Proteomic Profiling of Mouse Brain Pyruvate Kinase Binding Proteins: A Hint for Moonlighting Functions of PKM1?
Abstract
:1. Introduction
2. Results
2.1. Proteomic Profiling of Mouse Brain Proteins Using PKM1 as the Affinity Ligand
2.2. Biosensor Validation of PKM1 Interaction with Selected Identified PKM Binding Proteins
2.3. Proteomic Profiling of Mouse Brain Proteins Using the PK Peptide as the Affinity Ligand
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Selection of the PK Peptide
4.3. Animals
4.4. Preparation of Brain Homogenate Lysates
4.5. Immobilization of PKM1 and the PK Peptide on Cyanogen Bromide-Activated Sepharose 4B, Affinity Chromatography and Sample Preparation for Mass Spectrometric Analysis
4.6. The Mass Spectrometric Analysis (LC-MS/MS)
4.7. Biosensor Analysis
4.7.1. Immobilization of Proteins
4.7.2. Binding Measurements
4.8. Bioinformatic Analysis of Protein–Protein Interactions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medvedev, A.; Kopylov, A.; Buneeva, O.; Zgoda, V.; Archakov, A. Affinity-based proteomic profiling: Problems and achievements. Proteomics 2012, 12, 621–637. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, T.; Zhang, H.; Han, B.; Wang, L.; Kang, J. Profiling of drug binding proteins by monolithic affinity chromatography in combination with liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2014, 1359, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Shan, M.; Gregory, B.D. Using RNA Affinity Purification Followed by Mass Spectrometry to Identify RNA-Binding Proteins (RBPs). Methods Mol. Biol. 2020, 2166, 241–253. [Google Scholar] [PubMed]
- Hwang, H.Y.; Kim, T.Y.; Szász, M.A.; Dome, B.; Malm, J.; Marko-Varga, G.; Kwon, H.J. Profiling the Protein Targets of Unmodified Bio-Active Molecules with Drug Affinity Responsive Target Stability and Liquid Chromatography/Tandem Mass Spectrometry. Proteomics 2020, 20, e1900325. [Google Scholar] [CrossRef]
- Low, T.Y.; Syafruddin, S.E.; Mohtar, M.A.; Vellaichamy, A.A.; Rahman, N.S.; Pung, Y.F.; Tan, C.S.H. Recent progress in mass spectrometry-based strategies for elucidating protein-protein interactions. Cell Mol. Life Sci. 2021, 78, 5325–5339. [Google Scholar] [CrossRef]
- Iacobucci, I.; Monaco, V.; Cozzolino, F.; Monti, M. From classical to new generation approaches: An excursus of -omics methods for investigation of protein-protein interaction networks. J. Proteom. 2021, 230, 103990. [Google Scholar] [CrossRef]
- Jeffery, C.J. Protein moonlighting: What is it, and why is it important? Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20160523. [Google Scholar] [CrossRef]
- Jeffery, C.J. Moonlighting Proteins—Nature’s Swiss Army Knives. Sci. Prog. 2017, 100, 363–373. [Google Scholar] [CrossRef]
- Jeffery, C.J. Enzymes, pseudoenzymes, and moonlighting proteins: Diversity of function in protein superfamilies. FEBS J. 2020, 287, 4141–4149. [Google Scholar] [CrossRef]
- Snaebjornsson, M.T.; Schulze, A. Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Exp. Mol. Med. 2018, 50, 1–16. [Google Scholar] [CrossRef]
- Dhar-Chowdhury, P.; Harrell, M.D.; Han, S.Y.; Jankowska, D.; Parachuru, L.; Morrissey, A.; Srivastava, S.; Liu, W.; Malester, B.; Yoshida, H.; et al. The glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, and pyruvate kinase are components of the K(ATP) channel macromolecular complex and regulate its function. J. Biol. Chem. 2005, 1280, 38464–38470. [Google Scholar] [CrossRef] [PubMed]
