Identification and Functional Analysis of APOB Variants in a Cohort of Hypercholesterolemic Patients
Abstract
:1. Introduction
2. Results
2.1. In Silico Analysis
2.2. Co-Segregation Studies
2.3. Functional Analyses
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Genetic Analysis
4.3. Bioinformatic Analysis
4.4. Cell Cultures
4.5. Low-Density Lipoprotein Isolation
4.6. Assays of Competitive Cellular Low-Density Lipoprotein Binding and Uptake
4.7. U937 Cell Proliferation Assay
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, M.S.; Goldstein, J.L. A Receptor-Mediated Pathway for Cholesterol Homeostasis. Science 1986, 232, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Innerarity, T.L.; Mahley, R.W.; Weisgraber, K.H.; Bersot, T.P.; Krauss, R.M.; Vega, G.L.; Grundy, S.M.; Friedl, W.; Davignon, J.; McCarthy, B.J. Familial Defective Apolipoprotein B-100: A Mutation of Apolipoprotein B That Causes Hypercholesterolemia. J. Lipid Res. 1990, 31, 1337–1349. [Google Scholar] [CrossRef] [PubMed]
- Abifadel, M.; Varret, M.; Rabès, J.-P.; Allard, D.; Ouguerram, K.; Devillers, M.; Cruaud, C.; Benjannet, S.; Wickham, L.; Erlich, D.; et al. Mutations in PCSK9 Cause Autosomal Dominant Hypercholesterolemia. Nat. Genet. 2003, 34, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Motazacker, M.M.; Pirruccello, J.; Huijgen, R.; Do, R.; Gabriel, S.; Peter, J.; Kuivenhoven, J.A.; Defesche, J.C.; Kastelein, J.J.P.; Hovingh, G.K.; et al. Advances in Genetics Show the Need for Extending Screening Strategies for Autosomal Dominant Hypercholesterolaemia. Eur. Heart J. 2012, 33, 1360–1366. [Google Scholar] [CrossRef] [PubMed]
- García-García, A.B.; Real, J.T.; Puig, O.; Cebolla, E.; Marín-García, P.; Martínez Ferrandis, J.I.; García-Sogo, M.; Civera, M.; Ascaso, J.F.; Carmena, R.; et al. Molecular Genetics of Familial Hypercholesterolemia in Spain: Ten Novel LDLR Mutations and Population Analysis. Hum. Mutat. 2001, 18, 458–459. [Google Scholar] [CrossRef]
- Sánchez-Hernández, R.M.; Civeira, F.; Stef, M.; Perez-Calahorra, S.; Almagro, F.; Plana, N.; Novoa, F.J.; Sáenz-Aranzubía, P.; Mosquera, D.; Soler, C.; et al. Homozygous Familial Hypercholesterolemia in Spain: Prevalence and Phenotype-Genotype Relationship. Circ. Cardiovasc. Genet. 2016, 9, 504–510. [Google Scholar] [CrossRef]
- Andersen, L.H.; Miserez, A.R.; Ahmad, Z.; Andersen, R.L. Familial Defective Apolipoprotein B-100: A Review. J. Clin. Lipidol. 2016, 10, 1297–1302. [Google Scholar] [CrossRef]
- Vrablík, M.; Ceska, R.; Horínek, A. Major Apolipoprotein B-100 Mutations in Lipoprotein Metabolism and Atherosclerosis. Physiol. Res. 2001, 50, 337–343. [Google Scholar]
- Myant, N.B. Familial Defective Apolipoprotein B-100: A Review, Including Some Comparisons with Familial Hypercholesterolaemia. Atherosclerosis 1993, 104, 1–18. [Google Scholar] [CrossRef]
- Ludwig, E.H.; Blackhart, B.D.; Pierotti, V.R.; Caiati, L.; Fortier, C.; Knott, T.; Scott, J.; Mahley, R.W.; Levy-Wilson, B.; McCarthy, B.J. DNA Sequence of the Human Apolipoprotein B Gene. DNA Mary Ann Liebert Inc 1987, 6, 363–372. [Google Scholar] [CrossRef]
- Chen, S.H.; Habib, G.; Yang, C.Y.; Gu, Z.W.; Lee, B.R.; Weng, S.A.; Silberman, S.R.; Cai, S.J.; Deslypere, J.P.; Rosseneu, M. Apolipoprotein B-48 Is the Product of a Messenger RNA with an Organ-Specific in-Frame Stop Codon. Science 1987, 238, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.M.; Wallis, S.C.; Pease, R.J.; Edwards, Y.H.; Knott, T.J.; Scott, J. A Novel Form of Tissue-Specific RNA Processing Produces Apolipoprotein-B48 in Intestine. Cell 1987, 50, 831–840. [Google Scholar] [CrossRef]
