Molecular Apomorphies in the Secondary and Tertiary Structures of Length-Variable Regions (LVRs) of 18S rRNA Shed Light on the Systematic Position of the Family Thaumastellidae (Hemiptera: Heteroptera: Pentatomoidea)
Abstract
:1. Introduction
2. Results
2.1. 18S rRNA Secondary Structure Models
2.2. Hypervariable Regions (V2, V4, V7) Secondary Structures
2.3. Length-Variable Regions (LVRs) in the Secondary Structures of 18S rRNA
2.4. Length-Variable Region L (LVR L) Secondary Structure
2.5. 18S rRNA Tertiary Structure Models
2.6. Length-Variable Region L (LVR L) Tertiary Structure
3. Discussion
3.1. The Predicted 18S rRNA Secondary Structures of Pentatomoidea
3.2. Potential Synapomorphies and Apomorphies in LVR L Secondary Structures
3.3. The Predicted 18S rRNA Tertiary Structures of Pentatomoidea
3.4. Potential Synapomorphies and Autapomorphies in LVR L Tertiary Structure
3.5. Systematic Position of Thaumastellidae within Pentatomoidea
3.6. Other Families’ Relationships within the Superfamily Pentatomoidea
4. Materials and Methods
4.1. Reconstruction of 18S rRNA Secondary Structure Models
4.2. Selection of the Hypervariable Regions (V) and Length-Variable Regions (LVRs) for Analyses
4.3. Prediction of LVR Secondary Structures
4.4. Prediction of Tertiary Structures
4.5. Concept of the Morpho-Molecular Structures Potentially Serving as Derived Characters
4.6. Selection of Taxa
5. Conclusions
- For the first time among Hexapoda, the tertiary structures of the entire SSU were predicted and used in the analyses of the relationships among taxa, representing the heteropteran superfamily Pentatomoidea.
- Results show that the probable in vivo configuration of the 18S rRNA tertiary structure is not predictable using only the secondary structure models and existing software (3dRNA v2.0 Web Server). This may also be the result of small nucleolar RNAs (snoRNAs) that can not only stabilise highly conserved ribosomal RNA secondary structures but can affect changes in their tertiary structure.
- The number of nucleotides in the hypervariable regions (V2, V4, V7) and the length-variable regions (LVRs) of the 18S rDNAs show variability, suggesting that the secondary and tertiary structures of 18S rRNAs could be more diverse than has been thought to date.
- The results concerning Pentatomoidea suggest that the local length sequence variations in the secondary structure models are restricted only to thirteen separate LVRs. However, only three LVRs (E, F, G) in the V2 region, one LVR (L) in the V4 region and two LVRs (S, T) in the V7 region were identified as those that could potentially serve as morpho-molecular apomorphies (synapomorphies or autapomorphies) for taxa within the superfamily Pentatomoidea.
- Out of the six LVRs mentioned above, only LVR L appeared to be the most appropriate length-variable region for phylogenetic relationship analyses when considering the secondary and tertiary structure models.
- The proposal for a new LVR L secondary structure subdivision presented in this study works well for the superfamily Pentatomoidea but should be verified in further studies in other groups within the Heteroptera.
- It is suggested that the Thaumastellidae should remain as an independent family within the superfamily Pentatomoidea, not a part of the family Cydnidae (regardless of its internal classification adopted).
- The predicted secondary and tertiary structures indicated a close relationship between Sehirinae and Parastrachiidae, with shared morpho-molecular synapomorphies in the LVR L subregions.
- It seems crucial to incorporate the methods of rRNA secondary and tertiary structure analyses with phylogenetic evaluations.
