Systemic and Peripheral Mechanisms of Cortical Stimulation-Induced Analgesia and Refractoriness in a Rat Model of Neuropathic Pain
Abstract
:1. Introduction
2. Results
2.1. Experimental Design
2.2. Characterization of Effectiveness and Refractoriness to MCS
2.3. Expression Pattern of Cytokines and NGF in the Sciatic Nerve
2.4. Expression Pattern of Cytokines in the DRG
2.5. Expression Pattern of SP, β-Endorphin, BDNF, and NGF in the Plasma
2.6. Correlations between Nociceptive Threshold, Expression of Cytokines, Neurotrophins, β-Endorphin, and SP with MCS
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Induction of Neuropathic Pain
4.3. Electrode Implantation and MCS
4.4. Nociceptive Sensitivity Evaluation
4.4.1. Mechanical Hyperalgesia Assessment
4.4.2. Mechanical Allodynia Assessment
4.5. Tissue and Plasma Sample Collection
4.6. Protein Extraction
4.7. Enzyme-Linked Immunosorbent Assay (ELISA)
4.8. Multiplex Assay
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Treede, R.D.; Jensen, T.S.; Campbell, J.N.; Cruccu, G.; Dostrovsky, J.O.; Griffin, J.W.; Hansson, P.; Hughes, R.; Nurmikko, T.; Serra, J. Neuropathic pain: Redefinition and a grading system for clinical and research purposes. Neurology 2008, 70, 1630–1635. [Google Scholar] [CrossRef] [PubMed]
- Boadas-Vaello, P.; Castany, S.; Homs, J.; Álvarez-Pérez, B.; Deulofeu, M.; Verdú, E. Neuroplasticity of ascending and descending pathways after somatosensory system injury: Reviewing knowledge to identify neuropathic pain therapeutic targets. Spinal Cord 2016, 54, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Mannion, R.; Woolf, C. Pain mechanisms and management: A central perspective. Clin. J. Pain 2000, 16, 144–156. [Google Scholar] [CrossRef]
- van Hecke, O.; Austin, S.K.; Khan, R.A.; Smith, B.H.; Torrance, N. Neuropathic pain in the general population: A systematic review of epidemiological studies. Pain 2014, 155, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Cruccu, G.; Aziz, T.; Garcia-Larrea, L.; Hans-son, P.; Jensen, T.; Lefaucheur, J.; Simpson, B.; Taylor, R. EFNS guidelines on neuro-stimulation therapy for neuropathic pain. Eur. J. Neurol. 2007, 14, 952–970. [Google Scholar] [CrossRef]
- Hansson, P.T.; Attal, N.; Baron, R.; Cruccu, G. Toward a definition of pharmacoresistant neuropathic pain. Eur. J. Pain 2009, 13, 439–440. [Google Scholar] [CrossRef]
- Torrance, N.; Ferguson, J.A.; Afolabi, E.; Bennett, M.I.; Serpell, M.G.; Dunn, K.M.; Smith, B.H. Neuropathic pain in the community: More under-treated than refractory? Pain 2013, 154, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Girach, A.; Julian, T.H.; Varrassi, G.; Paladini, A.; Vadalouka, A.; Zis, P. Quality of Life in Painful Peripheral Neuropathies: A Systematic Review. Pain Res. Manag. 2019, 2019, 2091960. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J.; Salter, M.W. Neuronal plasticity: Increasing the gain in pain. Science 2000, 288, 1765–1769. [Google Scholar] [CrossRef]
- Julius, D.; Basbaum, A.I. Molecular mechanisms of nociception. Nature 2001, 413, 203–210. [Google Scholar] [CrossRef]
- Martucci, C.; Trovato, A.E.; Costa, B.; Borsani, E.; Franchi, S.; Magnaghi, V.; Panerai, A.E.; Rodella, L.F.; Valsecchi, A.E.; Sacerdote, P.; et al. The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1 beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain 2008, 137, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Campana, W.M. Schwann cells: Activated peripheral glia and their role in neuropathic pain. Brain Behav. Immun. 2007, 21, 522–752. [Google Scholar] [CrossRef] [PubMed]
- Barker, P.A.; Mantyh, P.; Arendt-Nielsen, L.; Viktrup, L.; Tive, L. Nerve Growth Factor Signaling and Its Contribution to Pain. J. Pain Res. 2020, 13, 1223–1241. [Google Scholar] [CrossRef] [PubMed]
