Research Progress in High-Efficiency Utilization of Nitrogen in Rapeseed
Abstract
:1. Introduction
2. Evaluation of Nitrogen Efficiency and Screening of Nitrogen-Efficient Germplasm
2.1. Definition and Evaluation of Nitrogen Efficiency
2.2. Screening of High Nitrogen Efficiency Rapeseed Germplasm
3. Physiological Basis of Nitrogen-Efficient Rapeseed
3.1. Root System Characteristics
3.2. Enzyme Activities Related to Nitrogen Metabolism
3.3. Photosynthesis
4. Molecular Basis of Nitrogen-Efficient Rapeseed
4.1. Nitrogen Absorption and Transport Genes
4.2. Genes Related to Nitrogen Metabolism
4.3. Transcription Factors
5. Problems and Prospects
- (1)
- Establishing an evaluation and identification system for rapeseed germplasm with high N efficiency. Although many studies have been conducted on the screening of rapeseed N-efficient germplasm, there is still no consensus on the evaluation indexes of low N tolerance, which may lead to different N efficiency evaluation results for the same rapeseed germplasm. Therefore, it is necessary to deeply study the relationship between morphological structure and N efficiency to find the most appropriate screening index and establish a set of scientific and reasonable evaluation and identification methods for N-efficient genotypes in rapeseed, so as to fully tap the genetic potential of rapeseed N efficiency and lay a foundation for improving its NUE through biological approaches.
- (2)
- Using a multi-omics technique to comprehensively analyze the biological mechanism of N efficiency in rapeseed. The process of efficient N uptake and utilization is a very complicated process that is affected by many factors such as physiological level, developmental process, and external environment. It is difficult to fully describe the process using a single omics technique. Therefore, a natural population of rapeseed with rich genetic variation can be developed through more in-depth and extensive studies by multi-omics combination techniques, such as genomics, transcriptomics, proteomics, metabolomics, and ionomics. Genetic regulatory networks for high N efficiency should be constructed by integrating information of different omics levels, so as to dig out key candidate genes for high N efficiency in rapeseed and elucidate the biological mechanism of its tolerance to low nitrogen.
- (3)
- Mining excellent allelic variation of the key genes for high N efficiency and establishing an efficient molecular design breeding technology system. Currently, mutant materials were mainly used to study the mechanism of N transport that have not been found in rapeseed. Therefore, researchers should strive to explore the excellent allelic variation of key genes controlling N use efficiency under different N sources and different N supply conditions, so as to provide more candidate gene loci for molecular breeding of N efficiency in rapeseed. The way in which to explore the excellent allelic variation and key genes are mainly achieved through the following steps: Firstly, building a widely representative rapeseed natural population. Secondly, identifying the phenotypes related to N efficiency in multi-environment and multi-batch hydroponics, pot, and field experiments of a natural rapeseed population, then combining them with the high-throughput resequencing results to obtain QTLs significantly associated with N efficiency by genome-wide association analysis. Thirdly, carrying out transcriptome, metabolome, and other omics analyses for N efficiency and N inefficiency germplasm. Finally, the N-efficient genes in the QTL region identified above are combined with the differentially expressed genes identified by various omics analysis, the N-efficiency-related candidate genes are screened, the superior haplotype analysis is conducted according to the natural variation of the candidate genes in the population combined with their phenotypes, and the N-efficiency-related candidate genes are determined. It is worth mentioning that some key genes perform their functions under relatively extreme conditions, and thus a large number of studies have been conducted under extreme or low N conditions through hydroponics, potting, or field experiments. In addition, establishing an efficient molecular design breeding technology system and integrating the newly excavated N-efficient genes into excellent backbone parents to breed new N-efficient rapeseed varieties with “less input and more output”. For example, Chu et al. successfully transferred the N-efficient gene OsNRT1.1B into Japonica rice, wherein the yield increased by 30–33% under the condition of reducing N application by half, and the NUE also increased by 30% [81].
