A Systematic Review of the Role of Purinergic Signalling Pathway in the Treatment of COVID-19
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. P2 Receptors in COVID-19
3.1.1. P2Y Receptors
P2Y12
P2Y14
3.1.2. P2X Receptors
P2X3 Receptor
P2X7 Receptor
3.2. P1 Receptors in COVID-19
The A1, A2A, A2B and A3 Receptors
3.3. Purinergic Enzymes in COVID-19
3.3.1. CD39 and CD73
3.3.2. PDEs and ADA
4. Conclusions
- P2Y12 modulators such as cangrelor and ticagrelor could be the most promising medications due to their mechanism of action and reversible platelet blocking action, avoiding haemorrhagic events with excessive bleeding.
- P2Y14 is involved in neutrophil recruitment in COVID-19, and targeting this receptor may attenuate blood clot formation by minimising NET formation. However, no medication has been approved so far.
- Targeting the P2X3 receptor could relieve cough symptoms and perhaps improve quality of life.
- The P2X7 receptor is a promising target for inflammation reduction. Because this receptor is linked to NLRP3 inflammasome activation, blocking this element would reduce the release of pro-inflammatory cytokines such as IL-1 and IL-18.
- Targeting the ectoenzymes CD39 and CD73 does not seem to represent the best COVID-19 treatment strategy. If the CD39 enzyme is blocked and inactivated, ATP released by dying cells could concentrate in the extracellular space and chemoattract immune cells to the infection site, causing a loop of cytokine release resulting in tissue damage. On the other hand, blocking the enzyme CD73 would prevent the production of ADO, which could result in clinical improvements via activation of P1 receptors. However, using these enzymes in the same way as for prognostic biomarkers seems to be a good choice because measuring their expression and the levels of nucleotides can indicate the extent of tissue damage and the course of the disease.
- Targeting PDE and ADA intracellular enzymes could be an alternative treatment to avoid coagulation dysregulation and clot formation.
- Modulation of the A2A receptor with istradefylline and regadenoson represents a possible COVID-19 treatment because this receptor modulates neutrophils and the inflammatory process.
- The use of methylxanthines such as theophylline and caffeine could also be a good strategy in COVID-19 treatment due to their potential to help smell and taste recovery and to improve blood oxygen saturation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kocyigit, B.F.; Akyol, A. The Relationship between COVID-19 and Fibromyalgia Syndrome: Prevalence, Pandemic Effects, Symptom Mechanisms, and COVID-19 Vaccines. Clin. Rheumatol. 2022, 41, 3245–3252. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.T.; Lynch, J.B.; del Rio, C. Mild or Moderate Covid-19. N. Engl. J. Med. 2020, 383, 1757–1766. [Google Scholar] [CrossRef]
- Berlin, D.A.; Gulick, R.M.; Martinez, F.J. Severe COVID-19. N. Engl. J. Med. 2020, 383, 2451–2460. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.S.; de Sá, K.S.G.; Ishimoto, A.Y.; Becerra, A.; Oliveira, S.; Almeida, L.; Gonçalves, A.V.; Perucello, D.B.; Andrade, W.A.; Castro, R.; et al. Inflammasomes Are Activated in Response to SARS-CoV-2 Infection and Are Associated with COVID-19 Severity in Patients. J. Exp. Med. 2021, 218, e20201707. [Google Scholar] [CrossRef] [PubMed]