- Dubový, P.; Klusáková, I.; Svíženská, I.; Brázda, V. Satellite glial cells express IL-6 and corresponding signal-transducing receptors in the dorsal root ganglia of rat neuropathic pain model. Neuron Glia Biol. 2010, 6, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Hanani, M. Satellite glial cells in sensory ganglia: From form to function. Brain Res. Brain Res. Rev. 2005, 48, 457–476. [Google Scholar] [CrossRef]
- Liu, F.Y.; Sun, Y.N.; Wang, F.T.; Li, Q.; Su, L.; Zhao, Z.F.; Meng, X.L.; Zhao, H.; Wu, X.; Sun, Q.; et al. Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation. Brain Res. 2012, 1427, 65–77. [Google Scholar] [CrossRef]
- Palmer, M.T.; Weaver, C.T. Autoimmunity: Increasing suspects in the CD4+ T cell lineup. Nat. Immunol. 2010, 11, 36–40. [Google Scholar] [CrossRef]
- Wu, G.; Ringkamp, M.; Murinson, B.B.; Pogatzki, E.M.; Hartke, T.V.; Weerahandi, H.M.; Campbell, J.N.; Griffin, J.W.; Meyer, R.A. Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J. Neurosci. 2002, 22, 7746–7753. [Google Scholar] [CrossRef]
- Millan, M.J. The induction of pain: An integrative review. Prog. Neurobiol. 1999, 57, 1–164. [Google Scholar] [CrossRef]
- Schnitzler, A.; Ploner, M. Neurophysiology and functional neuroanatomy of pain perception. J. Clin. Neurophysiol. 2000, 17, 592–603. [Google Scholar] [CrossRef]
- Fagundes-Pereyra, W.J.; Teixeira, M.J.; Reyns, N.; Touzet, G.; Dantas, S.; Laureau, E.; Blond, S. Motor cortex electric stimulation for the treatment of neuropathic pain. Arq. De Neuro-Psiquiatr. 2010, 68, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, Y.; Yoshimine, T. Stimulation of primary motor cortex for intractable deafferentation pain. Acta Neurochir. Suppl. 2007, 97, 51–56. [Google Scholar] [PubMed]
- Lima, M.C.; Fregni, F. Motor cortex stimulation for chronic pain: Systematic review and meta-analysis of the literature. Neurology 2008, 70, 2329–2337. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, D.; Hamani, C.; Lozano, A. Efficacy and safety of motor cortex stimulation for chronic neuropathic pain: Critical review of the literature. J. Neurosurg. 2009, 110, 251–256. [Google Scholar] [CrossRef]
- Nguyen, J.P.; Velasco, F.; Brugières, P.; Velasco, M.; Keravel, Y.; Boleaga, B.; Brito, F.; Lefaucheur, J.P. Treatment of chronic neuropathic pain by motor cortex stimulation: Results of a bicentric controlled crossover trial. Brain Stimul. 2008, 1, 89–96. [Google Scholar] [CrossRef]
- Velasco, F.; Argüelles, C.; Carrillo-Ruiz, J.D.; Castro, G.; Velasco, A.L.; Jiménez, F.; Velasco, M. Efficacy of motor cortex stimulation in the treatment of neuropathic pain: A randomized double-blind Trial. J. Neurosurg. 2008, 108, 698–706. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; Drouot, X.; Cunin, P.; Bruckert, R.; Lepetit, H.; Créange, A.; Wolkenstein, P.; Maison, P.; Keravel, Y.; Nguyen, J.P. Motor cortex stimulation for the treatment of refractory peripheral neuropathic pain. Brain 2009, 132, 1463–1471. [Google Scholar] [CrossRef]
- Garcia-Larrea, L.; Peyron, R.; Mertens, P.; Gregoire, M.C.; Lavenne, F.; Le Bars, D.; Convers, P.; Mauguière, F.; Sindou, M.; Laurent, B. Electrical stimulation of motor cortex for pain control: A combined PET-scan and electrophysiological study. Pain 1999, 83, 259–273. [Google Scholar] [CrossRef]
- Garcia-Larrea, L.; Peyron, R. Motor cortex stimulation for neuropathic pain: From phenomenology to mechanisms. Neuroimage 2007, 37, S71–S79. [Google Scholar] [CrossRef]
- Peyron, R.; Faillenot, I.; Mertens, P.; Laurent, B.; Garcia-Larrea, L. Motor cortex stimulation in neuropathic pain. Correlations between analgesic effect and hemodynamic changes in the brain. A PET study. Neuroimage 2007, 34, 310–321. [Google Scholar] [CrossRef]