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Chapter 6—Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 135–189. [Google Scholar]
- Tirol-Padre, A.; Ladha, J.K.; Singh, U.; Laureles, E.; Punzalan, G.; Akita, S. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency. Field Crop. Res. 1996, 46, 127–143. [Google Scholar] [CrossRef]
- Konishi, M.; Yanagisawa, S. Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression. J. Exp. Bot. 2014, 65, 5589–5600. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Conant, R.T.; Berdanier, A.B.; Grace, P.R. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Glob. Biogeochem. Cycles 2013, 27, 558–566. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Cheng, Y.H.; Chen, K.E.; Tsay, Y.F. Nitrate Transport, Signaling, and Use Efficiency. Annu. Rev. Plant Biol. 2018, 69, 85–122. [Google Scholar] [CrossRef]
- Li, S.; Huang, Y.; Liu, X.; Fu, X. Genetic improvement of nitrogen use efficiency in crops. Hereditas 2021, 43, 629–640. [Google Scholar]
- Billen, G.; Garnier, J.; Lassaletta, L. The nitrogen cascade from agricultural soils to the sea: Modelling nitrogen transfers at regional watershed and global scales. Philos. Trans. R. Soc. B-Biol. Sci. 2013, 368, 1621. [Google Scholar] [CrossRef]
- Bouchet, A.S.; Laperche, A.; Bissuel-Belaygue, C.; Snowdon, R.; Nesi, N.; Stahl, A. Nitrogen use efficiency in rapeseed. A review. Agron. Sustain. Dev. 2016, 36, 2. [Google Scholar] [CrossRef]
- Rathke, G.W.; Christen, O.; Diepenbrock, W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crop. Res. 2005, 94, 103–113. [Google Scholar] [CrossRef]
- Sylvester-Bradley, R.; Kindred, D.R. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. J. Exp. Bot. 2009, 60, 1939–1951. [Google Scholar] [CrossRef]
- Clement, G.; Moison, M.; Soulay, F.; Reisdorf-Cren, M.; Masclaux-Daubresse, C. Metabolomics of laminae and midvein during leaf senescence and source-sink metabolite management in Brassica napus L. leaves. J. Exp. Bot. 2018, 69, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.S.; Dong, Z.S. Development status and prospects of Film mulching rapeseed cultivation technology. Crops 2004, 1, 40–42. [Google Scholar]
- Kubesova, K.; Balik, J.; Sedlar, O.; Peklova, L. The impact of nitrogen fertilizer injection on kernel yield and yield formation of maize. Plant Soil Environ. 2014, 60, 1–7. [Google Scholar] [CrossRef]
- Brennan, R.F.; Bolland, M.D.A. Significant nitrogen by sulfur interactions occurred for canola grain production and oil concentration in grain on sandy soils in the Mediterranean-type climate of southwestern Australia. J. Plant Nutr. 2008, 31, 1174–1187. [Google Scholar] [CrossRef]
- Ren, T.; Guo, L.; Zhang, L.; Yang, X.; Liao, S.; Zhang, Y.; Li, X.; Cong, R.; Lu, J. Soil nutrient status of oilseed rape cultivated soil in typical winter oilseed rape production regions in China. Sci. Agric. Sin. 2020, 53, 1606–1616. [Google Scholar]
- Qin, S.; Sun, X.; Hu, C.; Tan, Q.; Zhao, X.; Li, L. Molybdenum effect on photosynthetic carbon and nitrogen metabolism of Brassica napus at bolting stage. Acta Agric. Boreali-Sin. 2016, 31, 227–232. [Google Scholar]
