Hybrid Silver-Containing Materials Based on Various Forms of Bacterial Cellulose: Synthesis, Structure, and Biological Activity
Abstract
:1. Introduction
2. Results and Discussion
Sample | C-C/C-H * | C-C/C-H | C-OH | O-C-O | C(O)O | C=O | Ref. | |
---|---|---|---|---|---|---|---|---|
Peak | C0 | C1 | C2 | C3 | C4 | C5 | ||
Cellulose | Eb, eV | 285.06 | 286.73 | 288.02 | 289.1 | [64] | ||
Irel | 7.22 | 64.56 | 23.15 | 5.05 | ||||
Cellulose | Eb, eV | 283.93 | 285.43 | 286.73 | 287.73 | 289.13 | [65] | |
Irel | 5.0 | 20.7 | 37.2 | 27.4 | 9.6 | |||
Ag–cellulose | Eb, eV | 283.93 | 285.43 | 286.73 | 287.73 | 289.13 | [65] | |
Irel | 4.1 | 21.6 | 31.4 | 28.8 | 14.1 | |||
Cellulose | Eb, eV | 284.93 | 286.73 | 288.23 | [54] | |||
Irel | 16.0 | 62.6 | 21.4 | |||||
Cellulose | Eb, eV | 285.03 | 286.73 | 288.08 | 288.56 | [55] | ||
Irel | 5 | 75 | 15 | 5 | ||||
Ag–cellulose | Eb, eV | 285.4 | 286.73 | 288.06 | 289.37 | 288.06 | [55] | |
Irel | 54 | 26 | 5 | 7 | 8 | |||
Cellulose | Irel | 285.23 | 286.73 | 288.23 | [67] | |||
Cellulose | Irel | 285.09 | 286.73 | 288.34 | [68] | |||
Cellulose | Eb, eV | 285.03 | 286.73 | 288.23 | 289.33 | [69] | ||
Irel | 80 | 20 | ||||||
Cellulose | 285.03 | 286.73 | 288.23 | 289.28 | [70] | |||
16.87 | 65.62 | 15.65 | 1.86 | |||||
Cellulose | Eb, eV | 285.03 | 286.73 | 288.13 | 288.93 | [57] | ||
Cellulose | Eb, eV | 285.13 | 286.73 | 288.13 | 289.73 | [58] | ||
Irel | 6 | 70 | 23 | 1 | ||||
Cellulose | Eb, eV | 285.14 | 286.73 | 288.02 | 288.96 | [56] | ||
Irel | 29 | 50 | 10 | 12 | ||||
Ag–cellulose | Eb, eV | 285.11 | 286.73 | 288.03 | 288.95 | [56] | ||
Irel | 28 | 52 | 10 | 10 | ||||
Ag–cellulose | Eb, eV | 285.23 | 286.73 | 288.13 | 289.23 | [59] | ||
Irel | 77 | 13 | 3 | 7 | ||||
Cellulose | Eb, eV | 284.83 | 286.73 | 287.83 | 288.83 | [62] | ||
Cellulose | Eb, eV | 285.03 | 286.73 | 288.23 | 289.23 | [71] |
Sample | Ag-O | C(O*)O | C-OH | O-C-O | C(O)O* | Ref | |
---|---|---|---|---|---|---|---|
Peak | O1 | O2 | O3 | O4 | |||
Cellulose | Eb, eV | 531.18 | 533.18 | 533.85 | [64] | ||
Irel. | 2.96 | 73.45 | 23.58 | ||||
Cellulose | Eb, eV | 532.1 | 532.8 | 533.4 | 534.0 | [55] | |
Irel. | 10 | 48 | 32 | 10 | |||
Ag–cellulose | Eb, eV | 532.0 | 532.7 | 533.4 | 534.1 | [55] | |
Irel. | 14 | 39 | 26 | 14 | |||
Cellulose | Eb, eV | 532.93 | 533.53 | [69] | |||
Irel. | 0.6 | 0.4 | |||||
Ag–cellulose | Eb, eV | 531.13 | 532.23 | 532.83 | 532.93 | 534.23 | [59] |
Irel. | 18 | 18 | 9 | 37 | 18 | ||
Cellulose | Eb, eV | 532.93 | 533.51 | [70] | |||
Irel. | 78.18 | 21.82 |
3. Materials and Methods
3.1. Production of Bacterial Cellulose
3.2. Preparation of BCF and SBCB-Based Nanocomposites with Ag Nanoparticles
3.3. Morphology of the Obtained Samples
3.4. X-ray Photoelectron Spectroscopy
3.5. Powder X-ray Diffraction
3.6. Thermogravimetric Analysis
3.7. Small-Angle X-ray Scattering
3.8. Antimicrobial Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front. Bioeng. Biotechnol. 2020, 8, 605374. [Google Scholar] [CrossRef]
- Fang, L.; Catchmark, J.M. Characterization of water-soluble exopolysaccharides from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 2014, 21, 3965–3978. [Google Scholar] [CrossRef]
- Rodrigo Curvello, R.; Raghuwanshi, V.S.; Garnier, G. Engineering nanocellulose hydrogels for biomedical applications. Adv. Colloid Interface Sci. 2019, 267, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Hu, J.; Gourlay, K.; Yu, C.; Saddler, J.N. Controllable synthesis uniform spherical bacterial cellulose and their potential applications. Cellulose 2019, 26, 8325–8336. [Google Scholar] [CrossRef]
- Azeredo, H.M.; Barud, H.D.; Farinas, C.S.; Vasconcellos, V.M.; Claro, A.M. Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Front. Sustain. Food Syst. 2019, 3, 7. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Y.; Phillips, G.O.; Yang, G. Utilization of Bacterial Cellulose in Food. Food Hydrocoll. 2014, 35, 539–545. [Google Scholar] [CrossRef]
- Hainan Yeguo Foods Co., Ltd. 2020. Available online: http://www.yeguo.com (accessed on 7 March 2023).
