Impact of Vitamin D Status Correction on Serum Lipid Profile, Carboxypeptidase N and Nitric Oxide Levels in Saudi Adults
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Population
4.2. VD Intervention
4.3. Measurement of Biochemical Markers
4.4. Sample Size Calculation and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palacios, C.; Gonzalez, L. Is vitamin D deficiency a major global public health problem? J. Steroid Biochem. Mol. Biol. 2014, 144 Pt A, 138–145. [Google Scholar] [CrossRef]
- Roth, D.E.; Abrams, S.A.; Aloia, J.; Bergeron, G.; Bourassa, M.W.; Brown, K.H.; Calvo, M.S.; Cashman, K.D.; Combs, G.; De-Regil, L.M.; et al. Global prevalence and disease burden of vitamin D deficiency: A roadmap for action in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2018, 1430, 44–79. [Google Scholar] [CrossRef] [PubMed]
- Siddiqee, M.H.; Bhattacharjee, B.; Siddiqi, U.R.; MeshbahurRahman, M. High prevalence of vitamin D deficiency among the South Asian adults: A systematic review and meta-analysis. BMC Public Health 2021, 21, 1823. [Google Scholar] [CrossRef]
- Al-Daghri, N.M. Vitamin D in Saudi Arabia: Prevalence, distribution and disease associations. J. Steroid Biochem. Mol. Biol. 2018, 175, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M.; Hussain, S.D.; Ansari, M.G.A.; Khattak, M.N.K.; Aljohani, N.; Al-Saleh, Y.; Al-Harbi, M.Y.; Sabico, S.; Alokail, M.S. Decreasing prevalence of vitamin D deficiency in the central region of Saudi Arabia (2008–2017). J. Steroid Biochem. Mol. Biol. 2021, 212, 105920. [Google Scholar] [CrossRef]
- Holick, M.F. The role of vitamin D for bone health and fracture prevention. Curr. Osteoporos. Rep. 2006, 4, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am. J. Clin. Nutr. 2004, 80, 1678S–1688S. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, J.; Targher, G.; Smits, G.; Chonchol, M. 25-Hydroxyvitamin D deficiency is independently associated with cardiovascular disease in the Third National Health and Nutrition Examination Survey. Atherosclerosis 2009, 205, 255–260. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Zheng, Y.; Wang, P.; Zhang, Y. The Effect of Vitamin D Supplementation on Glycemic Control in Type 2 Diabetes Patients: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 375. [Google Scholar] [CrossRef]
- Jia, J.; Hu, J.; Huo, X.; Miao, R.; Zhang, Y.; Ma, F. Effects of vitamin D supplementation on cognitive function and blood Abeta-related biomarkers in older adults with Alzheimer’s disease: A randomised, double-blind, placebo-controlled trial. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Ferrillo, M.; Migliario, M.; Marotta, N.; Lippi, L.; Antonelli, A.; Calafiore, D.; Ammendolia, V.; Fortunato, L.; Reno, F.; Giudice, A.; et al. Oral Health in Breast Cancer Women with Vitamin D Deficiency: A Machine Learning Study. J. Clin. Med. 2022, 11, 4662. [Google Scholar] [CrossRef] [PubMed]
- Ferrillo, M.; Migliario, M.; Roccuzzo, A.; Molinero-Mourelle, P.; Falcicchio, G.; Umano, G.R.; Pezzotti, F.; Foglio Bonda, P.L.; Calafiore, D.; de Sire, A. Periodontal Disease and Vitamin D Deficiency in Pregnant Women: Which Correlation with Preterm and Low-Weight Birth? J. Clin. Med. 2021, 10, 4578. [Google Scholar] [CrossRef]
- Matthews, K.W.; Mueller-Ortiz, S.L.; Wetsel, R.A. Carboxypeptidase N: A pleiotropic regulator of inflammation. Mol. Immunol. 2004, 40, 785–793. [Google Scholar] [CrossRef]