- Cong, R.; Zhang, Z.; Lu, J. Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin. Chin. J. Oil Crop. Sci. 2019, 41, 894–903. [Google Scholar]
- Hawkesford, M.J. Genetic variation in traits for nitrogen use efficiency in wheat. J. Exp. Bot. 2017, 68, 2627–2632. [Google Scholar] [CrossRef]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Barraclough, P.B.; Howarth, J.R.; Jones, J.; Lopez-Bellido, R.; Parmar, S.; Shepherd, C.E.; Hawkesford, M.J. Nitrogen efficiency of wheat: Genotypic and environmental variation and prospects for improvement. Eur. J. Agron. 2010, 33, 1–11. [Google Scholar] [CrossRef]
- Kessel, B.; Schierholt, A.; Becker, H.C. Nitrogen Use Efficiency in a Genetically Diverse Set of Winter Oilseed Rape (Brassica napus L.). Crop. Sci. 2012, 52, 2546–2554. [Google Scholar] [CrossRef]
- Worku, M.; Banziger, M.; Erley, G.S.A.; Friesen, D.; Diallo, A.O.; Horst, W.J. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop. Sci. 2007, 47, 519–528. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Ye, X.; Zhang, L.; Xu, F.; Shi, L.; Ding, G. Evaluation on potential of reducing nitrogen and increasing efficiency for Brassica napus germplasm. Chin. J. Oil Crop. Sci. 2021, 43, 195–202. [Google Scholar]
- Koutroubas, S.D.; Ntanos, D.A. Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice under Mediterranean conditions. Field Crop. Res. 2003, 83, 251–260. [Google Scholar] [CrossRef]
- Chanh, T.T.; Tsutsumi, M.; Kurihara, K. Comparative study on the response of Indica and Japonica rice plants to ammonium and nitrate nitrogen. Soil Sci. Plant Nutr. 1981, 27, 83–92. [Google Scholar] [CrossRef]
- Ta, T.C.; Ohira, K. Effects of various environmental and medium conditions on the response of indica and japonica rice plants to ammonium and nitrate nitrogen. Soil Sci. Plant Nutr. 1981, 27, 347–355. [Google Scholar] [CrossRef]
- Inthapanya, P.; Sihavong, P.; Sihathep, V.; Chanphengsay, M.; Fukai, S.; Basnayake, J. Genotype differences in nutrient uptake and utilisation for grain yield production of rainfed lowland rice under fertilised and non-fertilised conditions. Field Crop. Res. 2000, 65, 57–68. [Google Scholar] [CrossRef]
- Zhang, N.; Guo, R. Advancements in nitrogen efficient screening of germplasm resources and deficiency tolerance mechanism study in rice. Guangdong Agric. Sci. 2014, 41, 66–70. [Google Scholar]
- Zhai, R.; Yu, P.; Ye, S.; Wang, J.; Wu, M.; Lin, J.; Zhu, G.; Zhang, X. Screening and comprehensive evaluation of low nitrogen tolerance of Zhejiang photosensitive japonica rice cultivars. J. Zhejiang Univ. 2016, 42, 565–572. [Google Scholar]
- Yuan, Y.; Yi, Y.; Zhan, Y.; Chen, L.; Yuan, S.; Huang, Y.; Xiao, Z.; Zhang, C.; Zhou, X. Distinguishing and evaluating high nitrogen-use-efficient soybean germplasm at seedling stage. Chin. J. Oil Crop. Sci. 2022, 44, 539–547. [Google Scholar]
- Gu, C.; Han, P.; Hu, Q.; Li, Y.; Liao, X.; Zhang, Z.; Xie, L.; Hu, X.; Qin, L.; Liao, X. Nitrogen efficiency evaluation in rapeseed (Brassica napus L.) at seedling stage. Chin. J. Oil Crop. Sci. 2018, 40, 851–860. [Google Scholar]