- Rajwade, J.M.; Paknikar, K.M.; Kumbhar, J.V. Applications of bacterial cellulose and its composites in biomedicine. Appl. Microbiol. Biotechnol. 2015, 99, 2491–2511. [Google Scholar] [CrossRef]
- Anton-Sales, I.; Beekmann, U.; Laromaine, A.; Roig, A.; Kralisch, D. Opportunities of Bacterial Cellulose to Treat Epithelial Tissues. Curr. Drug. Targets 2019, 20, 808–822. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.; Guedes, G.; Sousa, F.L.; Freire, C.S.R.; Santos, H.A. Latest Advances on Bacterial Cellulose-Based Materials for Wound Healing, Delivery Systems, and Tissue Engineering. Biotechnol. J. 2019, 14, e1900059. [Google Scholar] [CrossRef]
- Brackmann, C.; Zaborowska, M.; Sundberg, J.; Gatenholm, P.; Enejder, A. In situ imaging of collagen synthesis by osteoprogenitor cells in microporous bacterial cellulose scaffolds. Tissue Eng. Part C Methods 2012, 18, 227–234. [Google Scholar] [CrossRef]
- Kucińska-Lipka, J.; Gubanska, I.; Janik, H. Bacterial Cellulose in the Field of Wound Healing and Regenerative Medicine of Skin: Recent Trends and Future Prospectives. Polym. Bull. 2015, 72, 2399–2419. [Google Scholar] [CrossRef]
- Esa, F.; Tasirin, S.M.; Rahman, N.A. Overview of Bacterial Cellulose Production and Application. Agric. Agric. Sci. Procedia 2014, 2, 113–119. [Google Scholar] [CrossRef]
- Shezad, O.; Khan, S.; Khan, T.; Park, J.K. Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean J. Chem. Eng. 2009, 26, 1689–1692. [Google Scholar] [CrossRef]
- Czaja, W.K.; Romanovicz, D.K.; Brown, R.M. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 2004, 11, 403–411. [Google Scholar] [CrossRef]
- Pang, M.; Huang, Y.; Meng, F.; Zhuang, Y.; Liu, H.; Du, M.; Ma, Q.; Wang, Q.; Chen, Z.; Chen, L.; et al. Application of bacterial cellulose in skin and bone tissue engineering. Eur. Polym. J. 2020, 122, 122–109365. [Google Scholar] [CrossRef]
- Chen, G.; Wu, G.; Alriksson, B.; Chen, L.; Wang, W.; Jönsson, L.J.; Hong, F.F. Scale-up of production of bacterial nanocellulose using submerged cultivation. J. Chem. Technol. Biotechnol. 2018, 93, 3418–3427. [Google Scholar] [CrossRef]
- Sulaeva, I.; Henniges, U.; Rosenau, T.; Potthast, A. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol. Adv. 2015, 33, 1547–1571. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, Y.; Liao, W.; Guo, C.; Gan, M.; Wang, Q. Preparation and characterization of chitosan/bacterial cellulose composite biodegradable films combined with curcumin and its application on preservation of strawberries. Food Packag. Shelf Life 2023, 35, 101006. [Google Scholar] [CrossRef]
- Wei, B.; Yang, G.; Hong, F. Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr. Polym. 2011, 84, 533–538. [Google Scholar] [CrossRef]
- Luan, J.; Wu, J.; Zheng, Y.; Song, W.; Wang, G.; Guo, J.; Ding, X. Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Biomed. Mater. 2012, 7, 065006. [Google Scholar] [CrossRef]
- Robson, M.C. Wound infection: A failure of wound healing caused by an imbalance of bacteria. Surg. Clin. N. Am. 1997, 77, 637–650. [Google Scholar] [CrossRef]
- Stumpf, T.R.; Yang, X.; Zhang, J.; Cao, X. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater. Sci. Eng. C Mater. Boil. Appl. 2018, 82, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Gregory, D.A.; Tripathi, L.; Fricker, A.T.; Asare, E.; Orlando, I.; Raghavendran, V.; Roy, I. Bacterial cellulose: A smart biomaterial with diverse applications. Mater. Sci. Eng. R Rep. 2021, 145, 100623. [Google Scholar] [CrossRef]