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Caterino, M.S.; Cho, S.; Sperling, F.A.H. The current state of insect molecular systematics: A thriving tower of Babel. Ann. Rev. Entomol. 2000, 45, 1–54. [Google Scholar] [CrossRef]
- Gillespie, J.J.; Johnston, J.S.; Cannone, J.J.; Gutell, R.R. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): Structure, organisation, and retrotransposable elements. Insect Mol. Biol. 2006, 15, 657–686. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Tian, X.; Qin, Y.; Bu, W. Phylogenetic comparison of local length plasticity of the small subunit of nuclear rDNAs among all Hexapoda orders and the impact of hyper-length-variation on alignment. Mol. Phylogenet. Evol. 2009, 50, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Stocsits, R.R.; Letsch, H.; Hertel, J.; Misof, B.; Stadler, P.F. Accurate and efficient reconstruction of deep phylogenies from structured RNAs. Nucleic Acids Res. 2009, 37, 6184–6193. [Google Scholar] [CrossRef]
- Keller, A.; Wolf, M.; Dandekar, T. Ribosomal RNA phylogenetics: The third dimension. Biol. Sect. Cell Mol. Biol. 2010, 65, 388–391. [Google Scholar] [CrossRef]
- Song, N.; Li, H.; Cai, W.; Yan, F.; Wang, J.; Song, F. Phylogenetic relationships of Hemiptera inferred from mitochondrial and nuclear genes. Mitochondrial DNA 2016, 27, 4380–4389. [Google Scholar] [CrossRef]
- Lis, J.A.; Ziaja, D.; Lis, B.; Gradowska, P.A. Non-monophyly of the “cydnoid” complex within Pentatomoidea (Hemiptera: Heteroptera) revealed by Bayesian phylogenetic analysis of nuclear rDNA sequences. Arthropod. Syst. Phylogeny 2017, 75, 481–496. [Google Scholar]
- Kjer, K.M. Aligned 18S and Insect Phylogeny. Syst. Biol. 2004, 53, 506–514. [Google Scholar] [CrossRef]
- Xie, Q.; Bu, W.; Zheng, L. The Bayesian phylogenetic analysis of the 18S rRNA sequences from the main lineages of Trichophora (Insecta: Heteroptera: Pentatomomorpha). Mol. Phylogenet. Evol. 2005, 34, 448–451. [Google Scholar] [CrossRef]
- Li, H.M.; Deng, R.Q.; Wang, J.W.; Chen, Z.Y.; Jia, F.L.; Wang, X.Z. A preliminary phylogeny of the Pentatomomorpha (Hemiptera: Heteroptera) based on nuclear 18S rDNA and mitochondrial DNA sequences. Mol. Phylogenet. Evol. 2005, 37, 313–326. [Google Scholar] [CrossRef]
- Li, H.M.; Deng, R.Q.; Wang, X.Z. Phylogenetic relationships of the Pentatomomorpha (Hemiptera: Heteroptera) inferred from nuclear 18S rDNA sequences. Zool. Res. 2006, 27, 307–316. [Google Scholar]
- Xie, Q.; Lin, J.; Qin, Y.; Zhou, J.; Bu, W. Structural diversity of eukaryotic 18S rRNA and its impact on alignment and phylogenetic reconstruction. Protein Cell 2011, 2, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tian, Y.; Zhao, Y.; Bu, W. Higher Level Phylogeny and the First Divergence Time Estimation of Heteroptera (Insecta: Hemiptera) Based on Multiple Genes. PLoS ONE 2012, 7, e32152. [Google Scholar] [CrossRef]
- Neefs, J.M.; van der Peer, Y.; De Rijk, P.; Chapelle, S.; De Wachter, R. Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res. 1993, 21, 3025–3049. [Google Scholar] [CrossRef] [PubMed]
- Ouvrard, D.; Campbell, B.C.; Bourgoin, T.; Chan, K.L. 18S rRNA Secondary Structure and Phylogenetic Position of Peloridiidae (Insecta, Hemiptera). Mol. Phylogenet. Evol. 2000, 16, 403–417. [Google Scholar] [CrossRef]
- Wuyts, J.; van de Peer, Y.; de Wachter, R. Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. Nucleic Acids Res. 2001, 29, 5017–5028. [Google Scholar] [CrossRef]
- Misof, B.; Niehuis, O.; Bischoff, I.; Rickert, A.; Erpenbeck, D.; Staniczek, A. A Hexapod Nuclear SSU rRNA Secondary-Structure Model and Catalog of Taxon-Specific Structural Variation. J. Exp. Zool. B Mol. Dev. Evol. 2006, 306B, 70–88. [Google Scholar] [CrossRef]