- Segrest, J.P.; Jones, M.K.; Mishra, V.K.; Anantharamaiah, G.M.; Garber, D.W. ApoB-100 Has a Pentapartite Structure Composed of Three Amphipathic Alpha-Helical Domains Alternating with Two Amphipathic Beta-Strand Domains. Detection by the Computer Program LOCATE. Arterioscler. Thromb. J. Vasc. Biol. 1994, 14, 1674–1685. [Google Scholar] [CrossRef]
- Segrest, J.P.; Jones, M.K.; Mishra, V.K.; Pierotti, V.; Young, S.H.; Borén, J.; Innerarity, T.L.; Dashti, N. Apolipoprotein B-100: Conservation of Lipid-Associating Amphipathic Secondary Structural Motifs in Nine Species of Vertebrates. J. Lipid Res. 1998, 39, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Goormaghtigh, E.; Cabiaux, V.; De Meutter, J.; Rosseneu, M.; Ruysschaert, J.M. Secondary Structure of the Particle Associating Domain of Apolipoprotein B-100 in Low-Density Lipoprotein by Attenuated Total Reflection Infrared Spectroscopy. Biochemistry 1993, 32, 6104–6110. [Google Scholar] [CrossRef] [PubMed]
- Borén, J.; Lee, I.; Zhu, W.; Arnold, K.; Taylor, S.; Innerarity, T.L. Identification of the Low Density Lipoprotein Receptor-Binding Site in Apolipoprotein B100 and the Modulation of Its Binding Activity by the Carboxyl Terminus in Familial Defective Apo-B100. J. Clin. Investig. 1998, 101, 1084–1093. [Google Scholar] [CrossRef]
- Corral, P.; Geller, A.S.; Polisecki, E.Y.; Lopez, G.I.; Bañares, V.G.; Cacciagiu, L.; Berg, G.; Hegele, R.A.; Schaefer, E.J.; Schreier, L.E. Unusual Genetic Variants Associated with Hypercholesterolemia in Argentina. Atherosclerosis 2018, 277, 256–261. [Google Scholar] [CrossRef]
- Sustar, U.; Kordonouri, O.; Mlinaric, M.; Kovac, J.; Arens, S.; Sedej, K.; Jenko Bizjan, B.; Trebusak Podkrajsek, K.; Danne, T.; Battelino, T.; et al. Universal Screening for Familial Hypercholesterolemia in 2 Populations. Genet. Med. Off. J. Am. Coll. Med. Genet. 2022, 24, 2103–2111. [Google Scholar] [CrossRef]
- Stitziel, N.O.; Peloso, G.M.; Abifadel, M.; Cefalu, A.B.; Fouchier, S.; Motazacker, M.M.; Tada, H.; Larach, D.B.; Awan, Z.; Haller, J.F.; et al. Exome Sequencing in Suspected Monogenic Dyslipidemias. Circ. Cardiovasc. Genet. 2015, 8, 343–350. [Google Scholar] [CrossRef]
- Marco-Benedí, V.; Cenarro, A.; Laclaustra, M.; Larrea-Sebal, A.; Jarauta, E.; Lamiquiz-Moneo, I.; Calmarza, P.; Bea, A.M.; Plana, N.; Pintó, X.; et al. Lipoprotein(a) in Hereditary Hypercholesterolemia: Influence of the Genetic Cause, Defective Gene and Type of Mutation. Atherosclerosis 2022, 349, 211–218. [Google Scholar] [CrossRef]
- Borén, J.; Ekström, U.; Agren, B.; Nilsson-Ehle, P.; Innerarity, T.L. The Molecular Mechanism for the Genetic Disorder Familial Defective Apolipoprotein B100. J. Biol. Chem. 2001, 276, 9214–9218. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-Generation Sequencing Technologies: An Overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Futema, M.; Taylor-Beadling, A.; Williams, M.; Humphries, S.E. Genetic Testing for Familial Hypercholesterolemia-Past, Present, and Future. J. Lipid Res. 2021, 62, 100139. [Google Scholar] [CrossRef] [PubMed]
- Musialik, J.; Boguszewska-Chachulska, A.; Pojda-Wilczek, D.; Gorzkowska, A.; Szymańczak, R.; Kania, M.; Kujawa-Szewieczek, A.; Wojcieszyn, M.; Hartleb, M.; Więcek, A. A Rare Mutation in The APOB Gene Associated with Neurological Manifestations in Familial Hypobetalipoproteinemia. Int. J. Mol. Sci. 2020, 21, 1439. [Google Scholar] [CrossRef]