- Volkers, R.; Giesen, E.; van der Heiden, M.; Kerperien, M.; Lange, S.; Kurt, E.; van Dongen, R.; Schutter, D.; Vissers, K.C.P.; Henssen, D. Invasive Motor Cortex Stimulation Influences Intracerebral Structures in Patients with Neuropathic Pain: An Activation Likelihood Estimation Meta-Analysis of Imaging Data. Neuromodulation 2020, 23, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Pagano, R.L.; Assis, D.V.; Clara, J.A.; Alves, A.S.; Dale, C.S.; Teixeira, M.J.; Fonoff, E.T.; Britto, L.R. Transdural motor cortex stimulation reverses neuropathic pain in rats: A profile of neuronal activation. Eur. J. Pain 2011, 15, e1–e14. [Google Scholar]
- Viisanen, H.; Ansah, O.B.; Pertovaara, A. The role of the dopamine D2 receptor in descending control of pain induced by motor cortex stimulation in the neuropathic rat. Brain Res. Bull. 2012, 89, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ryu, S.B.; Lee, S.E.; Shin, J.; Jung, H.H.; Kim, S.J.; Kim, K.H.; Chang, J.W. Motor cortex stimulation and neuropathic pain: How does motor cortex stimulation affect pain-signaling pathways? J. Neurosurg. 2016, 124, 866–876. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, E.M.; Martinez, R.C.R.; Pagano, R.L.; Lopes, P.S.S.; Auada, A.V.V.; Gouveia, F.V.; Antunes, G.F.; Assis, D.V.; Lebrun, I.; Fonoff, E.T. Neurochemical effects of motor cortex stimulation in the periaqueductal gray during neuropathic pain. J. Neurosurg. 2019, 132, 239–251. [Google Scholar] [CrossRef]
- Henssen, D.; Kurt, E.; van Walsum, A.V.C.; Kozicz, T.; van Dongen, R.; Bartels, R. Motor cortex stimulation in chronic neuropathic orofacial pain syndromes: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 7195. [Google Scholar] [CrossRef]
- Viisanen, H.; Pertovaara, A. Roles of the rostroventromedial medulla and the spinal 5-HT(1A) receptor in descending antinociception induced by motor cortex stimulation in the neuropathic rat. Neurosci. Lett. 2010, 476, 133–137. [Google Scholar] [CrossRef]
- Silva, G.D.; Lopes, P.S.; Fonoff, E.T.; Pagano, R.L. The spinal anti-inflammatory mechanism of motor cortex stimulation: Cause of success and refractoriness in neuropathic pain? J. Neuroinflamm. 2015, 12, 10. [Google Scholar] [CrossRef]
- Sacerdote, P.; Franchi, S.; Moretti, S.; Castelli, M.; Procacci, P.; Magnaghi, V.; Panerai, A.E. Cytokine modulation is necessary for efficacious treatment of experimental neuropathic pain. J. Neuroimmune Pharmacol. 2013, 8, 202–211. [Google Scholar] [CrossRef]
- Grace, P.M.; Hutchinson, M.R.; Maier, S.F.; Watkins, L.R. Pathological pain and the neuroimmune interface. Nat. Rev. Immunol. 2014, 14, 217–231. [Google Scholar] [CrossRef]
- Zhang, R.R.; Chen, S.L.; Cheng, Z.C.; Shen, Y.Y.; Yi, S.; Xu, H. Characteristics of cytokines in the sciatic nerve stumps and DRGs after rat sciatic nerve crush injury. Mil. Med. Res. 2020, 23, 57. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, A.C. Peripheral beta-endorphin and pain modulation. Anesth. Prog. 1991, 38, 75–78. [Google Scholar] [PubMed]
- Petraschka, M.; Li, S.; Gilbert, T.L.; Westenbroek, R.E.; Bruchas, M.R.; Schreiber, S.; Lowe, J.; Low, M.J.; Pintar, J.E.; Chavkin, C. The absence of endogenous β-endorphin selectively blocks phosphorylation and desensitization of mu opioid receptors following partial sciatic nerve ligation. Neuroscience 2007, 146, 1795–1807. [Google Scholar] [CrossRef]
- Hegazy, N.; Rezq, S.; Fahmy, A. Renin-angiotensin system blockade modulates both the peripheral and central components of neuropathic pain in rats: Role of calcitonin gene-related peptide, substance P and nitric oxide. Basic Clin. Pharmacol. Toxicol. 2020, 127, 451–460. [Google Scholar] [CrossRef]