- Keller, A.; Förster, F.; Müller, T.; Dandekar, T.; Schultz, J.; Wolf, M. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biol. Direct 2010, 5, 4. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Y.; Rédei, D.; Xie, Q.; Bu, W. Secondary structure models of 18S and 28S rRNAs of the true bugs based on complete rDNA sequences of Eurydema maracandica Oshanin, 1871 (Heteroptera, Pentatomidae). ZooKeys 2013, 319, 363–377. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Yu, S.S.; Wang, Y.H.; Wu, Y.H.; Li, X.R.; Men, X.Y.; Zhang, Y.W.; Rédei, D.; Xie, Q.; Bu, W.J. The evolutionary position of Lestoniidae revealed by molecular autapomorphies in the secondary structure of rRNA besides phylogenetic reconstruction (Insecta: Hemiptera: Heteroptera). Zool. J. Linn. Soc. 2016, 177, 750–763. [Google Scholar] [CrossRef]
- Xie, Q.; Tian, Y.; Zheng, L.; Bu, W. 18S rRNA hyper-elongation and the phylogeny of Euhemiptera (Insecta: Hemiptera). Mol. Phylogenet. Evol. 2008, 47, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Seidenstücker, G. Heteroptera aus Iran 1956 III: Thaumastella aradoides Horvarth, eine Lygaeide ohne Ovipositor. Stuttg. Beitr. Naturkd. 1960, 11, 1–4. [Google Scholar]
- Štys, P. Thaumastellidae–A new family of pentatomoid Heteroptera. Acta Soc. Entomol. Čechoslov. 1964, 61, 238–253. [Google Scholar]
- Schaefer, C.W.; Wilcox, D.B. A new species of Thaumastellidae (Hemiptera: Pentatomoidea) from southern Africa. J. Entomol. Soc. S. Afr. 1971, 34, 207–214. [Google Scholar]
- Jacobs, D.H. A new species of Thaumastella with notes in the morphology, biology and distribution of the two Southern African species (Heteroptera: Thaumastellidae). J. Entomol. Soc. S. Afr. 1989, 52, 302–316. [Google Scholar]
- Lis, J.A. Cydnidae Billberg, 1820–Burrowing bugs (burrower bugs). In Catalogue of the Heteroptera of the Palaearctic Region; Pentatomomorpha II; Aukema, B., Rieger, C., Eds.; Netherlands Entomological Society: Wageningen, The Netherlands, 2006; Volume 5, pp. 119–147. [Google Scholar]
- Schuh, R.T.; Weirauch, C. True Bugs of the World (Hemiptera: Heteroptera). Classification and Natural History, 2nd ed.; Monograph Series 8; Siri Scientific Press: Rochdale, UK, 2020; 767p. [Google Scholar]
- Linnavuori, R. Hemiptera of the Sudan, with remarks on some species of the adjacent countries. 5. Tingidae, Piesmidae, Cydnidae, Thaumastellidae and Plataspidae. Acta Zool. Fenn. 1977, 147, 1–81. [Google Scholar]
- Linnavuori, R.E. Cydnidae of West, Central and North-East Africa (Heteroptera). Acta Zool. Fenn. 1993, 192, 1–148. [Google Scholar]
- Horváth, G. Hemiptera nova palaearctica. Természetrajzi Füz. 1896, 19, 322–329. [Google Scholar]
- Ueshima, N. Animal Cytogenetics. Insecta 6. Hemiptera II: Heteroptera; Gebrüder Borntraeger: Berlin, Germany; Stuttgart, Germany, 1979; Volume 117, 528p. [Google Scholar]
- Jacobs, D.H.; Apps, P.J.; Viljoen, H.W. The composition of the defensive secretions of Thaumastella namaquensis and T. elizabethae with notes on the higher classification of the Thaumastellidae (Insecta: Heteroptera). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1989, 93, 459–463. [Google Scholar] [CrossRef]
- Pluot-Sigwalt, D.; Lis, J.A. Morphology of the spermatheca in the Cydnidae (Hemiptera: Heteroptera): Bearing of its diversity on classification and phylogeny. Eur. J. Entomol. 2008, 105, 279–312. [Google Scholar] [CrossRef]
- Schaefer, C.W. The food plants of some “primitive” Pentatomoidea (Hemiptera: Heteroptera). Phytophaga 1988, 2, 19–45. [Google Scholar]
- Weirauch, C.; Schuh, R.T.; Cassis, G.; Wheeler, W.C. Revisiting habitat and lifestyle transitions in Heteroptera (Insecta: Hemiptera): Insights from a combined morphological and molecular phylogeny. Cladistics 2019, 35, 67–105. [Google Scholar] [CrossRef]