- Alves, A.C.; Etxebarria, A.; Soutar, A.K.; Martin, C.; Bourbon, M. Novel Functional APOB Mutations Outside LDL-Binding Region Causing Familial Hypercholesterolaemia. Hum. Mol. Genet. 2014, 23, 1817–1828. [Google Scholar] [CrossRef]
- Thomas, E.R.A.; Atanur, S.S.; Norsworthy, P.J.; Encheva, V.; Snijders, A.P.; Game, L.; Vandrovcova, J.; Siddiq, A.; Seed, M.; Soutar, A.K.; et al. Identification and Biochemical Analysis of a Novel APOB Mutation That Causes Autosomal Dominant Hypercholesterolemia. Mol. Genet. Genomic Med. 2013, 1, 155–161. [Google Scholar] [CrossRef]
- Medeiros, A.M.; Alves, A.C.; Bourbon, M. Mutational Analysis of a Cohort with Clinical Diagnosis of Familial Hypercholesterolemia: Considerations for Genetic Diagnosis Improvement. Genet. Med. Off. J. Am. Coll. Med. Genet. 2016, 18, 316–324. [Google Scholar] [CrossRef]
- Alves, A.C.; Benito-Vicente, A.; Medeiros, A.M.; Reeves, K.; Martin, C.; Bourbon, M. Further Evidence of Novel APOB Mutations as a Cause of Familial Hypercholesterolaemia. Atherosclerosis 2018, 277, 448–456. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. Off. J. Am. Coll. Med. Genet. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Steinberg, D.; Witztum, J.L. Oxidized Low-Density Lipoprotein and Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2311–2316. [Google Scholar] [CrossRef]
- Calvo, D.; Gómez-Coronado, D.; Lasunción, M.A.; Vega, M.A. CLA-1 Is an 85-KD Plasma Membrane Glycoprotein That Acts as a High-Affinity Receptor for Both Native (HDL, LDL, and VLDL) and Modified (OxLDL and AcLDL) Lipoproteins. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 2341–2349. [Google Scholar] [CrossRef] [PubMed]
- Calvo, D.; Gómez-Coronado, D.; Suárez, Y.; Lasunción, M.A.; Vega, M.A. Human CD36 Is a High Affinity Receptor for the Native Lipoproteins HDL, LDL, and VLDL. J. Lipid Res. 1998, 39, 777–788. [Google Scholar] [CrossRef]
- Kreuzer, J.; White, A.L.; Knott, T.J.; Jien, M.L.; Mehrabian, M.; Scott, J.; Young, S.G.; Haberland, M.E. Amino Terminus of Apolipoprotein B Suffices to Produce Recognition of Malondialdehyde-Modified Low Density Lipoprotein by the Scavenger Receptor of Human Monocyte-Macrophages. J. Lipid Res. 1997, 38, 324–342. [Google Scholar] [CrossRef]
- Kruth, H.S.; Zhang, W.Y.; Skarlatos, S.I.; Chao, F.F. Apolipoprotein B Stimulates Formation of Monocyte-Macrophage Surface-Connected Compartments and Mediates Uptake of Low Density Lipoprotein-Derived Liposomes into These Compartments. J. Biol. Chem. 1999, 274, 7495–7500. [Google Scholar] [CrossRef] [PubMed]
- Hara, H.; Tanishita, H.; Yokoyama, S.; Tajima, S.; Yamamoto, A. Induction of Acetylated Low Density Lipoprotein Receptor and Suppression of Low Density Lipoprotein Receptor on the Cells of Human Monocytic Leukemia Cell Line (THP-1 Cell). Biochem. Biophys. Res. Commun. 1987, 146, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Kafonek, S.D.; Raikhel, I.; Bachorik, P.S.; Kwiterovich, P.O. Effect of Hyperapo B LDL on Cholesterol Esterification in THP-1 Macrophages. Atherosclerosis 1993, 102, 23–36. [Google Scholar] [CrossRef]