- Gorog, D.A.; Storey, R.F.; Gurbel, P.A.; Tantry, U.S.; Berger, J.S.; Chan, M.Y.; Duerschmied, D.; Smyth, S.S.; Parker, W.A.E.; Ajjan, R.A.; et al. Current and Novel Biomarkers of Thrombotic Risk in COVID-19: A Consensus Statement from the International COVID-19 Thrombosis Biomarkers Colloquium. Nat. Rev. Cardiol. 2022, 19, 475–495. [Google Scholar] [CrossRef]
- Zimmermann, H. Extracellular ATP and Other Nucleotides—Ubiquitous Triggers of Intercellular Messenger Release. Purinergic. Signal. 2016, 12, 25–57. [Google Scholar] [CrossRef]
- Giuliani, A.L.; Sarti, A.C.; di Virgilio, F. Extracellular Nucleotides and Nucleosides as Signalling Molecules. Immunol. Lett. 2019, 205, 16–24. [Google Scholar] [CrossRef]
- Galgaro, B.C.; Beckenkamp, L.R.; Nunnenkamp, M.; Korb, V.G.; Naasani, L.I.S.; Roszek, K.; Wink, M.R. The Adenosinergic Pathway in Mesenchymal Stem Cell Fate and Functions. Med. Res. Rev. 2021, 41, 2316–2349. [Google Scholar] [CrossRef]
- Schultz, I.C.; Bertoni, A.P.S.; Wink, M.R. Purinergic Signaling Elements Are Correlated with Coagulation Players in Peripheral Blood and Leukocyte Samples from COVID-19 Patients. J. Mol. Med. 2022, 100, 569–584. [Google Scholar] [CrossRef]
- Franciosi, M.L.M.; Lima, M.D.M.; Schetinger, M.R.C.; Cardoso, A.M. Possible Role of Purinergic Signaling in COVID-19. Mol. Cell. Biochem. 2021, 476, 2891–2898. [Google Scholar] [CrossRef]
- Luu, R.; Valdebenito, S.; Scemes, E.; Cibelli, A.; Spray, D.C.; Rovegno, M.; Tichauer, J.; Cottignies-Calamarte, A.; Rosenberg, A.; Capron, C.; et al. Pannexin-1 Channel Opening Is Critical for COVID-19 Pathogenesis. iScience 2021, 24, 103478. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, P.; Hartjen, P.; Kohsar, M.; Kummer, S.; Schmiedel, S.; Bockmann, J.-H.; Fathi, A.; Huber, S.; Haag, F.; zur Wiesch, J.S. Defining the CD39/CD73 Axis in SARS-CoV-2 Infection: The CD73- Phenotype Identifies Polyfunctional Cytotoxic Lymphocytes. Cells 2020, 9, 1750. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, G.S.; Karcz, T.P.; Tosh, D.K.; Jung, Y.-H.; Wen, Z.; Campbell, R.G.; Gopinatth, V.; Gao, Z.-G.; Jacobson, K.A.; Cook, D.N. Effects of Purinergic Receptor Deletion or Pharmacologic Modulation on Pulmonary Inflammation in Mice. ACS Pharmacol. Transl. Sci. 2022, 5, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Tokano, M.; Takagi, R.; Kawano, M.; Maesaki, S.; Tarumoto, N.; Matsushita, S. Signaling via dopamine and adenosine receptors modulate viral peptide-specific and T-cell IL-8 response in COVID-19. Immunol. Med. 2022, 45, 162–167. [Google Scholar] [CrossRef]
- da Silva, G.B.; Manica, D.; da Silva, A.P.; Kosvoski, G.C.; Hanauer, M.; Assmann, C.E.; Simões, J.L.B.; Pillat, M.M.; de Lara, J.D.; Marafon, F.; et al. High Levels of Extracellular ATP Lead to Different Inflammatory Responses in COVID-19 Patients according to the Severity. J. Mol. Med. 2022, 100, 645–663. [Google Scholar] [CrossRef]
- Berger, J.S.; Kornblith, L.Z.; Gong, M.N.; Reynolds, H.R.; Cushman, M.; Cheng, Y.; McVerry, B.J.; Kim, K.S.; Lopes, R.D.; Atassi, B.; et al. Effect of P2Y12 Inhibitors on Survival Free of Organ Support among Non–Critically Ill Hospitalized Patients with COVID-19. JAMA 2022, 327, 227. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.; Klekot, O.; Halugan, L.; Korchev, Y. Follow Your Nose: A Key Clue to Understanding and Treating COVID-19. Front. Endocrinol. 2021, 12. [Google Scholar] [CrossRef]