- Imamura, K.; Tanaka, T. Multimolecular forms of pyruvate kinase from and other mammalian tissue. J. Biochem. 1972, 71, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Israelsen, W.J.; Vander Heiden, M.G. Pyruvate kinase: Function, regulation and role in cancer. Semin. Cell Dev. Biol. 2015, 43, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Alquraishi, M.; Puckett, D.L.; Alani, D.S.; Humidat, A.S.; Frankel, V.D.; Donohoe, D.R.; Whelan, J.; Bettaieb, A. Pyruvate kinase M2: A simple molecule with complex functions. Free Radic. Biol. Med. 2019, 143, 176–192. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Bamezai, R.N. Human pyruvate kinase M2: A multifunctional protein. Protein Sci. 2010, 19, 2031–2044. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, X.; Liu, Y.; Liu, Y.; Sun, L.; Chen, F. PKM2, function and expression and regulation. Cell Biosci. 2019, 9, 52. [Google Scholar] [CrossRef]
- Zahra, K.; Dey, T.; Mishra, S.P.; Pandey, U. Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis. Front. Oncol. 2020, 10, 159. [Google Scholar] [CrossRef]
- Wiese, E.K.; Hitosugi, T. Tyrosine Kinase Signaling in Cancer Metabolism: PKM2 Paradox in the Warburg Effect. Front. Cell Dev. Biol. 2018, 6, 79. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.K.; Han, Y.M.; Kim, J. Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int. J. Biochem. Cell Biol. 2008, 40, 1043–1054. [Google Scholar] [CrossRef]
- Simsek, D.; Tiu, G.C.; Flynn, R.A.; Byeon, G.W.; Leppek, K.; Xu, A.F.; Chang, H.Y.; Barna, M. The Mammalian Ribo-interactome Reveals Ribosome Functional Diversity and Heterogeneity. Cell 2017, 169, 1051–1065.e18. [Google Scholar] [CrossRef]
- Hall, E.R.; Cottam, G.L. Isozymes of pyruvate kinase in vertebrates: Their physical, chemical, kinetic and immunological properties. Int. J. Biochem. 1978, 9, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Scopes, R.K.; Stoter, A. Purification of all glycolytic enzymes from one muscle extract. Methods Enzymol. 1982, 90 Pt E, 479–490. [Google Scholar]
- Casson, R.J.; Wood, J.P.M.; Han, G.; Kittipassorn, T.; Peet, D.J.; Chidlow, G. M type pyruvate kinase isoforms and lactate dehydrogenase A in the mammalian retina: Metabolic implications. Investig. Ophthalmol. Vis. Sci. 2016, 57, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.-Y.; Leonard, J.L.; Davis, P.J. Molecular Aspects of Thyroid Hormone Actions. Endocr. Rev. 2010, 31, 139–170. [Google Scholar] [CrossRef] [PubMed]
- Kejiou, N.S.; Ilan, L.; Aigner, S.; Luo, E.; Rabano, I.; Rajakulendran, N.; Najafabadi, H.S.; Angers, S.; Yeo, G.W.; Palazzo, A.F. Pyruvate Kinase M Links Glucose Availability to Protein Synthesis. bioRxiv 2019. [Google Scholar] [CrossRef]
- Li, X.; Kim, W.; Arif, M.; Gao, C.; Hober, A.; Kotol, D.; Strandberg, L.; Forsström, B.; Sivertsson, Å.; Oksvold, P.; et al. Discovery of Functional Alternatively Spliced PKM Transcripts in Human Cancers. Cancers 2021, 13, 348. [Google Scholar] [CrossRef]
- Buneeva, O.; Gnedenko, O.; Zgoda, V.; Kopylov, A.; Glover, V.; Ivanov, A.; Medvedev, A.; Archakov, A. Isatin binding proteins of rat and mouse brain: Proteomic identification and optical biosensor validation. Proteomics 2010, 10, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, J.; Manley, J.L. Turning on a Fuel Switch of Cancer: hnRNP Proteins Regulate Alternative Splicing of Pyruvate Kinase mRNA hnRNP Proteins Regulate PKM Splicing. Cancer Res. 2010, 70, 8977–8980. [Google Scholar] [CrossRef]