- Maria, L.C.S.; Aguiar, M.R.M.P.; Costa, M.A.S.; Valle, A.S.S.; Soares, J.G.M.; Souza, J.D.C.; Wang, S.H. Synthesis of composite based on submicron sized silver particles hosted on microspheres of surface-functional porous crosslinked copolymer networks. Mater. Lett. 2007, 61, 2993–2999. [Google Scholar] [CrossRef]
- Shi, Q.; Li, Y.; Sun, J.; Zhang, H.; Chen, L.; Chen, B.; Yang, H.; Wang, Z. The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 2012, 33, 6644–6649. [Google Scholar] [CrossRef]
- Bao, H.; Yu, X.; Xu, C.; Li, X.; Li, Z.; Wei, D.; Liu, Y. New toxicity mechanism of silver nanoparticles: Promoting apoptosis and inhibiting proliferation. PLoS ONE 2015, 10, e0122535. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, Y.; Song, W.; Luan, J.; Wen, X.; Wu, Z.; Chen, X.; Wang, Q.; Guo, S. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr. Polym. 2014, 102, 762–771. [Google Scholar] [CrossRef]
- Baker, S.; Prudnikova, S.V.; Shumilova, A.A.; Perianova, O.V.; Zharkov, S.M.; Kuzmin, A. Bio-functionalization of phytogenic Ag and ZnO nanobactericides onto cellulose films for bactericidal activity against multiple drug resistant pathogens. J. Microbiol. Methods 2019, 159, 42–50. [Google Scholar] [CrossRef]
- Thiagamani, S.M.K.; Rajini, N.; Siengchin, S.; Rajulu, A.V.; Hariram, N.; Ayrilmis, N. Influence of silver nanoparticles on the mechanical, thermal and antimicrobial properties of cellulose-based hybrid nanocomposites. Compos. Part B Eng. 2019, 165, 516–525. [Google Scholar] [CrossRef]
- Mirtalebi, S.S.; Almasi, H.; Alizadeh Khaledabad, M. Physical, morphological, antimicrobial and release properties of novel MgO-bacterial cellulose nanohybrids prepared by in-situ and ex-situ methods. Int. J. Boil. Macromol. 2019, 128, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Pourali, P.; Yahyaei, B.; Ajoudanifar, H.; Taheri, R.; Alavi, H.; Hoseini, A. Impregnation of the bacterial cellulose membrane with biologically produced silver nanoparticles. Curr. Microbiol. 2014, 69, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Karamian, R.; Kamalnejad, J. Green Synthesis of Silver Nanoparticles Using Cuminum cyminum Leaf Extract and Evaluation of Their Biological Activities. J. Nanostruct. 2019, 9, 74–85. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, J.; Yang, G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym. 2013, 92, 1432–1442. [Google Scholar] [CrossRef]
- Park, D.; Osuji, C.O.; Kim, J.W. Multi-Compartmentalized Cellulose Macrobead Catalysts for In Situ Organic Reaction in Aqueous Media. Small Methods 2023, 7, 2201195. [Google Scholar] [CrossRef]
- Jinga, S.I.; Isopencu, G.; Stoica-Guzun, A.; Stroescu, M.; Ferdes, M.; Ohreac, B. Silver green synthesis on bacterial cellulose membranes using tannic acid. Dig. J. Nanomater. Bios. 2013, 8, 1711–1717. [Google Scholar]
- Fadakar Sarkandi, A.; Montazer, M.; Harifi, T.; Mahmoudi Rad, M. Innovative preparation of bacterial cellulose/silver nanocomposite hydrogels: In situ green synthesis, characterization, and antibacterial properties. J. Appl. Polym. Sci. 2021, 138, 49824. [Google Scholar] [CrossRef]
- Wei, D.; Sun, W.; Qian, W.; Ye, Y.; Ma, X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res. 2009, 344, 23752382. [Google Scholar] [CrossRef]
- Twu, Y.-K.; Chen, Y.-W.; Shih, C.-M. Preparation of silver nanoparticles using chitosan suspensions. Powder Technol. 2008, 185, 251–257. [Google Scholar] [CrossRef]
- Barbaro, D.; Di Bari, L.; Gandin, V.; Evangelisti, C.; Vitulli, G.; Schiavi, E.; Marzano, C.; Ferretti, A.M.; Salvadori, P. Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapour synthesis are electively internalized in a pancreatic adenocarcinoma cell line expressing GLUT1 transporter. PLoS ONE 2015, 10, e0123159. [Google Scholar] [CrossRef]