- Malamy, J.E. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 2005, 28, 67–77. [Google Scholar] [CrossRef]
- Wu, W.M.; Cheng, S.H. Root genetic research, an opportunity and challenge to rice improvement. Field Crop. Res. 2014, 165, 111–124. [Google Scholar] [CrossRef]
- Krapp, A.; David, L.C.; Chardin, C.; Girin, T.; Marmagne, A.; Leprince, A.-S.; Chaillou, S.; Ferrario-Mery, S.; Meyer, C.; Daniel-Vedele, F. Nitrate transport and signalling in Arabidopsis. J. Exp. Bot. 2014, 65, 789–798. [Google Scholar] [CrossRef]
- Ding, G.; Wang, G.; Ye, X.; Li, Q.; Shi, L.; Xu, F. Physiological and genetic basis in nitrogen efficiency of Brassica napus review. J. Huazhong Agric. Univ. 2017, 36, 130–139. [Google Scholar]
- Kamh, M.; Wiesler, F.; Ulas, A.; Horst, W.J. Root growth and N-uptake activity of oilseed rape (Brassica napus L.) cultivars differing in nitrogen efficiency. J. Plant Nutr. Soil Sci. 2005, 168, 130–137. [Google Scholar] [CrossRef]
- Ulas, A.; Erley, G.S.A.; Kamh, M.; Wiesler, F.; Horst, W.J. Root-growth characteristics contributing to genotypic variation in nitrogen efficiency of oilseed rape. J. Plant Nutr. Soil Sci. 2012, 175, 489–498. [Google Scholar] [CrossRef]
- Zou, X.; Guan, M.; Guan, C. Studies on plant morphological and physiological characteristics of high nitrogen absorption in Brassica napus L. Crops 2022, 5, 97–103. [Google Scholar]
- Ye, X.; Hong, J.; Shi, L.; Xu, F. Adaptability mechanism of nitrogen-efficient germplasm of natural variation to low nitrogen stress in Brassica napus. J. Plant Nutr. 2010, 33, 2028–2040. [Google Scholar] [CrossRef]
- Wang, J.; Han, P.; Li, Y.; Liao, X.; Qin, L. Difference in root morphology and nutrient accumulation of rapeseed (Brassica napus L.) with contrasting N efficiency. Chin. J. Oil Crop. Sci. 2019, 41, 758–764. [Google Scholar]
- Salmenkallio, M.; Sopanen, T. Amino Acid and Peptide uptake in the scutella of germinating grains of barley, wheat, rice, and maize. Plant Physiol. 1989, 89, 1285–1291. [Google Scholar] [CrossRef]
- Sohlenkamp, C.; Wood, C.C.; Roeb, G.W.; Udvardi, M.K. Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane. Plant Physiol. 2002, 130, 1788–1796. [Google Scholar] [CrossRef]
- Miflin, B.J. The location of nitrite reductase and other enzymes related to amino Acid biosynthesis in the plastids of root and leaves. Plant Physiol. 1974, 54, 550–555. [Google Scholar] [CrossRef]
- Srivastava, H.S. Regulation of nitrate reductase activity in higher plants. Phytochemistry 1980, 19, 725–733. [Google Scholar] [CrossRef]
- Maeda, S.-I.; Konishi, M.; Yanagisawa, S.; Omata, T. Nitrite Transport Activity of a Novel HPP Family Protein Conserved in Cyanobacteria and Chloroplasts. Plant Cell Physiol. 2014, 55, 1311–1324. [Google Scholar] [CrossRef]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef]
- Ahmad, A.; Sivakami, S.; Nandula, R.; Ali, A.; Raghuram, N. Effect of nitrate, nitrite, ammonium, glutamate, glutamine and 2-oxoglutarate on the RNA levels and enzyme activities of nitrate reductase and nitrite reductase in rice. Physiol. Mol. Biol. Plants 2007, 13, 17–25. [Google Scholar]