- Lv, L.; Xu, Y.-P.; Zhao, D.; Li, F.; Wang, W.; Sasaki, N.; Jiang, Y.; Zhou, X.; Li, T.-T.; Guan, K.-L.; et al. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol. Cell. 2013, 52, 340–352. [Google Scholar] [CrossRef]
- Yang, W.; Zheng, Y.; Xia, Y.; Ji, H.; Chen, X.; Guo, F.; Lyssiotis, C.A.; Aldape, K.; Cantley, L.C.; Lu, Z. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell. Biol. 2012, 14, 1295–1304. [Google Scholar] [CrossRef]
- Yang, W.; Xia, Y.; Hawke, D.; Li, X.; Liang, J.; Xing, D.; Aldape, K.; Humter, T.; Alfred Yung, W.K.; Lu, Z. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 2012, 150, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Xia, Y.; Ji, H.; Zheng, Y.; Liang, J.; Huang, W.; Gao, X.; Aldape, K.; Lu, Z. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 2011, 480, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Buneeva, O.A.; Kopylov, A.T.; Medvedev, A.E. Proteasome Interactome and Its Role in the Mechanisms of Brain Plasticity. Biochemistry 2023, 88, 319–336. [Google Scholar] [CrossRef]
- Cela, I.; Di Matteo, A.; Federici, L. Nucleophosmin in Its Interaction with Ligands. Int. J. Mol. Sci. 2020, 21, 4885. [Google Scholar] [CrossRef] [PubMed]
- Maggi, L.B.; Kuchenruether, M.; Dadey, D.Y.A.; Schwope, R.M.; Grisendi, S.; Townsend, R.R.; Pandolfi, P.P.; Weber, J.D. Nucleophosmin Serves as a Rate-Limiting Nuclear Export Chaperone for the Mammalian Ribosome. Mol. Cell. Biol. 2008, 28, 7050–7065. [Google Scholar] [CrossRef]
- Murano, K.; Okuwaki, M.; Hisaoka, M.; Nagata, K. Transcription Regulation of the rRNA Gene by a Multifunctional Nucleolar Protein, B23/Nucleophosmin, through Its Histone Chaperone Activity. Mol. Cell. Biol. 2008, 28, 3114–3126. [Google Scholar] [CrossRef]
- Okuda, M. The role of nucleophosmin in centrosome duplication. Oncogene 2002, 21, 6170–6174. [Google Scholar] [CrossRef]
- Ziv, O.; Zeisel, A.; Mirlas-Neisberg, N.; Swain, U.; Nevo, R.; Ben-Chetrit, N.; Martelli, M.P.; Rossi, R.; Schiesser, S.; Canman, C.E.; et al. Identification of novel DNA-damage tolerance genes reveals regulation of translesion DNA synthesis by nucleophosmin. Nat. Commun. 2014, 5, 5437. [Google Scholar] [CrossRef]
- Scott, D.D.; Oeffinger, M. Nucleolin and nucleophosmin: Nucleolar proteins with multiple functions in DNA repair. Biochem. Cell Biol. 2016, 94, 419–432. [Google Scholar] [CrossRef]
- Szebeni, A.; Olson, M.O.J. Nucleolar protein B23 has molecular chaperone activities. Protein Sci. 1999, 8, 905–912. [Google Scholar] [CrossRef]
- Okuwaki, M.; Matsumoto, K.; Tsujimoto, M.; Nagata, K. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett. 2001, 506, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Wi, J.H.; Gwak, H.; Yang, E.G.; Kim, S.Y. Single-Cell FISH Analysis Reveals Distinct Shifts in PKM Isoform Populations during Drug Resistance Acquisition. Biomolecules 2022, 12, 1082. [Google Scholar] [CrossRef] [PubMed]
- Buneeva, O.A.; Kopylov, A.T.; Gnedenko, O.V.; Medvedeva, M.V.; Kapitsa, I.G.; Ivanova, E.A.; Ivanov, A.S.; Medvedev, A.E. Changes in the mitochondrial subproteome of mouse brain Rpn13-binding proteins induced by the neurotoxin MPTP and the neuroprotector isatin. Biomed. Khim. 2021, 67, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, A.; Buneeva, O.; Kopylov, A.; Gnedenko, O.; Ivanov, A.; Zgoda, V.; Makarov, A.A. Amyloid-binding proteins: Affinity-based separation, proteomic identification, and optical biosensor validation. Methods Mol. Biol. 2015, 1295, 465–477. [Google Scholar] [PubMed]