- Cárdenas-Triviño, G.; Cruzat-Contreras, C. Study of Aggregation of Gold Nanoparticles in Chitosan. J. Clust. Sci. 2018, 29, 1081–1088. [Google Scholar] [CrossRef]
- Vasil’kov, A.Y.; Migulin, D.A.; Muzalevskiy, V.M.; Naumkin, A.V.; Pereyaslavtsev, A.Y.; Zubavichus, Y.V.; Nenajdenko, V.G.; Muzafarov, A.M. Copper-containing polymethylsilsesquioxane nanocomposites in catalytic olefination reaction. Mend. Commun. 2022, 32, 478–481. [Google Scholar] [CrossRef]
- Tseomashko, N.E.; Rai, M.; Vasil’kov, A.Y. New hybrid materials for wound cover dressings. In Bio-Polymer-Based Nano Films; Rai, M., Dos Santos, C.A., Eds.; Elsevier Inc.: Cambridge, MA, USA, 2021; pp. 203–245. [Google Scholar] [CrossRef]
- Bhaskar, S.P.; Jagirdar, B.R. Digestive ripening: A synthetic method par excellence for core–shell, alloy, and composite nanostructured materials. J. Chem. Sci. 2012, 124, 1175–1180. [Google Scholar] [CrossRef]
- Rubina, M.S.; Said-Galiev, E.E.; Naumkin, A.V.; Shulenina, A.V.; Belyakova, O.A.; Vasil’kov, A. Preparation and characterization of biomedical collagen–chitosan scaffolds with entrapped ibuprofen and silver nanoparticles. Polym. Eng. Sci. 2019, 59, 2479–2487. [Google Scholar] [CrossRef]
- Zefirov, V.V.; Sadykova, V.S.; Ivanenko, I.P.; Kuznetsova, O.P.; Butenko, I.E.; Gromovykh, T.I.; Kiselyova, O.I. Liquid-crystalline ordering in bacterial cellulose produced by Gluconacetobacter hansenii on glucose-containing media. Carbohydr. Polym. 2022, 292, 119692. [Google Scholar] [CrossRef] [PubMed]
- Borzani, W.A.; de Souza, S.J. Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitated liquid media. Biotechnol. Lett. 1995, 17, 1271–1272. [Google Scholar] [CrossRef]
- Wu, J.-M.; Liu, R.-H. Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr. Polym. 2012, 90, 116–121. [Google Scholar] [CrossRef]
- An, S.J.; Lee, S.H.; Huh, J.B.; Jeong, S.I.; Park, J.S.; Gwon, H.J.; Kang, E.S.; Jeong, C.M.; Lim, Y.M. Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation for Guided Bone Regeneration. Int. J. Mol. Sci. 2017, 18, 2236. [Google Scholar] [CrossRef]
- Kiselyova, O.I.; Lutsenko, S.V.; Feldman, N.B.; Gavryushina, I.A.; Sadykova, V.S.; Pigaleva, M.A.; Rubina, M.S.; Gromovykh, T.I. The structure of Gluconacetobacter hansenii GH 1/2008 population cultivated in static conditions on various sources of carbon. Tomsk State Univer. J. Biol. 2021, 53, 22–46. [Google Scholar] [CrossRef]
- Liu, M.; Zhong, C.; Wu, X.-Y.; Wei, Y.-Q.; Bo, T.; Han, P.-P.; Jia, S.-R. Metabolomic profiling coupled with metabolic network reveals differences in Gluconacetobacter xylinus from static and agitated cultures. Biochem. Eng. J. 2015, 101, 85–98. [Google Scholar] [CrossRef]
- Liu, J.; Ni, R.; Chau, Y. Self-assembled Peptidic Nanomillipede to Fabricate Tuneable Hybrid Hydrogel. Chem. Commun. 2019, 55, 7093–7096. [Google Scholar] [CrossRef]
- Zeng, A.; Yang, R.; Tong, Y.; Zhao, W. Functional bacterial cellulose nanofibrils with silver nanoparticles and its antibacterial application. Int. J. Biol. Macromol. 2023, 235, 123739. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, Y.; Li, W.; Xu, X.; Zhang, H.; Zhao, Y.; Lin, J.; Sun, D. Facile synthesis and light-induced antibacterial activity of ketoprofen functionalized bacterial cellulose membranes. Colloids Surf. A 2019, 568, 231–238. [Google Scholar] [CrossRef]
- Vasil’kov, A.; Budnikov, A.; Gromovykh, T.; Pigaleva, M.; Sadykova, V.; Arkharova, N.; Naumkin, A. Effect of Bacterial Cellulose Plasma Treatment on the Biological Activity of Ag Nanoparticles Deposited Using Magnetron Deposition. Polymers 2022, 14, 3907. [Google Scholar] [CrossRef] [PubMed]