- Erdos, E.G.; Sloane, E.M. An enzyme in human blood plasma that inactivates bradykinin and kallidins. Biochem. Pharmacol. 1962, 11, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Bokisch, V.A.; Muller-Eberhard, H.J. Anaphylatoxin inactivator of human plasma: Its isolation and characterization as a carboxypeptidase. J. Clin. Investig. 1970, 49, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Michelutti, L.; Falter, H.; Certossi, S.; Marcotte, B.; Mazzuchin, A. Isolation and purification of creatine kinase conversion factor from human serum and its identification as carboxypeptidase N. Clin. Biochem. 1987, 20, 21–29. [Google Scholar] [CrossRef]
- Plow, E.F.; Allampallam, K.; Redlitz, A. The plasma carboxypeptidases and the regulation of the plasminogen system. Trends Cardiovasc. Med. 1997, 7, 71–75. [Google Scholar] [CrossRef]
- Ji, L.; Wu, H.T.; Qin, X.Y.; Lan, R. Dissecting carboxypeptidase E: Properties, functions and pathophysiological roles in disease. Endocr. Connect. 2017, 6, R18–R38. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Weitzberg, E. Nitric oxide signaling in health and disease. Cell 2022, 185, 2853–2878. [Google Scholar] [CrossRef]
- Khan, B.V.; Harrison, D.G.; Olbrych, M.T.; Alexander, R.W.; Medford, R.M. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc. Natl Acad. Sci. USA 1996, 93, 9114–9119. [Google Scholar] [CrossRef]
- Gudi, T.; Hong, G.K.; Vaandrager, A.B.; Lohmann, S.M.; Pilz, R.B. Nitric oxide and cGMP regulate gene expression in neuronal and glial cells by activating type II cGMP-dependent protein kinase. FASEB J. 1999, 13, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Pantopoulos, K.; Hentze, M.W. Nitric oxide signaling to iron-regulatory protein: Direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc. Natl. Acad. Sci. USA 1995, 92, 1267–1271. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.B.; Hill, P.; Haile, D.J. Role of the ferroportin iron-responsive element in iron and nitric oxide dependent gene regulation. Blood Cells Mol. Dis. 2002, 29, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Winlaw, D.S.; Smythe, G.A.; Keogh, A.M.; Schyvens, C.G.; Spratt, P.M.; Macdonald, P.S. Increased nitric oxide production in heart failure. Lancet 1994, 344, 373–374. [Google Scholar] [CrossRef]
- Higashino, H.; Miya, H.; Mukai, H.; Miya, Y. Serum nitric oxide metabolite (NO(x)) levels in hypertensive patients at rest: A comparison of age, gender, blood pressure and complications using normotensive controls. Clin. Exp. Pharmacol. Physiol. 2007, 34, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Maejima, K.; Nakano, S.; Himeno, M.; Tsuda, S.; Makiishi, H.; Ito, T.; Nakagawa, A.; Kigoshi, T.; Ishibashi, T.; Nishio, M.; et al. Increased basal levels of plasma nitric oxide in Type 2 diabetic subjects. Relationship to microvascular complications. J. Diabetes Complicat. 2001, 15, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Willems, H.M.; van den Heuvel, E.G.; Carmeliet, G.; Schaafsma, A.; Klein-Nulend, J.; Bakker, A.D. VDR dependent and independent effects of 1,25-dihydroxyvitamin D3 on nitric oxide production by osteoblasts. Steroids 2012, 77, 126–131. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Molinari, C.; Uberti, F.; Grossini, E.; Vacca, G.; Carda, S.; Invernizzi, M.; Cisari, C. 1alpha,25-dihydroxycholecalciferol induces nitric oxide production in cultured endothelial cells. Cell. Physiol. Biochem. 2011, 27, 661–668. [Google Scholar] [CrossRef]