- Cohen, S.P.; Mao, J. Neuropathic pain: Mechanisms and their clinical implications. BMJ 2014, 348, f7656. [Google Scholar] [CrossRef] [PubMed]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic pain. Nat. Rev. Dis. Prim. 2017, 16, 3–17002. [Google Scholar] [CrossRef]
- Fonoff, E.T.; Pereira, J.F., Jr.; Camargo, L.V.; Dale, C.S.; Pagano, R.L.; Ballester, G.; Teixeira, M.J. Functional mapping of the motor cortex of the rat using transdural electrical stimulation. Behav. Brain Res. 2009, 202, 138–141. [Google Scholar] [CrossRef]
- Afif, A.; Garcia-Larrea, L.; Mertens, P. Stimulation of the motor cerebral cortex in chronic neuropathic pain: The role of electrode localization over motor somatotopy. J. Neurosurg. Sci. 2020, 66, 560–570. [Google Scholar] [CrossRef]
- Hamani, C.; Fonoff, E.T.; Parravano, D.C.; Silva, V.A.; Galhardoni, R.; Monaco, B.A.; Navarro, J.; Yeng, L.T.; Teixeira, M.J.; de Andrade, D.C. Motor cortex stimulation for chronic neuropathic pain: Results of a double-blind randomized study. Brain 2021, 144, 2994–3004. [Google Scholar] [CrossRef]
- Sacerdote, P.; Franchi, S.; Trovato, A.E.; Valsecchi, A.E.; Panerai, A.E.; Colleoni, M. Transient early expression of TNF-alpha in sciatic nerve and dorsal root ganglia in a mouse model of painful peripheral neuropathy. Neurosci. Lett. 2008, 436, 210–213. [Google Scholar] [CrossRef]
- Khan, J.; Ramadan, K.; Korczeniewska, O.; Anwer, M.M.; Benoliel, R.; Eliav, E. Interleukin-10 levels in rat models of nerve damage and neuropathic pain. Neurosci. Lett. 2015, 592, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Pagano, R.L.; Fonoff, E.T.; Dale, C.S.; Ballester, G.; Teixeira, M.J.; Britto, L.R. Motor cortex stimulation inhibits thalamic sensory neurons and enhances activity of PAG neurons: Possible pathways for antinociception. Pain 2012, 153, 2359–2369. [Google Scholar] [CrossRef] [PubMed]
- Vaculín, S.; Franek, M.; Yamamotová, A.; Rokyta, R. Motor cortex stimulation in rats with chronic constriction injury. Exp. Brain Res. 2008, 185, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Slotty, P.J.; Eisner, W.; Honey, C.R.; Wille, C.; Vesper, J. Long-term follow-up of motor cortex stimulation for neuropathic pain in 23 patients. Stereotact. Funct. Neurosurg. 2015, 93, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Delavallée, M.; Finet, P.; de Tourtchaninoff, M.; Raftopoulos, C. Subdural motor cortex stimulation: Feasibility, efficacy and security on a series of 18 consecutive cases with a follow-up of at least 3 years. Acta Neurochir. 2014, 156, 2289–2294. [Google Scholar] [CrossRef] [PubMed]
- Dailey, A.T.; Avellino, A.M.; Benthem, L.; Silver, J.; Kliot, M. Complement depletion reduces macrophage infiltration and activation during Wallerian degeneration and axonal regeneration. J. Neurosci. 1998, 18, 6713–6722. [Google Scholar] [CrossRef] [PubMed]
- Kemper, C.; Atkinson, J.P. T-cell regulation: With complements from innate immunity. Nat. Rev. Immunol. 2007, 7, 9–18. [Google Scholar] [CrossRef]
- Kim, C.F.; Moalem-Taylor, G. Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. J. Pain 2011, 12, 370–383. [Google Scholar] [CrossRef]
- Austin, P.J.; Moalem-Taylor, G. Pathophysiology: Inflammatory mediators. In Neuropathic Pain: Causes, Management and Understanding; Toth, C., Moulin, D.E., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 77–89. [Google Scholar]
- Ji, R.R.; Samad, T.A.; Jin, S.X.; Schmoll, R.; Woolf, C.J. P38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 2002, 36, 57–68. [Google Scholar] [CrossRef]
- Mantyh, P.W.; Koltzenburg, M.; Mendell, L.M.; Tive, L.; Shelton, D.L. Antagonism of nerve growth factor-trkA signaling and the relief of pain. Anesthesiology 2011, 115, 189–204. [Google Scholar] [CrossRef]