- Roca-Cusachs, M.; Schwertner, C.F.; Kim, J.; Eger, J.; Grazia, J.; Jung, S. Opening Pandora’s box: Molecular phylogeny of the stink bugs (Hemiptera: Heteroptera: Pentatomidae) reveals great incongruences in the current classification. Syst. Entomol. 2022, 41, 36–51. [Google Scholar] [CrossRef]
- Schaefer, C.W. The sound-producing structures of some primitive Pentatomoidea (Hemiptera: Heteroptera). J. N. Y. Entomol. Soc. 1981, 88, 230–235. [Google Scholar]
- Henry, T.J. Phylogenetic analysis of family groups within the infraorder Pentatomomorpha (Hemiptera: Heteroptera), with emphasis on the Lygaeoidea. Ann. Entomol. Soc. Am. 1997, 90, 275–301. [Google Scholar] [CrossRef]
- Popov, Y.; Pinto, I.D. On some Mesozoic burrower bugs (Heteroptera: Cydnidae). Paleontol. J. 2000, 34 (Suppl. S3), 298–302. [Google Scholar]
- Grazia, J.; Schuh, R.T.; Wheeler, W.C. Phylogenetic relationships of family groups in Pentatomoidea based on morphology and DNA sequences (Insecta: Heteroptera). Cladistics 2008, 24, 932–976. [Google Scholar] [CrossRef]
- Henry, T.J.; Footit, R.G. Biodiversity of Heteroptera. In Insect Biodiversity; Footit, R.G., Adler, P.H., Eds.; Science and Society, Wiley-Blackwell: Chichester, UK; Hoboken, UK, 2009; pp. 233–263. [Google Scholar]
- Lis, J.A. Coxal combs in the Cydnidae sensu lato and three other related “cydnoid” families–Parastrachiidae, Thaumastellidae, Thyreocoridae (Hemiptera: Heteroptera): Functional, taxonomic, and phylogenetic significance. Zootaxa 2010, 2476, 53–64. [Google Scholar] [CrossRef]
- Rider, D.A.; Schwertner, C.F.; Vilímová, J.; Rédei, D.; Kment, P.; Thomas, D.B. Higher systematics of the Pentatomoidea. In Invasive Stink Bugs and Related Species (Pentatomoidea): Biology, Higher Systematics, Semiochemistry, and Management; McPherson, J.E., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 25–201. [Google Scholar] [CrossRef]
- Bianchi, F.M.; Barão, K.R.; Grassi, A.; Ferrari, A. A milestone for Pentatomoidea: Grazia et al. 2008-What do we know and where can we go? Zootaxa 2021, 4958, 406–429. [Google Scholar] [CrossRef]
- Yao, Y.-Z.; Ren, D.; Rider, D.A.; Cai, W.-Z. Phylogeny of the infraorder Pentatomomorpha based on fossil and extant morphology, with description of a new fossil family from China. PLoS ONE 2012, 7, e37289. [Google Scholar] [CrossRef]
- Dolling, W.L. A rationalised classification of the burrower bugs (Cydnidae). Syst. Entomol. 1981, 6, 61–76. [Google Scholar] [CrossRef]
- Zrzavý, J. Evolution of antennal sclerites in Heteroptera (Insecta). Acta Univ. Carol. Biol. 1990, 34, 189–227. [Google Scholar]
- Gapud, V.P. A generic revision of the subfamily Asopinae, with consideration of its phylogenetic position in the family Pentatomidae and superfamily Pentatomoidea (Hemiptera-Heteroptera). Philipp Entomol. 1991, 8, 865–961. [Google Scholar]
- Schuh, R.T.; Slater, J.A. True Bugs of the World (Hemiptera: Heteroptera). Classification and Natural History; Cornell University Press: Ithaca, NY, USA; London, UK, 1995; 337p. [Google Scholar]
- Hwang, U.W.; Ree, H.I.; Kim, W. Evolution of hypervariable regions, V4 and V7, of insect 18S rRNA and their phylogenetic implications. Zool. Sci. 2000, 17, 111–121. [Google Scholar] [CrossRef]
- Justi, S.S.; Russo, C.A.M.; Santos-Mallet, J.R.; Obara, M.T.; Galvão, C. Molecular phylogeny of Triatomini (Hemiptera: Reduviidae: Triatominae). Parasites Vectors 2014, 7, 149–161. [Google Scholar] [CrossRef]
- Wang, Y.H.; Cui, Y.; Rédei, D.; Baňař, P.; Xie, Q.; Štys, P.; Damgaard, J.; Chen, P.P.; Yi, W.B.; Wang, Y.; et al. Phylogenetic divergences of the true bugs (Insecta: Hemiptera:Heteroptera), with emphasis on the aquatic lineages: The last piece of the aquatic insect jigsaw originated in the Late Permian/EarlyTriassic. Cladistics 2016, 32, 390–405. [Google Scholar] [CrossRef]