Group No. | Protein Functions | Number of Identified Proteins Bound to | |
---|---|---|---|
Immobilized Full-Length PKM1 | Immobilized PK Peptide | ||
1 | metabolic enzymes | 13 | 8 |
2 | proteins involved in cytoskeleton formation and trafficking | 10 | 29 |
3 | proteins involved in signal transduction and enzyme activity regulation | 6 | 19 |
4 | protective proteins and components of the ubiquitin–proteasome system | 6 | 14 |
5 | protein regulators of gene expression, cell division, and differentiation | 9 | 22 |
total | 44 | 92 |
Immobilized Ligand | Analyte | ka, M−1·s−1 | kd, s−1 | Kd, M |
---|---|---|---|---|
Pyruvate kinase | Creatine kinase B-type | (8.64 ± 0.03) × 104 | (9.24 ± 0.18) × 10−4 | 1.07 × 10−8 |
Glyceraldehyde-3-phosphate dehydrogenase | Pyruvate kinase | (1.53 ± 0.17) × 103 | (1.62 ± 0.05) × 10−3 | 1.06 × 10−6 |
Lactate dehydrogenase | Pyruvate kinase | (1.37 ± 0.08) × 103 | (6.57 ± 0.13) × 10−3 | 4.8 × 10−6 |
Aldolase A | Pyruvate kinase | (1.69 ± 0.06) × 103 | (2.38 ± 0.1) × 10−3 | 1.41 × 10−6 |
no. | Accession Number | Gene | Protein Name (Uniprot) | Functional Group |
---|---|---|---|---|
1 | Q61937 | NPM | Nucleophosmin | 5 |
2 | P52480 | KPYM | Pyruvate kinase PKM | 1 |
3 | P61979 | HNRPK | Heterogeneous nuclear ribonucleoprotein K | 5 |
4 | P63017 | HSP7C | Heat shock cognate 71 kDa protein | 4 |
5 | P63101 | 1433Z | 14-3-3 protein zeta/delta | 3 |
6 | P63038 | CH60 | 60 kDa heat shock protein, mitochondrial | 4 |
7 | P0DP26 | CALM1 | Calmodulin-1 | 3 |
8 | P16858 | G3P | Glyceraldehyde-3-phosphate dehydrogenase | 1 |
9 | P17182 | ENOA | Alpha-enolase | 1 |
10 | P63242 | IF5A1 | Eukaryotic translation initiation factor 5A-1 | 5 |
11 | P57780 | ACTN4 | Alpha-actinin-4 | 2 |
12 | Q9QUM9 | PSA6 | Proteasome subunit alpha type-6 | 4 |
13 | P11499 | HS90B | Heat shock protein HSP 90-beta | 4 |
14 | P05064 | ALDOA | Fructose-bisphosphate aldolase A | 1 |
15 | P68372 | TBB4B | Tubulin beta-4B chain | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buneeva, O.; Kopylov, A.; Gnedenko, O.; Medvedeva, M.; Veselovsky, A.; Ivanov, A.; Zgoda, V.; Medvedev, A. Proteomic Profiling of Mouse Brain Pyruvate Kinase Binding Proteins: A Hint for Moonlighting Functions of PKM1? Int. J. Mol. Sci. 2023, 24, 7634. https://doi.org/10.3390/ijms24087634
Buneeva O, Kopylov A, Gnedenko O, Medvedeva M, Veselovsky A, Ivanov A, Zgoda V, Medvedev A. Proteomic Profiling of Mouse Brain Pyruvate Kinase Binding Proteins: A Hint for Moonlighting Functions of PKM1? International Journal of Molecular Sciences. 2023; 24(8):7634. https://doi.org/10.3390/ijms24087634
Chicago/Turabian StyleBuneeva, Olga, Arthur Kopylov, Oksana Gnedenko, Marina Medvedeva, Alexander Veselovsky, Alexis Ivanov, Victor Zgoda, and Alexei Medvedev. 2023. "Proteomic Profiling of Mouse Brain Pyruvate Kinase Binding Proteins: A Hint for Moonlighting Functions of PKM1?" International Journal of Molecular Sciences 24, no. 8: 7634. https://doi.org/10.3390/ijms24087634
APA StyleBuneeva, O., Kopylov, A., Gnedenko, O., Medvedeva, M., Veselovsky, A., Ivanov, A., Zgoda, V., & Medvedev, A. (2023). Proteomic Profiling of Mouse Brain Pyruvate Kinase Binding Proteins: A Hint for Moonlighting Functions of PKM1? International Journal of Molecular Sciences, 24(8), 7634. https://doi.org/10.3390/ijms24087634