- Huang, H.; Rong, X.; Song, H.; Liu, Q.; Liao, Q.; Luo, J.; Gu, J.; Guan, C.; Gong, J.; Zhang, Z. Effect of Nitrate Reductase (NR) Inhibitor on NR Activity in Oilseed Rape (Brassica napus L.) and Its Relation to Nitrate Content. Acta Agron. Sin. 2013, 39, 1668–1673. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, Z.; Zhang, Z.; Shu, J.; Yang, C.; Song, H.; Guan, C. Influence of glutamine synthase and glutamate synthase on N reutilization in Brassica napus under different nitrogen condition. Crops 2014, 6, 81–85. [Google Scholar]
- Wang, G.; Ding, G.; Li, L.; Cai, H.; Ye, X.; Zou, J.; Xu, F. Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus. Ann. Bot. 2014, 114, 549–559. [Google Scholar] [CrossRef]
- Li, Q.; Ding, G.; Yang, N.; White, P.J.; Ye, X.; Cai, H.; Lu, J.; Shi, L.; Xu, F. Comparative genome and transcriptome analysis unravels key factors of nitrogen use efficiency in Brassica napus L. Plant Cell Environ. 2020, 43, 712–731. [Google Scholar] [CrossRef]
- Chandler, J.W.; Dale, J.E. Nitrogen deficiency and fertilization effects on needle growth and photosynthesis in Sitka spruce (Picea sitchensis). Tree Physiol. 1995, 15, 813–817. [Google Scholar] [CrossRef]
- Makino, A.; Sato, T.; Nakano, H.; Mae, T. Leaf photosynthesis, plant growth and nitrogen allocation in rice under different irradiances. Planta 1997, 203, 390–398. [Google Scholar] [CrossRef]
- Erley, G.S.A.; Wijaya, K.A.; Ulas, A.; Becker, H.; Wiesler, F.; Horst, W.J. Leaf senescence and N uptake parameters as selection traits for nitrogen efficiency of oilseed rape cultivars. Physiol. Plant. 2007, 130, 519–531. [Google Scholar] [CrossRef]
- Wang, G.L.; Ding, G.D.; Xu, F.S.; Cai, H.M.; Zou, J.; Ye, X.S. Genotype differences in photosynthetic characteristics and nitrogen efficiency of new-type oilseed rape responding to low nitrogen stress. J. Agric. Sci. 2015, 153, 1030–1043. [Google Scholar] [CrossRef]
- Han, Y.; Song, H.; Liao, Q.; Yu, Y.; Jian, S.; Lepo, J.E.; Liu, Q.; Rong, X.; Tian, C.; Zeng, J.; et al. Nitrogen Use Efficiency Is Mediated by Vacuolar Nitrate Sequestration Capacity in Roots of Brassica napus. Plant Physiol. 2016, 170, 1684–1698. [Google Scholar] [CrossRef]
- Ranathunge, K.; El-kereamy, A.; Gidda, S.; Bi, Y.-M.; Rothstein, S.J. AMT1;1 transgenic rice plants with enhanced NH4 permeability show superior growth and higher yield under optimal and suboptimal NH4 conditions. J. Exp. Bot. 2014, 65, 965–979. [Google Scholar] [CrossRef]
- Lee, S.; Marmagne, A.; Park, J.; Fabien, C.; Yim, Y.; Kim, S.-J.; Kim, T.-H.; Lim, P.O.; Masclaux-Daubresse, C.; Nam, H.G. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. Plant J. 2020, 103, 7–20. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, Y.; Chen, G.; Zhang, A.; Yang, S.; Shang, L.; Wang, D.; Ruan, B.; Liu, C.; Jiang, H.; et al. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat. Commun. 2019, 10, 5207. [Google Scholar] [CrossRef]