- Vasil’kov, A.; Rubina, M.; Naumkin, A.; Buzin, M.; Dorovatovskii, P.; Peters, G.; Zubavichus, Y. Cellulose-based hydrogels and aerogels embedded with silver nanoparticles: Preparation and characterization. Gels 2021, 7, 82. [Google Scholar] [CrossRef] [PubMed]
- Rubina, M.S.; Pigaleva, M.A.; Butenko, I.E.; Budnikov, A.V.; Naumkin, A.V.; Gromovykh, T.I.; Lutsenco, S.V.; Vasil’kov, A.Y. Effect of Interaction of Bacterial Cellulose with Gold Nanoparticles Obtained by Metal Vapor Synthesis. Dokl. Phys. Chem. 2019, 488, 146–150. [Google Scholar] [CrossRef]
- Rubina, M.S.; Pigaleva, M.A.; Naumkin, A.V.; Gromovykh, T.I. Bacterial Cellulose Film Produced by Gluconacetobacter hansenii as a Source Material for Oxidized Nanofibrillated Cellulose. Dokl. Phys. Chem. 2020, 493, 127–131. [Google Scholar] [CrossRef]
- Vasil’kov, A.Y.; Dovnar, R.I.; Smotryn, S.M.; Iaskevich, N.N.; Naumkin, A.V. Plasmon resonance of silver nanoparticles as a method of increasing their antibacterial action. Antibiotics 2018, 7, 80. [Google Scholar] [CrossRef]
- Tang, L.; Li, T.; Zhuang, S.; Lu, Q.; Li, P.; Huang, B. Synthesis of pH-sensitive fluorescein grafted cellulose nanocrystals with an amino acid spacer. ACS Sustain. Chem. Eng. 2016, 4, 4842–4849. [Google Scholar] [CrossRef]
- Mocanu, A.; Isopencu, G.; Busuioc, C.; Popa, O.M.; Dietrich, P.; Socaciu-Siebert, L. Bacterial cellulose films with ZnO nanoparticles and propolis extracts: Synergistic antimicrobial effect. Sci. Rep. 2019, 9, 17687. [Google Scholar] [CrossRef]
- Lai, C.; Sheng, L.; Liao, S.; Xi, T.; Zhang, Z. Surface characterization of TEMPO-oxidized bacterial cellulose. Surf. Interface Anal. 2013, 45, 1673–1679. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database; Wiley: Hoboken, NJ, USA, 1992. [Google Scholar]
- Pertile, R.A.; Andrade, F.K.; Alves, C., Jr.; Gama, M. Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells. Carbohydr. Polym. 2010, 82, 692–698. [Google Scholar] [CrossRef]
- Dahle, S.; Meuthen, J.; Viöl, W.; Maus-Friedrichs, W. Adsorption of silver on cellobiose and cellulose studied with MIES, UPS, XPS and AFM. Cellulose 2013, 20, 2469–2480. [Google Scholar] [CrossRef]
- Johansson, L.S.; Campbell, J.M. Reproducible XPS on biopolymers: Cellulose studies. Surf. Interface Anal. 2004, 36, 1018–1022. [Google Scholar] [CrossRef]
- Li, M.C.; Mei, C.; Xu, X.; Lee, S.; Wu, Q. Cationic surface modification of cellulose nanocrystals: Toward tailoring dispersion and interface in carboxymethyl cellulose films. Polymer 2016, 107, 200–210. [Google Scholar] [CrossRef]
- Chen, J.; Wu, D.; Tam, K.C.; Pan, K.; Zheng, Z. Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly (β-hydroxybutyrate) composites. Carbohydr. Polym. 2017, 157, 1821–1829. [Google Scholar] [CrossRef]
- Yao, Q.; Fan, B.; Xiong, Y.; Wang, C.; Wang, H.; Jin, C.; Sun, Q. Stress sensitive electricity based on Ag/cellulose nanofiber aerogel for self-reporting. Carbohydr. Polym. 2017, 168, 265–273. [Google Scholar] [CrossRef]
- Flynn, C.N.; Byrne, C.P.; Meenan, B.J. Surface modification of cellulose via atmospheric pressure plasma processing in air and ammonia–nitrogen gas. Surf. Coat. Technol. 2013, 233, 108–118. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, X.; Ye, Z.; Liu, Y.; Wang, Q.; Chen, Q.; Jiang, Y.; Qi, J.; Tian, D.; Xu, J.; et al. A large-nanosphere/small-nanosphere (cellulose/silver) antibacterial composite with prominent catalytic properties for the degradation of p-nitrophenol. Appl. Surf. Sci. 2023, 608, 155192. [Google Scholar] [CrossRef]