- McKelvey, L.; Shorten, G.D.; O’Keeffe, G.W. Nerve growth factor-mediated regulation of pain signaling and proposed new intervention strategies in clinical pain management. J. Neurochem. 2013, 124, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.J.; Berglund, A.M.; Siu, S.; Fiore, N.T.; Gerke-Duncan, M.B.; Ollerenshaw, S.L.; Leigh, S.J.; Kunjan, P.A.; Kang, J.W.; Keay, K.A. Evidence for a distinct neuro-immune signature in rats that develop behavioral disability after nerve injury. J. Neuroinflamm. 2015, 12, 96. [Google Scholar] [CrossRef]
- Bobinski, F.; Teixeira, J.M.; Sluka, K.A.; Santos, A.R.S. Interleukin-4 mediates the analgesia produced by low-intensity exercise in mice with neuropathic pain. Pain 2018, 159, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Kleinschnitz, C.; Hofstetter, H.H.; Meuth, S.G.; Braeuninger, S.; Sommer, C.; Stoll, G. T cell infiltration after chronic constriction injury of mouse sciatic nerve is associated with interleukin-17 expression. Exp. Neurol. 2006, 200, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.T.; Hatton, R.D.; Mangan, P.R.; Harrington, L.E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 2007, 25, 821–852. [Google Scholar] [CrossRef] [PubMed]
- Day, Y.J.; Liou, J.T.; Lee, C.M.; Lin, Y.C.; Mao, C.C.; Chou, A.H.; Liao, C.C.; Lee, H.C. Lack of interleukin-17 leads to a modulated micro-environment and amelioration of mechanical hypersensitivity after peripheral nerve injury in mice. Pain 2014, 155, 1293–1302. [Google Scholar] [CrossRef]
- Zizzo, G.; Cohen, P.L. IL-17 stimulates differentiation of human anti-inflammatory macrophages and phagocytosis of apoptotic neutrophils in response to IL-10 and glucocorticoids. J. Immunol. 2013, 190, 5237–5246. [Google Scholar] [CrossRef]
- Pathak, N.N.; Balaganur, V.; Lingaraju, M.C.; More, A.S.; Kant, V.; Kumar, D.; Kumar, D.; Tandan, S.K. Antihyperalgesic and anti-inflammatory effects of atorvastatin in chronic constriction injury-induced neuropathic pain in rats. Inflammation 2013, 36, 1468–1478. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Jiang, B.C.; Gao, Y.J. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell Mol. Life Sci. 2017, 74, 3275–3291. [Google Scholar] [CrossRef]
- Perkins, N.M.; Tracey, D.J. Hyperalgesia due to nerve injury: Role of neutrophils. Neuroscience 2000, 101, 745–757. [Google Scholar] [CrossRef]
- Mueller, M.; Wacker, K.; Ringelstein, E.B.; Hickey, W.F.; Imai, Y.; Kiefer, R. Rapid response of identified resident endoneurial macrophages to nerve injury. Am. J. Pathol. 2001, 159, 2187–2197. [Google Scholar] [CrossRef] [PubMed]
- Cioato, S.G.; Medeiros, L.F.; Lopes, B.C.; Souza, A.; Caumo, W.; Torres, I.L.S. Transcranial direct current stimulation did not revert the increased central and peripheral NGF levels induced by neuropathic pain in rats. BrJP 2021, 4, 99–103. [Google Scholar] [CrossRef]
- Nicolas, N.; Kobaiter-Maarrawi, S.; Georges, S.; Abadjian, G.; Maarrawi, J. Motor cortex stimulation regenerative effects in peripheral nerve injury: An experimental rat model. World Neurosurg. 2018, 114, e800–e808. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.J. Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr. Opin. Pharmacol. 2006, 6, 379–386. [Google Scholar] [CrossRef]
- Xing, Z.; Gauldie, J.; Cox, G.; Baumann, H.; Jordana, M.; Lei, X.F.; Achong, M.K. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J. Clin. Investig. 1998, 101, 311–320. [Google Scholar] [CrossRef]
- El Kasmi, K.C.; Holst, J.; Coffre, M.; Mielke, L.; de Pauw, A.; Lhocine, N.; Smith, A.M.; Rutschman, R.; Kaushal, D.; Shen, Y.; et al. General nature of the STAT3-activated anti-inflammatory response. J. Immunol. 2006, 177, 7880–7888. [Google Scholar] [CrossRef]