- Kim, J.; Jung, S. Phylogeny of the plant bug subfamily Mirinae (Hemiptera: Heteroptera: Cimicomorpha: Miridae) based on total evidence analysis. Syst. Entomol. 2019, 44, 686–698. [Google Scholar] [CrossRef]
- Sweeney, R.; Chen, L.; Yao, M.C. An rRNA Variable Region Has an Evolutionarily Conserved Essential Role despite Sequence Divergence. Mol. Cell Biol. 1994, 14, 4203–4215. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, W.; Gao, Z.; Wang, G.; Zhao, H. Phylogenetic Utility of rRNA ITS2 Sequence-Structure under Functional Constraint. Int. J. Mol. Sci. 2020, 21, 6395. [Google Scholar] [CrossRef]
- Kiss, T. Small Nucleolar RNAs An Abundant Group of Noncoding RNAs with Diverse Cellular Functions. Cell 2002, 109, 145–148. [Google Scholar] [CrossRef]
- Zemann, A.; op de Bekke, A.; Kiefmann, M.; Brosius, J.; Schmitz, J. Evolution of small nucleolar RNAs in nematodes. Nucleic Acids Res. 2006, 34, 2676–2685. [Google Scholar] [CrossRef]
- Schmitz, J.; Zemann, A.; Churakov, G.; Kuhl, H.; Grützner, F.; Reinhardt, R.; Brosius, J. Retroposed SNOfall-A mammalian-wide comparison of platypus snoRNAs. Genome Res. 2008, 18, 1005–1010. [Google Scholar] [CrossRef]
- Bratkovič, T.; Božič, J.; Rogelj, B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res. 2020, 48, 1627–1651. [Google Scholar] [CrossRef]
- Soulé, S.; Mellottee, L.; Arab, A.; Chen, C.; Martin, J.-R. Jouvence, a new small nucleolar RNA required in the gut extends lifespan in Drosophila. Nat. Comm. 2020, 11, 987. [Google Scholar] [CrossRef]
- Schaefer, C.W.; Dolling, W.R.; Tachikawa, S. The shieldbug genus Parastrachia and its position within the Pentatomoidea (Insecta: Hemiptera). Zool. J. Linn. Soc. 1988, 93, 283–311. [Google Scholar] [CrossRef]
- Sweet, M.H.; Schaefer, C.W. Parastrachiinae (Hemiptera: Cydnidae) raised to family level. Ann. Entomol. Soc. Am. 2002, 95, 442–448. [Google Scholar] [CrossRef]
- Lis, J.A.; Heyna, J. Metathoracic wing venation in Cydnidae (Hemiptera: Heteroptera) and its bearing on the classification of the family. Ann. Zool. 2001, 51, 429–465. [Google Scholar]
- Lis, J.A.; Schaefer, C.W. Tibial combs in the Cydnidae (Hemiptera: Heteroptera) and their functional, taxonomic and phylogenetic significance. J. Zool. Syst. Evol. Res. 2005, 43, 277–283. [Google Scholar] [CrossRef]
- Lis, J.A. The mesothoracic wing and its phylogenetic significance in Cydnidae (Hemiptera: Heteroptera: Pentatomoidea). Pol. J. Entomol. 2002, 71, 43–71. [Google Scholar]
- Lis, J.A. Pretarsal structures in the family Parastrachiidae (Hemiptera: Heteroptera: Pentatomoidea). Zootaxa 2010, 2693, 60–62. [Google Scholar] [CrossRef]
- Tachikawa, S.; Schaefer, C.W. The biology of Parastrachia japonensis (Hemiptera: Pentatomoidea: ?-dae). Ann. Entomol. Soc. Am. 1985, 78, 387–397. [Google Scholar] [CrossRef]
- Nakahira, T. Production of trophic eggs in the subsocial burrower bug Admerus (sic) triguttulus. Naturwissenschaften 1994, 81, 413–414. [Google Scholar]
- Filippi, L.; Hironaka, M.; Nomakuchi, S. A review of the ecological parameters and implications of subsociality in Parastrachia japonensis (Hemiptera: Cydnidae), a semalparous species that specializes on a poor resource. Popul. Ecol. 2001, 43, 41–50. [Google Scholar] [CrossRef]
- Hironaka, M.; Nomakuchi, S.; Iwakuma, S.; Filippi, L. Trophic egg production in a subsocial shield bug, Parastrachia japonensis Scott (Heteroptera: Parastrachiidae), and its functional value. Ethology 2005, 111, 1089–1102. [Google Scholar] [CrossRef]
- Agrawal, A.F.; Combs, N.; Brodie, E.D. Insights into the costs of complex maternal care behavior in the burrower bug (Sehirus cinctus). Behav. Ecol. Sociobiol. 2005, 57, 566–574. [Google Scholar] [CrossRef]