- Toro, R.G.; Adel, A.M.; de Caro, T.; Federici, F.; Cerri, L.; Bolli, E.; Mezzi, A.; Barbalinardo, M.; Gentili, D.; Cavallini, M.; et al. Evaluation of Long–Lasting Antibacterial Properties and Cytotoxic Behavior of Functionalized Silver-Nanocellulose Composite. Materials 2021, 14, 4198. [Google Scholar] [CrossRef] [PubMed]
- Hoflund, G.B.; Weaver, J.F.; Epling, W.S. Ag2O XPS spectra. Surf. Sci. Spectra 1994, 3, 157–162. [Google Scholar] [CrossRef]
- Hoflund, G.B.; Weaver, J.F.; Epling, W.S. AgO XPS spectra. Surf. Sci. Spectra 1994, 3, 163–168. [Google Scholar] [CrossRef]
- Cardenas, G.; Klabunde, K.J.; Dale, E.B. Living colloidal palladium in nonaqueous solvents. Formation, stability, and film-forming properties. Clustering of metal atoms in organic media. Langmuir 1987, 3, 986–992. [Google Scholar] [CrossRef]
- Seah, M.P. AES: Energy calibration of electron spectrometers. IV. A reevaluation of the reference energies. J. Electron Spectrosc. Relat. Phenom. 1998, 97, 235–241. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin Elmer Corporation: Eden Prairie, MN, USA, 1995; 260p. [Google Scholar]
- Novikov, I.V.; Pigaleva, M.A.; Levin, E.E.; Abramchuk, S.S.; Naumkin, A.V.; Li, H.; Gallyamov, M.O. The mechanism of stabilization of silver nanoparticles by chitosan in carbonic acid solutions. Colloid Polym. Sci. 2020, 298, 1135–1148. [Google Scholar] [CrossRef]
- Mason, M.G. Electronic structure of supported small metal clusters. Phys. Rev. B 1983, 27, 748–762. [Google Scholar] [CrossRef]
- Wertheim, G.K.; DiCenzo, S.B.; Buchanan, D.N.E. Noble-and transition-metal clusters: The d bands of silver and palladium. Phys. Rev. B 1986, 33, 5384–5390. [Google Scholar] [CrossRef]
- Atalla, R.H.; VanderHart, D.L. Native Cellulose: A Composite of Two Distinct Crystalline Forms. Science 1984, 223, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yang, H.; Kubicki, J.D.; Hong, M. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations. Biomacromolecules 2016, 17, 2210–2222. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Sugiyama, J.; Chanzy, H.; Langan, P. Crystal Structure and Hydrogen Bonding System in Cellulose I α from Synchrotron X-Ray and Neutron Fiber Diffraction. J. Am. Chem. Soc. 2003, 125, 14300. [Google Scholar] [CrossRef] [PubMed]
- French, A.D. Increment in Evolution of Cellulose Crystallinity Analysis. Cellulose 2020, 27, 5445–5448. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978. [Google Scholar] [CrossRef]
- Ju, X.; Bowden, M.; Brown, E.E.; Zhang, X. An Improved X-Ray Diffraction Method for Cellulose Crystallinity Measurement. Carbohydr. Polym. 2015, 123, 476–481. [Google Scholar] [CrossRef]
- Watanabe, K.; Tabuchi, M.; Morinaga, Y.; Yoshinaga, F. Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture. Cellulose 1998, 5, 187–200. [Google Scholar] [CrossRef]
- Suh, I.-K.; Ohta, H.; Waseda, Y. High-Temperature Thermal Expansion of Six Metallic Elements Measured by Dilatation Method and X-Ray Diffraction. J. Mater. Sci. 1988, 23, 757–780. [Google Scholar] [CrossRef]
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Vasil’kov, A.Y.; Rubina, M.S.; Gallyamova, A.A.; Naumkin, A.V.; Buzin, M.I.; Murav’eva, G.P. Mesoporic Material from Microcrystalline Cellulose with Gold Nanoparticles: A New Approach to Metal-Carrying Polysaccharides. Mendeleev Commun. 2015, 25, 358–360. [Google Scholar] [CrossRef]
- Li, T.; Senesi, A.J.; Lee, B. Small Angle X-ray Scattering for Nanoparticle Research. Chem. Rev. 2016, 116, 11128. [Google Scholar] [CrossRef]
- Krumrey, M. Small angle X-ray scattering (SAXS). Charact. Nanopart. 2020, 173–183. [Google Scholar] [CrossRef]
- ISO 17867:2020; Particle Size Analysis—Small Angle X-ray Scattering (SAXS). International Organization for Standardization: Geneva, Switzerland, 2020.