- Edwards, C. New Horizons: Does Mineralocorticoid Receptor Activation by Cortisol Cause ATP Release and COVID-19 Complications? J. Clin. Endocrinol. Metab. 2021, 106, 622–635. [Google Scholar] [CrossRef]
- Mina, A.; van Besien, K.; Platanias, L.C. Hematological Manifestations of COVID-19. Leuk. Lymphoma 2020, 61, 2790–2798. [Google Scholar] [CrossRef]
- Townsend, L.; Fogarty, H.; Dyer, A.; Martin-Loeches, I.; Bannan, C.; Nadarajan, P.; Bergin, C.; O’Farrelly, C.; Conlon, N.; Bourke, N.M.; et al. Prolonged Elevation of D-dimer Levels in Convalescent COVID-19 Patients Is Independent of the Acute Phase Response. J. Thromb. Haemost. 2021, 19, 1064–1070. [Google Scholar] [CrossRef]
- Schulman, S.; Sholzberg, M.; Spyropoulos, A.C.; Zarychanski, R.; Resnick, H.E.; Bradbury, C.A.; Broxmeyer, L.; Connors, J.M.; Falanga, A.; Iba, T.; et al. ISTH Guidelines for Antithrombotic Treatment in COVID-19. J. Thromb. Haemost. 2022, 20, 2214–2225. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, F.; Jaiyesimi, I.; Petrescu, I.; Lawler, P.R.; Castillo, E.; Munoz-Maldonado, Y.; Imam, Z.; Narasimhan, M.; Abbas, A.E.; Konde, A.; et al. Association of Anticoagulation Dose and Survival in Hospitalized COVID-19 Patients: A Retrospective Propensity Score-weighted Analysis. Eur. J. Haematol. 2021, 106, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, F.; Grasso-Knight, G.; Castillo, E.; Naeem, E.; Petrescu, I.; Imam, Z.; Patel, V.K.; Narasimhan, M.; Nair, G.B. Therapeutic Anticoagulation Delays Death in COVID-19 Patients: Cross-Sectional Analysis of a Prospective Cohort. TH Open 2020, 04, e263–e270. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Falcão, F.J.; Carvalho, L.; Chan, M.; Alves, C.M.R.; Carvalho, A.C.C.; Caixeta, A.M. P2Y12 Platelet Receptors: Importance in Percutaneous Coronary Intervention. Arq. Bras. Cardiol. 2013, 101, 277–282. [Google Scholar] [CrossRef]
- MICROMEDEX Drug References: IBM Corporation. 2023. Available online: www.micromedexsolutions.com (accessed on 18 August 2021).
- Afonso, A.; Marques, G.; Gonçalves, A.; Barroso, P.; Gonzalez, A.; Rodrigues, H.; Ferreira, M.J. A Terapêutica Antitrombótica: Atual e Em Desenvolvimento. Angiol. E Cir. Vasc. 2016, 12, 170–179. [Google Scholar] [CrossRef]
- Schilling, U.; Dingemanse, J.; Ufer, M. Pharmacokinetics and Pharmacodynamics of Approved and Investigational P2Y12 Receptor Antagonists. Clin. Pharm. 2020, 59, 545–566. [Google Scholar] [CrossRef]
- Mousa, S.A.; Jeske, W.P.; Fareed, J. Antiplatelet Therapy Prasugrel: A Novel Platelet ADP P2Y12 Receptor Antagonist. Clin. Appl. Thromb. Hemost. 2010, 16, 170–176. [Google Scholar] [CrossRef]
- Liu, S.; Hou, L.; Li, C.; Zhao, Y.; Yao, X.; Zhang, X.; Tian, X. Contributions of UDP-Glucuronosyltransferases to Human Hepatic and Intestinal Metabolism of Ticagrelor and Inhibition of UGTs and Cytochrome P450 Enzymes by Ticagrelor and Its Glucuronidated Metabolite. Front. Pharm. 2021, 12, 761814. [Google Scholar] [CrossRef]
- Ferreiro, J.L.; Ueno, M.; Angiolillo, D.J. Cangrelor: A Review on Its Mechanism of Action and Clinical Development. Expert. Rev. Cardiovasc. Ther. 2009, 7, 1195–1201. [Google Scholar] [CrossRef]
- Flumignan, R.L.; Civile, V.T.; de Sá Tinôco, J.D.; Pascoal, P.I.; Areias, L.L.; Matar, C.F.; Tendal, B.; Trevisani, V.F.; Atallah, Á.N.; Nakano, L.C. Anticoagulants for People Hospitalised with COVID-19. Cochrane. Database Syst. Rev. 2022, 2022. [Google Scholar] [CrossRef]