- Kosaka, S.; Takahashi, S.; Masamura, K.; Kanehara, H.; Sakai, J.; Tohda, G.; Okada, E.; Oida, K.; Iwasaki, T.; Hattori, H.; et al. Evidence of Macrophage Foam Cell Formation by Very Low-Density Lipoprotein Receptor: Interferon-Gamma Inhibition of Very Low-Density Lipoprotein Receptor Expression and Foam Cell Formation in Macrophages. Circulation 2001, 103, 1142–1147. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Chapman, M.J.; Humphries, S.E.; Ginsberg, H.N.; Masana, L.; Descamps, O.S.; Wiklund, O.; Hegele, R.A.; Raal, F.J.; Defesche, J.C.; et al. Familial Hypercholesterolaemia Is Underdiagnosed and Undertreated in the General Population: Guidance for Clinicians to Prevent Coronary Heart Disease: Consensus Statement of the European Atherosclerosis Society. Eur. Heart J. 2013, 34, 3478–3490. [Google Scholar] [CrossRef]
- Bertolini, S.; Pisciotta, L.; Rabacchi, C.; Cefalù, A.B.; Noto, D.; Fasano, T.; Signori, A.; Fresa, R.; Averna, M.; Calandra, S. Spectrum of Mutations and Phenotypic Expression in Patients with Autosomal Dominant Hypercholesterolemia Identified in Italy. Atherosclerosis 2013, 227, 342–348. [Google Scholar] [CrossRef]
- Futema, M.; Plagnol, V.; Whittall, R.A.; Neil, H.A.W.; Simon Broome Register Group; Humphries, S.E. UK10K Use of Targeted Exome Sequencing as a Diagnostic Tool for Familial Hypercholesterolaemia. J. Med. Genet. 2012, 49, 644–649. [Google Scholar] [CrossRef]
- Benn, M.; Watts, G.F.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. Familial Hypercholesterolemia in the Danish General Population: Prevalence, Coronary Artery Disease, and Cholesterol-Lowering Medication. J. Clin. Endocrinol. Metab. 2012, 97, 3956–3964. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.; Wang, D.; Patel, K.; Whittall, R.; Wood, G.; Farrer, M.; Neely, R.D.G.; Fairgrieve, S.; Nair, D.; Barbir, M.; et al. Mutation Detection Rate and Spectrum in Familial Hypercholesterolaemia Patients in the UK Pilot Cascade Project. Clin. Genet. 2010, 77, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Brænne, I.; Kleinecke, M.; Reiz, B.; Graf, E.; Strom, T.; Wieland, T.; Fischer, M.; Kessler, T.; Hengstenberg, C.; Meitinger, T.; et al. Systematic Analysis of Variants Related to Familial Hypercholesterolemia in Families with Premature Myocardial Infarction. Eur. J. Hum. Genet. 2016, 24, 191–197. [Google Scholar] [CrossRef]
- Innerarity, T.L.; Weisgraber, K.H.; Arnold, K.S.; Mahley, R.W.; Krauss, R.M.; Vega, G.L.; Grundy, S.M. Familial Defective Apolipoprotein B-100: Low Density Lipoproteins with Abnormal Receptor Binding. Proc. Natl. Acad. Sci. USA 1987, 84, 6919–6923. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, D.; Reid, J.M.; Cameron, I.M.; Vass, K.; Caslake, M.J.; Shepherd, J.; Packard, C.J. Independent Mutations at Codon 3500 of the Apolipoprotein B Gene Are Associated with Hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 1025–1029. [Google Scholar] [CrossRef]
- Pullinger, C.R.; Hennessy, L.K.; Chatterton, J.E.; Liu, W.; Love, J.A.; Mendel, C.M.; Frost, P.H.; Malloy, M.J.; Schumaker, V.N.; Kane, J.P. Familial Ligand-Defective Apolipoprotein B. Identification of a New Mutation That Decreases LDL Receptor Binding Affinity. J. Clin. Investig. 1995, 95, 1225–1234. [Google Scholar] [CrossRef]
- Rodríguez-Jiménez, C.; Gómez-Coronado, D.; Frías Vargas, M.; Cerrato, F.; Lahoz, C.; Saban-Ruiz, J.; González-Nieto, D.; Lasunción, M.A.; Mostaza, J.M.; Rodríguez-Nóvoa, S. A New Variant (c.1A>G) in LDLRAP1 Causing Autosomal Recessive Hypercholesterolemia: Characterization of the Defect and Response to PCSK9 Inhibition. Atherosclerosis 2019, 284, 223–229. [Google Scholar] [CrossRef]
- Martínez-Botas, J.; Suárez, Y.; Ferruelo, A.J.; Gómez-Coronado, D.; Lasuncion, M.A. Cholesterol Starvation Decreases P34(Cdc2) Kinase Activity and Arrests the Cell Cycle at G2. FASEB J. 1999, 13, 1359–1370. [Google Scholar] [CrossRef]