- Sakurai, S. SAXS Evaluation of Size Distribution for Nanoparticles. In Book X-ray Scattering; Ares, A.E., Ed.; IntechOpen: London, UK, 2017; pp. 107–134. [Google Scholar] [CrossRef]
- Svergun, D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 1992, 25, 495–503. [Google Scholar] [CrossRef]
- El-Samad, L.M.; Bakr, N.R.; El-Ashram, S.; Radwan, E.H.; Aziz, K.K.A.; Hussein, H.K.; El Vakil, A.; Hassan, M.A. Silver nanoparticles instigate physiological, genotoxicity, and ultrastructural anomalies in midgut tissues of beetles. Chem. Biol. Interact. 2022, 367, 110166. [Google Scholar] [CrossRef] [PubMed]
- El-Kady, M.M.; Ansari, I.; Arora, C.; Rai, N.; Soni, S.; Verma, D.K.; Singh, P.; Mahmoud, A.E.D. Nanomaterials: A Comprehensive Review of Applications, Toxicity, Impact, and Fate to Environment. J. Mol. Liq. 2023, 370, 121046. [Google Scholar] [CrossRef]
- Gromovykh, T.I.; Vasil’kov, A.Y.; Sadykova, V.S.; Feldman, N.B.; Demchenko, A.G.; Lyundup, A.V.; Butenko, I.E.; Lutsenko, S.V. Creation of composites of bacterial cellulose and silver nanoparticles: Evaluation of antimicrobial activity and cytotoxicity. Int. J. Nanotechnol. 2019, 16, 408–420. [Google Scholar] [CrossRef]
- Islam, S.U.; Ul-Islam, M.; Ahsan, H.; Ahmed, M.B.; Shehzad, A.; Fatima, A.; Sonn, J.K.; Lee, Y.S. Potential applications of bacterial cellulose and its composites for cancer treatment. Int. J. Biol. Macromol. 2021, 168, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Bagewadi, Z.K.; Dsouza, V.; Yaraguppi, D.A.; Mulla, S.I.; Deshpande, S.H.; Shettar, S.S. Low cost production of bacterial cellulose through statistical optimization and developing its composites for multipurpose applications. Process Biochem. 2023, 125, 47–60. [Google Scholar] [CrossRef]
- Konarev, P.V.; Volkov, V.V.; Sokolova, A.V.; Koch, M.H.J.; Svergun, D.I. PRIMUS—A Windows-PC based system for small-angle scattering data analysis. J. Appl. Cryst. 2003, 36, 1277–1282. [Google Scholar] [CrossRef]
- Manalastas-Cantos, K.; Konarev, P.V.; Hajizadeh, N.R.; Kikhney, A.G.; Petoukhov, M.V.; Molodenskiy, D.S.; Panjkovich, A.; Mertens, H.D.T.; Gruzinov, A.; Borges, C.; et al. ATSAS 3.0: Expanded functionality and new tools for small-angle scattering data analysis. J. Appl. Cryst. 2021, 54, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Feigin, L.A.; Svergun, D.I. Structure Analysis by Small-Angle X-ray and Neutron Scattering; Plenum Press: New York, NY, USA, 1987; 176p. [Google Scholar]
- Lonsway, D. Preparation of Routine Media and Reagents Used in Antimicrobial Susceptibility Testing. In Clinical Microbiology Procedures Handbook, 4th ed.; Leber, A.L., Burnham, C.-N.D., Eds.; ASM Press: Washington, DC, USA, 2016; Available online: https://www.clinmicronow.org/doi/10.1128/9781683670438.CMPH.ch5.20 (accessed on 7 March 2023).
- Hassan, M.A.; Abd El-Aziz, S.; Elbadry, H.M.; El-Aassar, S.A.; Tamer, T.M. Prevalence, antimicrobial resistance profile, and characterization of multi-drug resistant bacteria from various infected wounds in North Egypt. Saudi J. Biol. Sci. 2022, 29, 2978–2988. [Google Scholar] [CrossRef] [PubMed]
Sample | C-C/C-H | C-OH/C-O-C | O-C-O/C=O | C(O)O | |
---|---|---|---|---|---|
BCF | Eb, eV | 285.03 | 286.73 | 288.11 | 288.63 |
W, eV | 1.01 | 1.03 | 1.03 | 1.20 | |
Irel. | 5 | 75 | 15 | 5 | |
SBCB | Eb, eV | 285.08 | 286.73 | 288.06 | 288.61 |
W, eV | 1.60 | 1.60 | 1.60 | 1.60 | |
Irel. | 13 | 65 | 13 | 8 | |