- Filippi, L.; Baba, N.; Inadomi, K.; Yanagi, T.; Hironaka, M.; Nomakuchi, S. Pre- and post-hatch trophic egg production in the subsocial burrower bug, Canthophorus niveimarginatus (Heteroptera: Cydnidae). Naturwissenschaften 2009, 96, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Inadomi, K.; Wakiyama, M.; Hironaka, M.; Mukai, H.; Filippi, L.; Nomakuchi, S. Postovipositional maternal care in the burrower bug, Adomerus rotundus (Hemiptera: Cydnidae). Can. Entomol. 2014, 146, 211–218. [Google Scholar] [CrossRef]
- Tian, X.; Xie, Q.; Li, M.; Gao, C.; Cui, Y.; Xi, L.; Bu, W. Phylogeny of pentatomomorphan bugs (Hemiptera-Heteroptera: Pentatomomorpha) based on six Hox gene fragments. Zootaxa 2011, 2888, 57–68. [Google Scholar] [CrossRef]
- Lis, J.A.; Lis, P.; Ziaja, D.J.; Kocorek, A. Systematic position of Dinidoridae within the superfamily Pentatomoidea (Hemiptera: Heteroptera) revealed by the Bayesian phylogenetic analysis of the mitochondrial 12S and 16S rDNA sequences. Zootaxa 2012, 3423, 61–68. [Google Scholar] [CrossRef]
- Reuter, J.S.; Mathews, D.H. RNAstructure: Software for RNA secondary structure prediction and analysis. BMC Bioinform. 2010, 11, 129. [Google Scholar] [CrossRef]
- Tillier, E.R.M.; Collins, R.A. High apparent rate of simultaneous compensatory base-pair substitutions in ribosomal RNA. Genetics 1998, 148, 1993–2002. [Google Scholar] [CrossRef]
- Gutell, R.R.; Lee, J.C.; Cannone, J.J. The accuracy of ribosomal RNA comparative structure models. Curr. Opin. Struct. Biol. 2002, 12, 301–310. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Huang, Y.; Xiao, Y. 3dRNA v2. 0: An Updated Web Server for RNA 3D Structure Prediction. Int. J. Mol. Sci. 2019, 20, 4116. [Google Scholar] [CrossRef]
- Bellaousov, S.; Mathews, D.H. ProbKnot: Fast prediction of RNA secondary structure including pseudoknots. RNA 2010, 16, 1870–1880. [Google Scholar] [CrossRef]
- Witwer, C.; Hofacker, I.L.; Stadler, P.F. Prediction of consensus RNA secondary structures including pseudoknots. IEEE/ACM Trans. Comput. Biol. Bioinform. 2004, 1, 66–77. [Google Scholar] [CrossRef]
- Staple, D.W.; Butcher, S.E. Pseudoknots: RNA Structures with Diverse Functions. PLoS Biol. 2005, 3, e213. [Google Scholar] [CrossRef]
- Popenda, M.; Szachniuk, M.; Antczak, M.; Purzycka, K.J.; Lukasiak, P.; Bartol, N.; Blazewicz, J.; Adamiak, R.W. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 2012, 40, e112. [Google Scholar] [CrossRef]
- Biesiada, M.; Purzycka, K.J.; Szachniuk, M.; Blazewicz, J.; Adamiak, R.W. Automated RNA 3D structure prediction with RNAComposer. In RNA Structure Determination. Methods in Molecular Biology; Turner, D., Mathews, D., Eds.; Humana Press: New York, NY, USA, 2016; Volume 1490, pp. 199–215. [Google Scholar] [CrossRef]
- Schrödinger, L.; DeLano, W. PyMOL, version 2.4.0; Schrödinger, LLC: New York, NY, USA, 2020; Available online: http://www.pymol.org/pymol (accessed on 14 February 2023).
- Wu, H.-Y.; Wang, Y.-H.; Xie, Q.; Ke, Y.-L.; Bu, W.-J. Molecular classification based on apomorphic amino acids (Arthropoda, Hexapoda): Integrative taxonomy in the era of phylogenomics. Sci. Rep. 2016, 6, 28308. [Google Scholar] [CrossRef]
- Gutell, R.R. Ten lessons with Carl Woese about RNA and comparative analysis. RNA Biol. 2014, 11, 254–272. [Google Scholar] [CrossRef]
- Hajdin, C.E.; Ding, F.; Dokholyan, N.V.; Weeks, K.M. On the significance of an RNA tertiary structure prediction. RNA 2010, 16, 1340–1349. [Google Scholar] [CrossRef]
- von Reumont, B.M.; Meusemann, K.; Szucsich, N.U.; Dell’Ampio, E.; Gowri-Shankar, V.; Bartel, D.; Simon, S.; Letsch, H.O.; Stocsits, R.R.; Luan, Y.X.; et al. Can comprehensive background knowledge be incorporated into substitution models to improve phylogenetic analyses? A case study on major arthropod relationships. BMC Evol. Biol. 2009, 9, 119. [Google Scholar] [CrossRef]
- Wheeler, W.C.; Schuh, R.T. Direct Submission to GenBank. 2003. Available online: https://www.ncbi.nlm.nih.gov (accessed on 10 January 2022).