- Wallsgrove, R.M.; Turner, J.C.; Hall, N.P.; Kendall, A.C.; Bright, S.W. Barley mutants lacking chloroplast glutamine synthetase-biochemical and genetic analysis. Plant Physiol. 1987, 83, 155–158. [Google Scholar] [CrossRef]
- Tabuchi, M.; Sugiyama, K.; Ishiyama, K.; Inoue, E.; Sato, T.; Takahashi, H.; Yamaya, T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J. 2005, 42, 641–651. [Google Scholar] [CrossRef]
- Pena, P.A.; Quach, T.; Sato, S.; Ge, Z.; Nersesian, N.; Changa, T.; Dweikat, I.; Soundararajan, M.; Clemente, T.E. Expression of the Maize Dof1 Transcription Factor in Wheat and Sorghum. Front. Plant Sci. 2017, 8, 434. [Google Scholar] [CrossRef]
- Fox, T.; DeBruin, J.; Collet, K.H.; Trimnell, M.; Clapp, J.; Leonard, A.; Li, B.; Scolaro, E.; Collinson, S.; Glassman, K.; et al. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol. J. 2017, 15, 942–952. [Google Scholar] [CrossRef]
- Iwamoto, M.; Tagiri, A. MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice. Plant J. 2016, 85, 466–477. [Google Scholar] [CrossRef]
- Tsay, Y.-F.; Chiu, C.-C.; Tsai, C.-B.; Ho, C.-H.; Hsu, P.-K. Nitrate transporters and peptide transporters. Febs Lett. 2007, 581, 2290–2300. [Google Scholar] [CrossRef]
- Fan, X.; Naz, M.; Fan, X.; Xuan, W.; Miller, A.J.; Xu, G. Plant nitrate transporters: From gene function to application. J. Exp. Bot. 2017, 68, 2463–2475. [Google Scholar] [CrossRef]
- Crawford, N.M.; Glass, A. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 1998, 3, 389–395. [Google Scholar] [CrossRef]
- Leran, S.; Varala, K.; Boyer, J.-C.; Chiurazzi, M.; Crawford, N.; Daniel-Vedele, F.; David, L.; Dickstein, R.; Fernandez, E.; Forde, B.; et al. A unified nomenclature of nitrate transporter1/peptide transporter family members in plants. Trends Plant Sci. 2014, 19, 5–9. [Google Scholar] [CrossRef]
- Loque, D.; von Wiren, N. Regulatory levels for the transport of ammonium in plant roots. J. Exp. Bot. 2004, 55, 1293–1305. [Google Scholar] [CrossRef]
- Chao, C.; Wang, Y.; Shen, X.; Dai, J.; Gu, C.; Li, Y.; Xie, L.; Hu, X.; Qin, L.; Liao, X. Characteristics of efficient nitrogen uptake and transport of rapeseed at seedling stage. Sci. Agric. Sin. 2022, 55, 1172–1188. [Google Scholar]
- Orsel, M.; Moison, M.; Clouet, V.; Thomas, J.; Leprince, F.; Canoy, A.-S.; Just, J.; Chalhoub, B.; Masclaux-Daubresse, C. Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence. J. Exp. Bot. 2014, 65, 3927–3947. [Google Scholar] [CrossRef]
- Xiao, Y.; Yao, J.; Liu, D.; Song, H.; Zhang, Z. Expression profile analysis of low nitrogen stress in Brassica napus. Acta Agron. Sin. 2020, 46, 1526–1538. [Google Scholar]
- Riechmann, J.L.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.Z.; Keddie, J.; Adam, L.; Pineda, O.; Ratcliffe, O.J.; Samaha, R.R.; et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 2000, 290, 2105–2110. [Google Scholar] [CrossRef]
- Chen, W.Q.; Provart, N.J.; Glazebrook, J.; Katagiri, F.; Chang, H.S.; Eulgem, T.; Mauch, F.; Luan, S.; Zou, G.Z.; Whitham, S.A.; et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 2002, 14, 559–574. [Google Scholar] [CrossRef]