- Ahmed, S.; Marotte, H.; Kwan, K.; Ruth, J.H.; Campbell, P.L.; Rabquer, B.J.; Pakozdi, A.; Koch, A.E. Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling by enhancing soluble gp130 production. Proc. Natl. Acad. Sci. USA 2008, 105, 14692–14697. [Google Scholar] [CrossRef]
- Watkins, L.R.; Nguyen, K.T.; Lee, J.E.; Maier, S.F. Dynamic regulation of proinflammatory cytokines. Adv. Exp. Med. Biol. 1999, 461, 153–178. [Google Scholar]
- Guerios, S.D.; Wang, Z.Y.; Boldon, K.; Bushman, W.; Bjorling, D.E. Blockade of NGF and trk receptors inhibits increased peripheral mechanical sensitivity accompanying cystitis in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R111–R122. [Google Scholar] [CrossRef]
- Katz, N.; Borenstein, D.G.; Birbara, C.; Bramson, C.; Nemeth, M.A.; Smith, M.D.; Brown, M.T. Efficacy and safety of tanezumab in the treatment of chronic low back pain. Pain 2011, 152, 2248–2258. [Google Scholar] [CrossRef]
- Bannwarth, B.; Kostine, M. Targeting nerve growth factor (NGF) for pain management: What does the future hold for NGF antagonists? Drugs 2014, 74, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Romano, G.; Frustaci, M.E.; Bohidar, N.; Ma, H.; Sanga, P.; Ness, S.; Russell, L.J.; Fedgchin, M.; Kelly, K.M.; et al. Fulranumab for treatment of diabetic peripheral neuropathic pain: A randomized controlled trial. Neurology 2014, 83, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, K.J.; Smith, C.G.; Delaney, S.A.; Curnow, S.J.; Salmon, M.; Hughes, J.P.; Chessell, I.P. Dynamic regulation of spinal pro-inflammatory cytokine release in the rat in vivo following peripheral nerve injury. Brain Behav. Immun. 2010, 24, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chi, D. Overexpression of SIRT2 alleviates neuropathic pain and neuroinflammation through deacetylation of transcription factor nuclear factor-kappa B. Inflammation 2018, 41, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Shubayev, V.I.; Myers, R.R. Axonal transport of TNF-alpha in painful neuropathy: Distribution of ligand tracer and TNF receptors. J. Neuroimmunol. 2001, 114, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Lindborg, J.A.; Niemi, J.P.; Howarth, M.A.; Liu, K.W.; Moore, C.Z.; Mahajan, D.; Zigmond, R.E. Molecular and cellular identification of the immune response in peripheral ganglia following nerve injury. J. Neuroinflammation. 2018, 15, 192. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.L.; Reid, A.J.; Verkhratsky, A.; Magnaghi, V.; Faroni, A. Gene expression changes in dorsal root ganglia following peripheral nerve injury: Roles in inflammation, cell death and nociception. Neural. Regen Res. 2019, 14, 939–947. [Google Scholar]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Ann. Rev. Neurosc. 2001, 24, 677–736. [Google Scholar] [CrossRef]
- Yamada, K.; Nabeshima, T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J. Pharmacol. Sci. 2003, 91, 267–270. [Google Scholar] [CrossRef]
- Milligan, E.D.; Watkins, L.R. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 2009, 10, 23–36. [Google Scholar] [CrossRef]
- Guo, C.J.; Lai, J.P.; Luo, H.M.; Douglas, S.D.; Ho, W.Z. Substance P up-regulates macrophage inflammatory protein-1beta expression in human T lymphocytes. J. Neuroimmunol. 2002, 131, 160–167. [Google Scholar] [CrossRef]
- Sun, J.; Ramnath, R.D.; Zhi, L.; Tamizhselvi, R.; Bhatia, M. Substance P enhances NF-kappaB transactivation and chemokine response in murine macrophages via ERK1/2 and p38 MAPK signaling pathways. Am. J. Physiol. Cell Physiol. 2008, 294, C1586–C1596. [Google Scholar] [CrossRef] [PubMed]