Ag NPs/BCF | Eb, eV | 284.88 | 286.73 | 288.11 | 288.63 |
W, eV | 1.26 | 1.13 | 1.03 | 1.20 | |
Irel. | 15 | 65 | 13 | 7 | |
Ag NPs/SBCB | Eb, eV | 285.08 | 286.73 | 288.06 | 288.61 |
W, eV | 1.40 | 1.40 | 1.40 | 1.40 | |
Irel. | 28 | 53 | 11 | 9 | |
Ag NPs | Eb, eV | 285.0 | 286.5 | 288.0 | 290.1 |
W, eV | 1.43 | 1.43 | 1.43 | 1.45 | |
Irel. | 77 | 13 | 3 | 7 |
Sample | Ag-O | C=O | C(O*)O | C-OH | O-C-O | C(O)O* | |
---|---|---|---|---|---|---|---|
BCF | Eb, eV | 532.10 | 532.82 | 533.40 | 534.0 | ||
W, eV | 1.4 | 1.1 | 1.1 | 1.4 | |||
Irel. | 0.11 | 0.47 | 0.31 | 0.11 | |||
Ag NPs/BCF | Eb, eV | 530.60 | 531.65 | 532.10 | 532.82 | 533.40 | 534.0 |
W, eV | 1.5 | 1.5 | 1.4 | 1.15 | 1.15 | 1.4 | |
Irel. | 0.02 | 0.04 | 0.09 | 0.45 | 0.30 | 0.09 | |
SBCB | Eb, eV | 532.0 | 532.83 | 533.45 | 534.20 | ||
W, eV | 2.4 | 2.0 | 2.0 | 2.4 | |||
Irel. | 0.11 | 0.47 | 0.31 | 0.11 | |||
Ag NPs/SBCB | Eb, eV | 530.65 | 531.59 | 532.19 | 532.89 | 533.49 | 534.24 |
W, eV | 2.2 | 2.2 | 2.2 | 1.8 | 1.8 | 2.2 | |
Irel. | 0.03 | 0.04 | 0.1 | 0.44 | 0.29 | 0.1 | |
Ag NPs | Eb, eV | 530.7 | 532.4 | 531.8 | 532.5 | 533.8 | |
W, eV | 1.42 | 1.42 | 1.42 | 1.55 | 1.55 | ||
Irel. | 146 | 71 | 145 | 294 | 145 |
Sample | Eb | SOS | Eb | State | ||
---|---|---|---|---|---|---|
Ag 3d5/2, eV | Ag 3d3/2, eV | Ag 3d3/2–Ag 3d5/2, eV | Ag 3d5/2 Plasmon, eV | Ag 3d3/2 Plasmon, eV | ||
Ag NPs/BCF | 368.19 | 374.19 | 6.00 | 371.66 | 377.63 | Ag0 |
Ag NPs/SBCB | 368.47 | 374.47 | 6.00 | ≈372 | ≈378 | Ag0, Ag+ |
Ag NPs | 368.41 | 374.40 | 5.99 | 372.26 | 378.06 | Ag0, Ag+ |
Sample | Zone of Inhibition, mm | ||||
---|---|---|---|---|---|
B. subtilis ATCC 6633 | S. aureus ATCC 25923 | E. coli ATCC 25922 | C. albicans ATCC 2091 | A. niger INA 00760 | |
Ag NPs/BCF | 7 ± 0.3 | 7 ± 0.3 | 8 ± 0.5 | 7 ± 0.7 | 8 ± 0.5 |
Ag NPs/SBCB | 9 ± 0.3 | 9 ± 0.2 | 10 ± 0.1 | 10 ± 0.3 | 10 ± 0.3 |
Ampicillin 10 µg | 29 ± 0.3 | 24.3 ± 1 | 30 ± 0.3 | nt | nt |
Amphotericin B 40 µg | nt | nt | nt | 0 | 23 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasil’kov, A.; Butenko, I.; Naumkin, A.; Voronova, A.; Golub, A.; Buzin, M.; Shtykova, E.; Volkov, V.; Sadykova, V. Hybrid Silver-Containing Materials Based on Various Forms of Bacterial Cellulose: Synthesis, Structure, and Biological Activity. Int. J. Mol. Sci. 2023, 24, 7667. https://doi.org/10.3390/ijms24087667
Vasil’kov A, Butenko I, Naumkin A, Voronova A, Golub A, Buzin M, Shtykova E, Volkov V, Sadykova V. Hybrid Silver-Containing Materials Based on Various Forms of Bacterial Cellulose: Synthesis, Structure, and Biological Activity. International Journal of Molecular Sciences. 2023; 24(8):7667. https://doi.org/10.3390/ijms24087667
Chicago/Turabian StyleVasil’kov, Alexander, Ivan Butenko, Alexander Naumkin, Anastasiia Voronova, Alexandre Golub, Mikhail Buzin, Eleonora Shtykova, Vladimir Volkov, and Vera Sadykova. 2023. "Hybrid Silver-Containing Materials Based on Various Forms of Bacterial Cellulose: Synthesis, Structure, and Biological Activity" International Journal of Molecular Sciences 24, no. 8: 7667. https://doi.org/10.3390/ijms24087667
APA StyleVasil’kov, A., Butenko, I., Naumkin, A., Voronova, A., Golub, A., Buzin, M., Shtykova, E., Volkov, V., & Sadykova, V. (2023). Hybrid Silver-Containing Materials Based on Various Forms of Bacterial Cellulose: Synthesis, Structure, and Biological Activity. International Journal of Molecular Sciences, 24(8), 7667. https://doi.org/10.3390/ijms24087667