- Garcion, E.; Nataf, S.; Berod, A.; Darcy, F.; Brachet, P. 1,25-Dihydroxyvitamin D3 inhibits the expression of inducible nitric oxide synthase in rat central nervous system during experimental allergic encephalomyelitis. Brain Res. Mol. Brain Res. 1997, 45, 255–267. [Google Scholar] [CrossRef]
- van der Meijden, K.; Bakker, A.D.; van Essen, H.W.; Heijboer, A.C.; Schulten, E.A.; Lips, P.; Bravenboer, N. Mechanical loading and the synthesis of 1,25(OH)2D in primary human osteoblasts. J. Steroid Biochem. Mol. Biol. 2016, 156, 32–39. [Google Scholar] [CrossRef]
- Perez-Lopez, F.R.; Chedraui, P.; Haya, J. Review article: Vitamin D acquisition and breast cancer risk. Reprod. Sci. 2009, 16, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Hadkar, V.; Sangsree, S.; Vogel, S.M.; Brovkovych, V.; Skidgel, R.A. Carboxypeptidase-mediated enhancement of nitric oxide production in rat lungs and microvascular endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 287, L35–L45. [Google Scholar] [CrossRef] [PubMed]
- Hadkar, V.; Skidgel, R.A. Carboxypeptidase D is up-regulated in raw 264.7 macrophages and stimulates nitric oxide synthesis by cells in arginine-free medium. Mol. Pharmacol. 2001, 59, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Hirst, D.G.; Robson, T. Nitric oxide physiology and pathology. In Nitric Oxide; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; Volume 704, pp. 1–13. [Google Scholar] [CrossRef]
- Cannon, R.O., 3rd. Role of nitric oxide in cardiovascular disease: Focus on the endothelium. Clin. Chem. 1998, 44, 1809–1819. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef]
- Abramson, S.B. Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Res. Ther. 2008, 10 (Suppl. 2), S2. [Google Scholar] [CrossRef]
- Moellering, D.; Mc Andrew, J.; Patel, R.P.; Forman, H.J.; Mulcahy, R.T.; Jo, H.; Darley-Usmar, V.M. The induction of GSH synthesis by nanomolar concentrations of NO in endothelial cells: A role for gamma-glutamylcysteine synthetase and gamma-glutamyl transpeptidase. FEBS Lett. 1999, 448, 292–296. [Google Scholar] [CrossRef]
- Umansky, V.; Hehner, S.P.; Dumont, A.; Hofmann, T.G.; Schirrmacher, V.; Droge, W.; Schmitz, M.L. Co-stimulatory effect of nitric oxide on endothelial NF-kappaB implies a physiological self-amplifying mechanism. Eur. J. Immunol. 1998, 28, 2276–2282. [Google Scholar] [CrossRef]
- Wolkow, P.P. Involvement and dual effects of nitric oxide in septic shock. Inflamm. Res. 1998, 47, 152–166. [Google Scholar] [CrossRef]
- Austin, P.F.; Casale, A.J.; Cain, M.P.; Rink, R.C.; Weintraub, S.J. Lipopolysaccharide and inflammatory cytokines cause an inducible nitric oxide synthase-dependent bladder smooth muscle fibrotic response. J. Urol. 2003, 170, 645–648. [Google Scholar] [CrossRef]
- Lopez-Candales, A.; Hernandez Burgos, P.M.; Hernandez-Suarez, D.F.; Harris, D. Linking Chronic Inflammation with Cardiovascular Disease: From Normal Aging to the Metabolic Syndrome. J. Nat. Sci. 2017, 3, e341. [Google Scholar] [PubMed]
- Il’yasova, D.; Colbert, L.H.; Harris, T.B.; Newman, A.B.; Bauer, D.C.; Satterfield, S.; Kritchevsky, S.B. Circulating levels of inflammatory markers and cancer risk in the health aging and body composition cohort. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2413–2418. [Google Scholar] [CrossRef] [PubMed]
- Sabico, S.; Wani, K.; Grant, W.B.; Al-Daghri, N.M. Improved HDL Cholesterol through Vitamin D Status Correction Substantially Lowers 10-Year Atherosclerotic Cardiovascular Disease Risk Score in Vitamin D-Deficient Arab Adults. Nutrients 2023, 15, 551. [Google Scholar] [CrossRef] [PubMed]