- Futahashi, R.; Tanaka, K.; Tanahashi, M.; Nikoh, N.; Kikuchi, Y.; Lee, B.L.; Fukatsu, T. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont. PLoS ONE 2013, 8, e64557. [Google Scholar] [CrossRef]
Taxon Group | Consensus Species | Number of Nucleotides | ||
---|---|---|---|---|
V2 | V4 | V7 | ||
outgroup | Riptortus pedestris (Fabricius, 1775) | 192 | 318 | 91 |
Acanthosomatidae | Elasmostethus interstinctus (Linnaeus, 1758) | 194 | 317 | 91 |
Canopidae | Canopus sp. | 193 | 316 | 91 |
Cydnidae: Cydninae | Fromundus pygmaeus (Dallas, 1851) | 193 | 317 | 91 |
Cydnidae: Sehirinae | Adomerus biguttatus (Linnaeus, 1758) | 194 | 316 | 91 |
Dinidoridae | Megymenum sp. | 193 | 316 | 91 |
Lestoniidae | Lestonia haustorifera | 194 | 318 | 91 |
Parastrachiidae | Parastrachia japonensis (Scott, 1880) | 193 | 316 | 90 |
Pentatomidae | Eurydema maracandica (Oshanin, 1871) | 193 | 316 | 91 |
Plataspidae | Coptosoma scutellatum (Geoffroy, 1785) | 193 | 320 | 91 |
Scutelleridae | Cantao ocellatus (Thunberg, 1784) | 193 | 316 | 91 |
Tessaratomidae | Eurostus validus (Dallas, 1851) | 193 | 316 | 91 |
Thaumastellidae | Thaumastella elizabethae (Jacobs, 1989) | 194 | 318 | 90 |
Thyreocoridae | Thyreocoris scarabaeoides (Linnaeus, 1758) | 194 | 316 | 91 |
Urostylididae | Urochela luteovaria (Distant, 1881) | 194 | 316 | 91 |
Taxon Group | Number of Nucleotides | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | D | E | F | G | L | M | S | T | U | R | W | X | |
outgroup | 10–11 | 4–5 | 4–5 | 2 | 0 | 72–78 | 4 | 5 | 8–9 | 13 | 4 | 3 | 4–6 |
Acanthosomatidae | 11 | 4–5 | 5–6 | 2 | 0 | 74–75 | 4 | 5 | 8 | 13 | 4 | 3 | 5–8 |
Canopidae | 11 | 4 | 5 | 2 | 0 | 73 | 4 | 5 | 8 | 13 | 4 | 3 | 5 |
Cydnidae: Cydninae | 11 | 4 | 5 | 2 | 0 | 73–81 | 4 | 5 | 8 | 13 | 4 | 3 | 5 |
Cydnidae: Sehirinae | 11 | 4 | 5 | 2 | 0 | 73–75 | 4 | 5 | 8 | 13 | 4 | 3 | 5 |
Dinidoridae | 11 | 4 | 5 | 2 | 0 | 73 | 4 | 5 | 8 | 13 | 4 | 3 | 4–5 |
Lestoniidae | 11 | 4 | 6 | 2 | 0 | 75 | 4 | 5 | 8 | 13 | 4 | 3 | 5 |
Parastrachiidae | 11 | 4 | 5 | 2 | 0 | 73–78 | 4 | 5 | 8–10 | 13 | 4 | 3 | 5 |
Pentatomidae | 11 | 4 | 5 | 2 | 0 | 72–74 | 4 | 5 | 8 | 13 | 4 | 3 | 5 |
Plataspidae | 11 | 4 | 5 | 2 | 0 | 77 | 4 | 5 | 8 | 13 | 4 | 3 | 5 |
Scutelleridae | 11 | 4 | 5 | 2 | 0 | 73 | 4 | 5 | 8 | 13 | 4 | 3 | 5 |
Tessaratomidae | 11 | 4 | 5 | 2 | 0 | 73 | 4 | 5 | 8 | 13 | 4 | 3 | 5 |
Thaumastellidae | 11 | 4 | 5 | 2 | 1 | 72–75 | 4 | 5 | 8 | 13 | 4 | 3 | 5 |
Thyreocoridae | 11 | 4 | 5 | 2 | 0 | 71–74 | 4 | 5 | 8 | 13 | 4 | 3 | 5 |
Urostylididae | 11–12 | 4 | 5 | 2 | 0 | 73–74 | 4 | 5 | 8–9 | 13 | 4 | 3 | 5 |
Taxon Group | Consensus Species | Total Length | Number of Nucleotides of the LVR L Subregions | |||||
---|---|---|---|---|---|---|---|---|
L2 | LA (A1 + A2) | LB (B1 + B2) | LC (C1 + C2) | LD (D1 + D2) | LE (E1 + E2) | |||
outgroup | R. pedestris | 75 | 4 | 14 (7 + 7) | 16 (9 + 7) | 14 (7 + 7) | 9 (6 + 3) | 18 (9 + 9) |
