |
Ectopic pregnancy followed by: laparoscopic surgery laparotomy | 8 (12.3%) 7 (10.8%) 1 (1.5%) | 0 0 0 |
History of IVF failures | 8 (12.3%) | 0 |
History of surgical interventions hysteroscopy laparoscopy | 49 (75.4%) 38 (58.5%) 15 (23.1%) | 0 0 0 |
History of viral infections recurrent herpes simplex virus infection history of human papillomavirus | 27 (41.5%) 21 (32.3%) 8 (12.3%) | 0 0 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapilskaya, N.I.; Savicheva, A.M.; Shalepo, K.V.; Budilovskaya, O.V.; Gzgzyan, A.M.; Bespalova, O.N.; Khusnutdinova, T.A.; Krysanova, A.A.; Obedkova, K.V.; Safarian, G.K. Local Immune Biomarker Expression Depending on the Uterine Microbiota in Patients with Idiopathic Infertility. Int. J. Mol. Sci. 2023, 24, 7572. https://doi.org/10.3390/ijms24087572
Tapilskaya NI, Savicheva AM, Shalepo KV, Budilovskaya OV, Gzgzyan AM, Bespalova ON, Khusnutdinova TA, Krysanova AA, Obedkova KV, Safarian GK. Local Immune Biomarker Expression Depending on the Uterine Microbiota in Patients with Idiopathic Infertility. International Journal of Molecular Sciences. 2023; 24(8):7572. https://doi.org/10.3390/ijms24087572
Chicago/Turabian StyleTapilskaya, Natalya I., Alevtina M. Savicheva, Kira V. Shalepo, Olga V. Budilovskaya, Aleksandr M. Gzgzyan, Olesya N. Bespalova, Tatiana A. Khusnutdinova, Anna A. Krysanova, Kseniia V. Obedkova, and Galina Kh. Safarian. 2023. "Local Immune Biomarker Expression Depending on the Uterine Microbiota in Patients with Idiopathic Infertility" International Journal of Molecular Sciences 24, no. 8: 7572. https://doi.org/10.3390/ijms24087572
APA StyleTapilskaya, N. I., Savicheva, A. M., Shalepo, K. V., Budilovskaya, O. V., Gzgzyan, A. M., Bespalova, O. N., Khusnutdinova, T. A., Krysanova, A. A., Obedkova, K. V., & Safarian, G. K. (2023). Local Immune Biomarker Expression Depending on the Uterine Microbiota in Patients with Idiopathic Infertility. International Journal of Molecular Sciences, 24(8), 7572. https://doi.org/10.3390/ijms24087572