- Barrett-Connor, E.; Bush, T.L. Estrogen and coronary heart disease in women. JAMA 1991, 265, 1861–1867. [Google Scholar] [CrossRef]
- Al Saleh, Y.; Beshyah, S.A.; Hussein, W.; Almadani, A.; Hassoun, A.; Al Mamari, A.; Ba-Essa, E.; Al-Dhafiri, E.; Hassanein, M.; Fouda, M.A.; et al. Diagnosis and management of vitamin D deficiency in the Gulf Cooperative Council (GCC) countries: An expert consensus summary statement from the GCC vitamin D advisory board. Arch. Osteoporos. 2020, 15, 35. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Bukhari, I.; Yakout, S.M.; Sabico, S.; Khattak, M.N.K.; Aziz, I.; Alokail, M.S. Associations of Serum Nitric Oxide with Vitamin D and Other Metabolic Factors in Apparently Healthy Adolescents. Biomed. Res. Int. 2018, 2018, 1489132. [Google Scholar] [CrossRef]
- Choi, J.W. Enhanced nitric oxide production is closely associated with serum lipid concentrations in adolescents. Clin. Chim. Acta 2004, 347, 151–156. [Google Scholar] [CrossRef]
- Kildsgaard, J.; Hollmann, T.J.; Matthews, K.W.; Bian, K.; Murad, F.; Wetsel, R.A. Cutting edge: Targeted disruption of the C3a receptor gene demonstrates a novel protective anti-inflammatory role for C3a in endotoxin-shock. J. Immunol. 2000, 165, 5406–5409. [Google Scholar] [CrossRef]
- Moreau, M.E.; Garbacki, N.; Molinaro, G.; Brown, N.J.; Marceau, F.; Adam, A. The kallikrein-kinin system: Current and future pharmacological targets. J. Pharmacol. Sci. 2005, 99, 6–38. [Google Scholar] [CrossRef]
- Hall, J.M. Bradykinin receptors. Gen. Pharmacol. 1997, 28, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.W.; Kim, H.S.; Cha, Y.N.; Park, Y.S.; Jo, S.A.; Jo, I. Rapid increase in endothelial nitric oxide production by bradykinin is mediated by protein kinase A signaling pathway. Biochem. Biophys. Res. Commun. 2003, 306, 981–987. [Google Scholar] [CrossRef]
- Al-Attas, O.S.; Al-Daghri, N.M.; Alkharfy, K.M.; Alokail, M.S.; Al-Johani, N.J.; Abd-Alrahman, S.H.; Yakout, S.M.; Draz, H.M.; Sabico, S. Urinary iodine is associated with insulin resistance in subjects with diabetes mellitus type 2. Exp. Clin. Endocrinol. Diabetes 2012, 120, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Aldawsari, G.M.; Sabico, S.; Alamro, A.A.; Alenad, A.; Wani, K.; Alnaami, A.M.; Khattak, M.N.K.; Masoud, M.S.; Al-Daghri, N.M.; Alokail, M.S. Angiogenin Levels and Their Association with Cardiometabolic Indices Following Vitamin D Status Correction in Saudi Adults. Biology 2022, 11, 286. [Google Scholar] [CrossRef] [PubMed]
All | Males | Females | |||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Follow-Up | Mean Change | Baseline | Follow-Up | Mean Change | Baseline | Follow-Up | Mean Change | |
N (M/F) | 111 (54/57) | 54 | 57 | ||||||
Age (year) | 39.5 ± 9.4 | 42.2 ± 8.4 | 36.9 ± 9.7 | ||||||
BMI (kg/m2) | 29.3 ± 4.8 | 28.96 ± 3.8 | 29.6 ± 5.7 | ||||||
WHR | 0.93 ± 0.10 | 0.99 ± 0.06 | 0.87 ± 0.10 | ||||||
Systolic BP (mmHg) | 125.5 ± 13.7 | 132.4 ± 11.8 | 117.3 ± 11.1 | ||||||
Diastolic BP (mmHg) | 79.6 ± 9.7 | 82.8 ± 7.7 | 75.9 ± 10.5 | ||||||
Glucose (mmol/L) | 5.62 ± 1.1 | 5.53 ± 0.89 | −0.09 (0.11) | 5.75 ± 1.1 | 5.85 ± 0.9 | 0.10 (0.2) | 5.50 ± 1.1 | 5.23 ± 0.8 | 0.27 (0.2) |
Total Cholesterol (mmol/L) | 5.18 ± 1.2 | 5.19 ± 1.3 | 0.02 (0.10) | 5.13 ± 1.1 | 5.19 ± 1.2 | 0.07 (0.14) | 5.22 ± 1.3 | 5.20 ± 1.3 | −0.03 (0.15) |