- Rodríguez-Acebes, S.; de la Cueva, P.; Fernández-Hernando, C.; Ferruelo, A.J.; Lasunción, M.A.; Rawson, R.B.; Martínez-Botas, J.; Gómez-Coronado, D. Desmosterol Can Replace Cholesterol in Sustaining Cell Proliferation and Regulating the SREBP Pathway in a Sterol-Delta24-Reductase-Deficient Cell Line. Biochem. J. 2009, 420, 305–315. [Google Scholar] [CrossRef]
ID | Sex | Age | Origin | Family History | Personal History CVD | Physical Examination | LDL-c (mg/dL) | Exon | Status | cDNA | Protein | Reference | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LDL-c > 210 mg/dL | CVD | Xanthomas | Arcus Cornealis | |||||||||||
1 | F | 72 | Spain | Yes | Yes | No | No | No | ≥330 | 26 | Heterozygous | c.10030A>G | p.(Lys3344Gln) | [20] |
2 | F | 72 | Spain | Yes | No | No | No | No | ≥330 | 26 | Heterozygous | c.10030A>G | p.(Lys3344Gln) | |
3 | M | 51 | Spain | Yes | Yes | No | No | No | 220 | 26 | Homozygous | c.11401T>A | p.(Ser3801Thr) | [27] |
4 | F | 41 | Spain | Unknown | Unknown | Unknown | Unknown | Unknown | 155–189 | 26 | Heterozygous | c.11401T>A | p.(Ser3801Thr) | |
5 | F | 51 | Spain | No | No | No | No | No | 190–249 | 26 | Heterozygous | c.11401T>A | p.(Ser3801Thr) | |
6 | M | 62 | Spain | No | No | No | No | No | 250–329 | 26 | Heterozygous | c.11401T>A | p.(Ser3801Thr) |
Gene | Variation | Genomic Position | Exon | PhyloP (Vertebrate) | PhastConst (Vertebrate) | Gerp2 Pred | CADD | Sift | Polyphen2 | MutAssesor | Fathmm | VEST | Allele Frequency (1000G, GnomAD or ExAC) | ACMG |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
APOB NM_000384.2 | c.10030A>G;p.(Lys3344Glu) | g.21229710T>C | 26 | 0.964 | 0.899 | Conserved | 26.1 | Damaging | Damaging | Damaging | Benign | Damaging | Unknown | VUS |
APOB NM_000384.2 | c.11401T>A;p.(Ser3801Thr) | g.21228339A>T | 26 | 10.880 | 0.960 | Conserved | 22.4 | Probably damaging | Damaging | Damaging | Benign | Benign | 0.0004 | VUS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Jiménez, C.; de la Peña, G.; Sanguino, J.; Poyatos-Peláez, S.; Carazo, A.; Martínez-Hernández, P.L.; Arrieta, F.; Mostaza, J.M.; Gómez-Coronado, D.; Rodríguez-Nóvoa, S. Identification and Functional Analysis of APOB Variants in a Cohort of Hypercholesterolemic Patients. Int. J. Mol. Sci. 2023, 24, 7635. https://doi.org/10.3390/ijms24087635
Rodríguez-Jiménez C, de la Peña G, Sanguino J, Poyatos-Peláez S, Carazo A, Martínez-Hernández PL, Arrieta F, Mostaza JM, Gómez-Coronado D, Rodríguez-Nóvoa S. Identification and Functional Analysis of APOB Variants in a Cohort of Hypercholesterolemic Patients. International Journal of Molecular Sciences. 2023; 24(8):7635. https://doi.org/10.3390/ijms24087635
Chicago/Turabian StyleRodríguez-Jiménez, Carmen, Gema de la Peña, Javier Sanguino, Sara Poyatos-Peláez, Ana Carazo, Pedro L. Martínez-Hernández, Francisco Arrieta, José M. Mostaza, Diego Gómez-Coronado, and Sonia Rodríguez-Nóvoa. 2023. "Identification and Functional Analysis of APOB Variants in a Cohort of Hypercholesterolemic Patients" International Journal of Molecular Sciences 24, no. 8: 7635. https://doi.org/10.3390/ijms24087635
APA StyleRodríguez-Jiménez, C., de la Peña, G., Sanguino, J., Poyatos-Peláez, S., Carazo, A., Martínez-Hernández, P. L., Arrieta, F., Mostaza, J. M., Gómez-Coronado, D., & Rodríguez-Nóvoa, S. (2023). Identification and Functional Analysis of APOB Variants in a Cohort of Hypercholesterolemic Patients. International Journal of Molecular Sciences, 24(8), 7635. https://doi.org/10.3390/ijms24087635