- Labuz, D.; Schreiter, A.; Schmidt, Y.; Brack, A.; Machelska, H. T lymphocytes containing β-endorphin ameliorate mechanical hypersensitivity following nerve injury. Brain Behav. Immun. 2010, 24, 1045–1053. [Google Scholar] [CrossRef]
- Gao, Y.J.; Ji, R.R. Targeting astrocyte signaling for chronic pain. Review. Neurotherapeutics 2010, 7, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Holzer, P.; Holzer-Petsche, U. Tachykinins in the gut. Part II. Roles in neural excitation, secretion, and inflammation. Pharmacol. Ther. 1997, 73, 219–263. [Google Scholar] [CrossRef]
- Gao, Y.J.; Zhang, Y.Q.; Zhao, Z.Q. Involvement of spinal neurokinin-1 receptors in the maintenance but not induction of carrageenan-induced thermal hyperalgesia in the rat. Brain Res. Bull. 2003, 61, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Stoll, G.; Jander, S.; Myers, R.R. Degeneration and regeneration of the peripheral nervous system: From Augustus Waller’s observations to neuroinflammation. J. Peripher. Nerv. Syst. 2002, 7, 13–27. [Google Scholar] [CrossRef]
- Bach, F.W. Beta-endorphin in cerebrospinal fluid: Relation to nociception. Dan. Med. Bull. 1997, 44, 274–286. [Google Scholar]
- Narita, M.; Tseng, L.F. Evidence for the existence of the beta-endorphin-sensitive “epsilon-opioid receptor” in the brain: The mechanisms of epsilon-mediated antinociception. Jpn. J. Pharmacol. 1998, 76, 233–253. [Google Scholar] [CrossRef]
- Zhi, M.J.; Liu, K.; Zheng, Z.; He, X.; Li, T.; Sun, G.; Zhang, M.; Wang, F.C.; Gao, X.Y.; Zhu, B. Application of the chronic constriction injury of the partial sciatic nerve model to assess acupuncture analgesia. J. Pain Res. 2017, 10, 2271–2280. [Google Scholar] [CrossRef]
- Santos, F.M.; Silva, J.T.; Rocha, I.R.C.; Martins, D.O.; Chacur, M. Non-pharmacological treatment affects neuropeptide expression in neuropathic pain model. Brain Res. 2018, 1687, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.A.; Niu, S.N.; Luo, F. Pulsed radiofrequency alleviated neuropathic pain by down-regulating the expression of substance P in chronic constriction injury rat model. Chin. Med. J. (Engl.) 2020, 133, 190–197. [Google Scholar] [CrossRef] [PubMed]
- La Rana, G.; Russo, R.; D’Agostino, G.; Sasso, O.; Raso, G.M.; Iacono, A.; Meli, R.; Piomelli, D.; Calignano, A. AM404, an anandamide transport inhibitor, reduces plasma extravasation in a model of neuropathic pain in rat: Role for cannabinoid receptors. Neuropharmacology 2008, 54, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A.; Mohamed, S.A.; Sayed, D. Long-term antalgic effects of repetitive transcranial magnetic stimulation of motor cortex and serum beta-endorphin in patients with phantom pain. Neurol. Res. 2011, 33, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Pannell, M.; Labuz, D.; Celik, M.Ö.; Keye, J.; Batra, A.; Siegmund, B.; Machelska, H. Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides. J. Neuroinflamm. 2016, 13, 262. [Google Scholar] [CrossRef]
- Wu, H.Y.; Mao, X.F.; Tang, X.Q.; Ali, U.; Apryani, E.; Liu, H.; Li, X.Y.; Wang, Y.X. Spinal interleukin-10 produces antinociception in neuropathy through microglial β-endorphin expression, separated from antineuroinflammation. Brain Behav. Immun. 2018, 73, 504–519. [Google Scholar] [CrossRef] [PubMed]
- NC3Rs Reporting Guidelines Working Group. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. J. Physiol. 2010, 588, 2519–2521. [Google Scholar] [CrossRef]
- Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- Bennett, G.J.; Xie, Y.K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988, 33, 87–107. [Google Scholar] [CrossRef]
- Fonoff, E.T.; Dale, C.S.; Pagano, R.L.; Paccola, C.C.; Ballester, G.; Teixeira, M.J.; Giorgi, R. Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system. Behav. Brain Res. 2009, 196, 63–70. [Google Scholar] [CrossRef]