- Tran, L.S.P.; Nakashima, K.; Sakuma, Y.; Simpson, S.D.; Fujita, Y.; Maruyama, K.; Fujita, M.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 2004, 16, 2481–2498. [Google Scholar] [CrossRef]
- Singh, K.B.; Foley, R.C.; Onate-Sanchez, L. Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol. 2002, 5, 430–436. [Google Scholar] [CrossRef]
- Ramamoorthy, R.; Jiang, S.Y.; Kumar, N.; Venkatesh, P.N.; Ramachandran, S. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol. 2008, 49, 865–879. [Google Scholar] [CrossRef]
- Cheng, C.L.; Dewdney, J.; Nam, H.G.; den Boer, B.G.; Goodman, H.M. A new locus (NIA 1) in Arabidopsis thaliana encoding nitrate reductase. EMBO J. 1988, 7, 3309–3314. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 10. [Google Scholar] [CrossRef]
- Hu, B.; Wang, W.; Ou, S.; Tang, J.; Li, H.; Che, R.; Zhang, Z.; Chai, X.; Wang, H.; Wang, Y.; et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 2015, 47, 834. [Google Scholar] [CrossRef]
Gene Category | Gene Name | Gene ID | Features | References |
---|---|---|---|---|
Nitrate transporters | BnNRT1.1 | BnaA06G0084100ZS BnaA08G0280200ZS BnaA09G0649200ZS BnaC05G0104000ZS BnaC05G0104100ZS BnaC08G0214800ZS BnaC08G0508100ZS | A dual-affinity nitrate transporter. Involved in nitrate signaling, which enables the plant root system to detect and exploit nitrate-rich soil patches. | [51,56] |
BnNRT1.4 | BnaA07G0151200ZS BnaC04G0211400ZS BnaC07G0217200ZS | Low-affinity nitrate transporter. | [71] | |
BnNRT1.5 | BnaA05G0324300ZS BnaA09G0391300ZS BnaC05G0284500ZS BnaC05G0339400ZS | Involved in xylem transport of nitrate from root to shoot. | [57,71] | |
BnNRT1.8 | BnaA01G0117900ZS BnaA03G0461700ZS BnaC01G0143800ZS BnaC03G0720800ZS BnaC07G0437700ZS | Functions in nitrate removal from the xylem sap. | [57] | |
BnNRT2.4 | BnaA10G0160100ZS BnaC09G0443000ZS | Member of the high-affinity nitrate transporter family. | [71] | |
BnNRT2.5 | BnaA08G0276500ZS BnaC08G0220400ZS | Member of the high-affinity nitrate transporter family. | [51] | |
BnNRT2.6 | BnaA01G0234100ZS BnaA01G0234200ZS BnaA06G0186600ZS BnaA06G0186700ZS BnaC01G0301400ZS BnaC01G0301600ZS BnaC03G0602800ZS BnaC03G0603000ZS | Member of the high-affinity nitrate transporter family. | [51] | |
BnNRT2.7 | BnaA02G0054200ZS BnaC02G0063100ZS | A nitrate transporter that controls nitrate content in seeds. | [51] | |
Ammonium transporters | BnAMT1;1a | BnaA05G0145700ZS BnaC06G0150000ZS BnaC08G0072000ZS | Encodes a plasma membrane localized ammonium transporter. | [51,71] |
BnAMT1;2a | BnaA09G0017700ZS BnaC05G0575800ZS BnaC07G0519800ZS BnaC09G0000500ZS | Encodes an ammonium transporter protein believed to act as a high-affinity transporter. | [71] | |
BnAMT1;3a | BnaA01G0285300ZS BnaA07G0069600ZS BnaC01G0349000ZS BnaC07G0104500ZS | Encodes a plasma-membrane-localized ammonium transporter. | [71] | |
BnAMT1;4a | BnaA01G0083600ZS BnaA03G0506500ZS BnaC01G0101600ZS BnaC07G0484800ZS | Ammonium transporter. | [71] | |
BnAMT2;1a BnAMT2;1b | BnaA04G0246200ZS BnaA05G0072900ZS BnaC04G0083600ZS BnaC04G0561000ZS | Functional ammonium transporter, constitutively expressed. | [71] | |