HDL Cholesterol (mmol/L) | 1.04 ± 0.4 | 1.15 ± 0.4 * | 0.12 (0.05) | 0.98 ± 0.3 | 1.1 ± 0.3 * | 0.08 (0.04) | 1.09 ± 0.5 | 1.25 ± 0.5 | 0.16 (0.1) |
LDL Cholesterol (mmol/L) | 3.29 ± 1.0 | 3.21 ± 1.1 | −0.08 (0.10) | 3.2 ± 0.9 | 3.2 ± 0.1.1 | 0.004 (0.1) | 3.37 ± 1.1 | 3.21 ± 1.0 | −0.16 (0.1) |
Triglycerides (mmol/L) | 1.4 (0.9–2.1) | 1.5 (1.0–2.1) | 0.01 (0.09) | 1.5 (1.0–2.3) | 1.6 (1.1–2.2) | 0.06 (0.13) | 1.4 (0.9–2.2) | 1.3 (0.9–2.0) | −0.04 (0.13) |
25(OH)D (nmol/L) | 31.9 (22–39) | 58.1 (51–71) ** | 31.4 (1.7) | 32.7 (24–42) | 58 (51–71) ** | 30.1 (2.5) | 31.3 (20–38) | 57.8 (51–72) ** | 32.5 (2.3) |
CPN (ng/mL) | 299 (152–522) | 432(185–744) * | 168 (57.5) | 330(183–525) | 475 (225–681) | 148.8 (78.1) | 221 (100–528) | 424 (139–910) | 190.2(86.1) |
NOx (µM) | 103.2 (67–155) | 84.5 (49–131) * | −16.7 (6.9) | 113.5 (72–159) | 91.1 (50–127) * | −25.9 (9.9) | 96.2 (46–128) | 77 (46–140) | −7.45 (9.4) |
Parameters | All | Males | Females | |||
---|---|---|---|---|---|---|
Baseline | Follow-Up | Baseline | Follow-Up | Baseline | Follow-Up | |
Glucose (mmol/L) | 0.03 | 0.22 * | 0.07 | 0.11 | 0.10 | 0.25 |
Total Cholesterol (mmol/L) | 0.27 ** | 0.07 | 0.33 * | 0.16 | 0.26 | 0.02 |
HDL Cholesterol (mmol/L) | −0.11 | −0.09 | 0.36 * | 0.19 | −0.25 | −0.21 |
LDL Cholesterol (mmol/L) | 0.12 | 0.02 | 0.07 | 0.13 | 0.14 | −0.08 |
Log Triglycerides | 0.44 ** | 0.37 ** | 0.46 ** | 0.23 | 0.42 ** | 0.45 ** |
Log 25(OH) D | −0.10 | −0.04 | −0.01 | 0.07 | −0.26 | −0.03 |
Log CPN | −0.08 | −0.16 | −0.06 | −0.35 * | −0.13 | −0.06 |
Parameters | Δ CPN2 | Δ NOx | ||||
---|---|---|---|---|---|---|
All | Males | Females | All | Males | Females | |
Δ Glucose | 0.2 | 0.23 | 0.24 | 0.11 | 0.17 | 0.12 |
Δ Total Cholesterol | 0.11 | 0.04 | 0.15 | 0.12 | −0.02 | 0.17 |
Δ HDL Cholesterol | −0.1 | −0.19 | 0.03 | −0.12 | −0.24 | −0.03 |
Δ LDL Cholesterol | 0.16 | 0.11 | 0.14 | 0.13 | 0.04 | 0.14 |
Δ Triglycerides | −0.08 | −0.21 | 0.16 | −0.04 | −0.1 | 0.1 |
Δ 25(OH)D (nmol/l) | −0.17 | −0.03 | −0.34 * | −0.12 | −0.03 | −0.27 |
Δ CPN | 1 | 1 | 1 | 0.92 ** | 0.93 ** | 0.92 ** |
Δ NOx | 0.92 ** | 0.90 ** | 0.90 ** | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakout, S.M.; Abdi, S.; Alaskar, A.H.; Khattak, M.N.K.; Al-Masri, A.A.; Al-Daghri, N.M. Impact of Vitamin D Status Correction on Serum Lipid Profile, Carboxypeptidase N and Nitric Oxide Levels in Saudi Adults. Int. J. Mol. Sci. 2023, 24, 7711. https://doi.org/10.3390/ijms24097711
Yakout SM, Abdi S, Alaskar AH, Khattak MNK, Al-Masri AA, Al-Daghri NM. Impact of Vitamin D Status Correction on Serum Lipid Profile, Carboxypeptidase N and Nitric Oxide Levels in Saudi Adults. International Journal of Molecular Sciences. 2023; 24(9):7711. https://doi.org/10.3390/ijms24097711
Chicago/Turabian StyleYakout, Sobhy M., Saba Abdi, Alhanouf H. Alaskar, Malak Nawaz Khan Khattak, Abeer A. Al-Masri, and Nasser M. Al-Daghri. 2023. "Impact of Vitamin D Status Correction on Serum Lipid Profile, Carboxypeptidase N and Nitric Oxide Levels in Saudi Adults" International Journal of Molecular Sciences 24, no. 9: 7711. https://doi.org/10.3390/ijms24097711
APA StyleYakout, S. M., Abdi, S., Alaskar, A. H., Khattak, M. N. K., Al-Masri, A. A., & Al-Daghri, N. M. (2023). Impact of Vitamin D Status Correction on Serum Lipid Profile, Carboxypeptidase N and Nitric Oxide Levels in Saudi Adults. International Journal of Molecular Sciences, 24(9), 7711. https://doi.org/10.3390/ijms24097711