Acanthosomatidae | E. interstinctus | 74 | 4 | 15 (7 + 8) | 16 (9 + 7) | 14 (7 + 7) | 9 (6 + 3) | 16 (8 + 8) |
Canopidae | Canopus sp. | 73 | 4 | 14 (7 + 7) | 16 (9 + 7) | 14 (7 + 7) | 9 (6 + 3) | 16 (8 + 8) |
Cydnidae: Cydninae | F. pygmaeus | 74 | 4 | 14 (7 + 7) | 16 (9 + 7) | 15 (8 + 7) | 9 (6 + 3) | 16 (8 + 8) |
Cydnidae: Sehirinae | A. biguttatus | 73 | 6 | 12 (6 + 6) | 18 (10 + 8) | 14 (7 + 7) | 9 (6 + 3) | 14 (7 + 7) |
Dinidoridae | Megymenum sp. | 73 | 4 | 14 (7 + 7) | 16 (9 + 7) | 12 (6 + 6) | 11 (7 + 4) | 16 (8 + 8) |
Lestoniidae | L. haustorifera | 75 | 4 | 14 (7 + 7) | 20 (11 + 9) | 13 (6 + 7) | 8 (5 + 3) | 16 (8 + 8) |
Parastrachiidae | P. japonensis | 73 | 6 | 12 (6 + 6) | 18 (10 + 8) | 14 (7 + 7) | 9 (6 + 3) | 14 (7 + 7) |
Pentatomidae | E. maracandica | 73 | 4 | 14 (7 + 7) | 16 (9 + 7) | 12 (6 + 6) | 11 (7 + 4) | 16 (8 + 8) |
Plataspidae | C. scutellatum | 77 | 4 | 18 (9 + 9) | 14 (10 + 4) | 16 (8 + 8) | 10 (5 + 5) | 15 (7 + 8) |
Scutelleridae | C. ocellatus | 73 | 4 | 14 (7 + 7) | 16 (9 + 7) | 14 (7 + 7) | 9 (6 + 3) | 16 (8 + 8) |
Tessaratomidae | E. validus | 73 | 4 | 14 (7 + 7) | 16 (9 + 7) | 12 (6 + 6) | 11 (7 + 4) | 16 (8 + 8) |
Thaumastellidae | T. elizabethae | 75 | 3 | 17 (9 + 8) | 11 (6 + 5) | 16 (8 + 8) | 8 (5 + 3) | 20 (10 + 10) |
Thyreocoridae | T. scarabaeoides | 74 | 6 | 14 (7 + 7) | 17 (10 + 7) | 14 (7 + 7) | 9 (6 + 3) | 14 (7 + 7) |
Urostylididae | U. luteovaria | 73 | 4 | 14 (7 + 7) | 16 (9 + 7) | 14 (7 + 7) | 9 (6 + 3) | 16 (8 + 8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lis, J.A. Molecular Apomorphies in the Secondary and Tertiary Structures of Length-Variable Regions (LVRs) of 18S rRNA Shed Light on the Systematic Position of the Family Thaumastellidae (Hemiptera: Heteroptera: Pentatomoidea). Int. J. Mol. Sci. 2023, 24, 7758. https://doi.org/10.3390/ijms24097758
Lis JA. Molecular Apomorphies in the Secondary and Tertiary Structures of Length-Variable Regions (LVRs) of 18S rRNA Shed Light on the Systematic Position of the Family Thaumastellidae (Hemiptera: Heteroptera: Pentatomoidea). International Journal of Molecular Sciences. 2023; 24(9):7758. https://doi.org/10.3390/ijms24097758
Chicago/Turabian StyleLis, Jerzy A. 2023. "Molecular Apomorphies in the Secondary and Tertiary Structures of Length-Variable Regions (LVRs) of 18S rRNA Shed Light on the Systematic Position of the Family Thaumastellidae (Hemiptera: Heteroptera: Pentatomoidea)" International Journal of Molecular Sciences 24, no. 9: 7758. https://doi.org/10.3390/ijms24097758
APA StyleLis, J. A. (2023). Molecular Apomorphies in the Secondary and Tertiary Structures of Length-Variable Regions (LVRs) of 18S rRNA Shed Light on the Systematic Position of the Family Thaumastellidae (Hemiptera: Heteroptera: Pentatomoidea). International Journal of Molecular Sciences, 24(9), 7758. https://doi.org/10.3390/ijms24097758