- Randall, L.O.; Selitto, J.J. A method for measurement of analgesic activity of inflamed tissue. Arch. Int. Pharmacodyn. 1957, 111, 409–419. [Google Scholar] [PubMed]
- Chaplan, S.R.; Bach, F.W.; Pogrel, J.W.; Chung, J.M.; Yaksh, T.L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 1994, 53, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Charan, J.; Kantharia, N.D. How to Calculate Sample Size in Animal Studies? J. Pharmacol. Pharmacother. 2013, 4, 303–306. [Google Scholar] [CrossRef] [PubMed]
Sciatic Nerve | ||
Analytes | Correlation Between Groups | Results |
TNF-α × nociceptive threshold | Responsive × Refractory | r2 = 0.22 p = 0.12 |
IL-1β × nociceptive threshold | Responsive × Refractory | r2 = 0.05 p = 0.47 |
IL-4 × nociceptive threshold | Responsive × Refractory | r2 = 0.01 p = 0.71 |
IL-6 × nociceptive threshold | Responsive × Refractory | r2 = 0.15 p = 0.16 |
IL-10 × nociceptive threshold | Responsive × Refractory | r2 = 0.46 p = 0.2 |
IL-17 × nociceptive threshold | Responsive × Refractory | r2 = 0.40 p = 0.1 |
IFNγ × nociceptive threshold | Responsive × Refractory | r2 = 0.10 p = 0.30 |
CX3CL1 × nociceptive threshold | Responsive × Refractory | r2 = 0.14 p = 0.23 |
NGF × nociceptive threshold | Responsive × Refractory | r2 = 0.89 p = 0.004 |
DRG | ||
Analytes | Correlation Between Groups | Results |
TNF-α × nociceptive threshold | Responsive × Refractory | r2 = 0.03 p = 0.71 |
IL1-β × nociceptive threshold | Responsive × Refractory | r2 = 0.08 p = 0.58 |
IL-4 × nociceptive threshold | Responsive × Refractory | r2 = 0.77 p = 0.02 |
IL-6 × nociceptive threshold | Responsive × Refractory | r2 = 0.22 p = 0.52 |
IL-10 × nociceptive threshold | Responsive × Refractory | r2 = 0.02 p = 0.76 |
IL-17 × nociceptive threshold | Responsive × Refractory | r2 = 0.05 p = 0.64 |
IFNγ × nociceptive threshold | Responsive × Refractory | r2 = 0.03 p = 0.71 |
CX3CL1 × nociceptive threshold | Responsive × Refractory | r2 = 0.41 p = 0.16 |
Plasma | ||
Analytes | Correlation Between Groups | Results |
β-endorphin × nociceptive threshold | Responsive × Refractory | r2 = 0.37 p = 0.05 |
SP × nociceptive threshold | Responsive × Refractory | r2 = 0.09 p = 0.32 |
BDNF × nociceptive threshold | Responsive × Refractory | r2 = 0.03 p = 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assis, D.V.; Campos, A.C.P.; Paschoa, A.F.N.; Santos, T.F.; Fonoff, E.T.; Pagano, R.L. Systemic and Peripheral Mechanisms of Cortical Stimulation-Induced Analgesia and Refractoriness in a Rat Model of Neuropathic Pain. Int. J. Mol. Sci. 2023, 24, 7796. https://doi.org/10.3390/ijms24097796
Assis DV, Campos ACP, Paschoa AFN, Santos TF, Fonoff ET, Pagano RL. Systemic and Peripheral Mechanisms of Cortical Stimulation-Induced Analgesia and Refractoriness in a Rat Model of Neuropathic Pain. International Journal of Molecular Sciences. 2023; 24(9):7796. https://doi.org/10.3390/ijms24097796
Chicago/Turabian StyleAssis, Danielle V., Ana Carolina P. Campos, Amanda F. N. Paschoa, Talita F. Santos, Erich T. Fonoff, and Rosana L. Pagano. 2023. "Systemic and Peripheral Mechanisms of Cortical Stimulation-Induced Analgesia and Refractoriness in a Rat Model of Neuropathic Pain" International Journal of Molecular Sciences 24, no. 9: 7796. https://doi.org/10.3390/ijms24097796
APA StyleAssis, D. V., Campos, A. C. P., Paschoa, A. F. N., Santos, T. F., Fonoff, E. T., & Pagano, R. L. (2023). Systemic and Peripheral Mechanisms of Cortical Stimulation-Induced Analgesia and Refractoriness in a Rat Model of Neuropathic Pain. International Journal of Molecular Sciences, 24(9), 7796. https://doi.org/10.3390/ijms24097796