Nitrogen assimilation | BnGln1;1 | BnaA04G0096800ZS BnaA07G0108800ZS BnaC04G0378100ZS BnaC04G0386000ZS | Encodes a cytosolic glutamine synthetase; the enzyme has high affinity with substrate ammonium. | [51,72,73] |
BnGln1;2 | BnaA02G0159900ZS BnaA03G0181000ZS BnaC02G0204200ZS | Encodes a cytosolic glutamine synthetase; the enzyme has high affinity with substrate ammonium. | [51,72] | |
BnGln1;4 | BnaA02G0065000ZS BnaA10G0200900ZS BnaC02G0075000ZS BnaC09G0498800ZS | Encodes a cytosolic glutamine synthetase; the enzyme has high affinity with substrate ammonium. | [51,72,73] | |
BnNR1 | - | Encodes a cytosolic glutamine synthetase; the enzyme has high affinity with substrate ammonium. | [51] | |
BnNR2 | - | Encodes a nitrate reductase structural gene. Involved in nitrate assimilation. | [51] | |
Transcription factors | BnWRKY33S | BnaA03G0185200ZS BnaA04G0247200ZS BnaA05G0071200ZS BnaC03G0217300ZS BnaC04G0080600ZS BnaC04G0562300ZS BnaC07G0339900ZS | Member of the plant WRKY transcription factor family. Involved in response to various abiotic stresses, especially salt stress. | [73] |
BnWRKY70 | BnaA04G0035900ZS BnaA07G0195100ZS BnaA09G0519800ZS BnaC04G0308100ZS BnaC06G0198900ZS BnaC08G0362900ZS | Member of WRKY transcription factor. Functions as an activator of SA-dependent defense genes and a repressor of JA-regulated genes. | [73] | |
BnMYB4 | BnaA06G0451000ZS BnaA08G0200500ZS BnaC03G0669700ZS BnaC07G0548300ZS | Encodes a R2R3 MYB protein that is involved in the response to UV-B. It functions as a repressor of target gene expression. | [73] | |
BnMYB44 | BnaA02G0355600ZS BnaA07G0141400ZS BnaC02G0479100ZS BnaC02G0553100ZS BnaC07G0205300ZS | Member of the R2R3 factor MYB gene family involved in mediating plant responses to a variety of abiotic stimiuli. | [73] | |
BnMYB51 | BnaA06G0127950ZS BnaA08G0256450ZS BnaA09G0613050ZS BnaC05G0156000ZS BnaC08G0246750ZS BnaC08G0468450ZS | Encodes a member of the R2R3-MYB transcription family. Involved in indole glucosinolate biosynthesis. | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, N.; Xu, K.; Ji, G.; Yan, G.; Chen, B.; Wu, X.; Cai, G. Research Progress in High-Efficiency Utilization of Nitrogen in Rapeseed. Int. J. Mol. Sci. 2023, 24, 7752. https://doi.org/10.3390/ijms24097752
Zhan N, Xu K, Ji G, Yan G, Chen B, Wu X, Cai G. Research Progress in High-Efficiency Utilization of Nitrogen in Rapeseed. International Journal of Molecular Sciences. 2023; 24(9):7752. https://doi.org/10.3390/ijms24097752
Chicago/Turabian StyleZhan, Na, Kun Xu, Gaoxiang Ji, Guixin Yan, Biyun Chen, Xiaoming Wu, and Guangqin Cai. 2023. "Research Progress in High-Efficiency Utilization of Nitrogen in Rapeseed" International Journal of Molecular Sciences 24, no. 9: 7752. https://doi.org/10.3390/ijms24097752
APA StyleZhan, N., Xu, K., Ji, G., Yan, G., Chen, B., Wu, X., & Cai, G. (2023). Research Progress in High-Efficiency Utilization of Nitrogen in Rapeseed. International Journal of Molecular Sciences, 24(9), 7752. https://doi.org/10.3390/ijms24097752