- Bohula, E.A.; Berg, D.D.; Lopes, M.S.; Connors, J.M.; Babar, I.; Barnett, C.F.; Chaudhry, S.-P.; Chopra, A.; Ginete, W.; Ieong, M.H.; et al. Anticoagulation and Antiplatelet Therapy for Prevention of Venous and Arterial Thrombotic Events in Critically Ill Patients with COVID-19: COVID-PACT. Circulation 2022, 146, 1344–1356. [Google Scholar] [CrossRef] [PubMed]
- Viecca, M.; Radovanovic, D.; Forleo, G.B.; Santus, P. Enhanced Platelet Inhibition Treatment Improves Hypoxemia in Patients with Severe COVID-19 and Hypercoagulability. A Case Control, Proof of Concept Study. Pharmacol. Res. 2020, 158, 104950. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Danckers, M.; Sanghavi, D.; Chakraborty, R.K. High Flow Nasal Cannula. 5 February 2023; In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Choudhary, R.; Kaushik, A.; Sharma, J.B. COVID-19 Pandemic and Stent Thrombosis in a Post Percutaneous Coronary Intervention Patient-a Case Report Highlighting the Selection of P2Y12 Inhibitor. Cardiovasc. Diagn. Ther. 2020, 10, 898–901. [Google Scholar] [CrossRef]
- Florescu, S.; Stanciu, D.; Zaharia, M.; Kosa, A.; Codreanu, D.; Kidwai, A.; Masood, S.; Kaye, C.; Coutts, A.; MacKay, L.; et al. Effect of Antiplatelet Therapy on Survival and Organ Support–Free Days in Critically Ill Patients with COVID-19. JAMA 2022, 327, 1247. [Google Scholar] [CrossRef]
- Omarjee, L.; Meilhac, O.; Perrot, F.; Janin, A.; Mahe, G. Can Ticagrelor Be Used to Prevent Sepsis-Induced Coagulopathy in COVID-19? Clin. Immunol. 2020, 216, 108468. [Google Scholar] [CrossRef]
- Spick, M.; Campbell, A.; Baricevic-Jones, I.; von Gerichten, J.; Lewis, H.-M.; Frampas, C.F.; Longman, K.; Stewart, A.; Dunn-Walters, D.; Skene, D.J.; et al. Multi-Omics Reveals Mechanisms of Partial Modulation of COVID-19 Dysregulation by Glucocorticoid Treatment. Int. J. Mol. Sci. 2022, 23, 12079. [Google Scholar] [CrossRef]
- Crothers, K.; DeFaccio, R.; Tate, J.; Alba, P.R.; Goetz, M.B.; Jones, B.; King, J.T.; Marconi, V.; Ohl, M.E.; Rentsch, C.T.; et al. Dexamethasone in Hospitalised COVID-19 Patients Not on Intensive Respiratory Support. Eur. Respir. J. 2022, 60, 2102532. [Google Scholar] [CrossRef]
- Petito, E.; Falcinelli, E.; Paliani, U.; Cesari, E.; Vaudo, G.; Sebastiano, M.; Cerotto, V.; Guglielmini, G.; Gori, F.; Malvestiti, M.; et al. Association of Neutrophil Activation, More than Platelet Activation, with Thrombotic Complications in Coronavirus Disease 2019. J. Infect. Dis. 2021, 223, 933–944. [Google Scholar] [CrossRef]
- Cesta, M.C.; Zippoli, M.; Marsiglia, C.; Gavioli, E.M.; Cremonesi, G.; Khan, A.; Mantelli, F.; Allegretti, M.; Balk, R. Neutrophil Activation and Neutrophil Extracellular Traps (NETs) in COVID-19 ARDS and Immunothrombosis. Eur. J. Immunol. 2023, 53, 2250010. [Google Scholar] [CrossRef]
- Petiz, L.L.; Glaser, T.; Scharfstein, J.; Ratajczak, M.Z.; Ulrich, H. P2Y14 Receptor as a Target for Neutrophilia Attenuation in Severe COVID-19 Cases: From Hematopoietic Stem Cell Recruitment and Chemotaxis to Thrombo-inflammation. Stem. Cell. Rev. Rep. 2021, 17, 241–252. [Google Scholar] [CrossRef]
- Battistone, M.A.; Mendelsohn, A.C.; Spallanzani, R.G.; Allegretti, A.S.; Liberman, R.N.; Sesma, J.; Kalim, S.; Wall, S.M.; Bonventre, J.V.; Lazarowski, E.R.; et al. Proinflammatory P2Y14 Receptor Inhibition Protects against Ischemic Acute Kidney Injury in Mice. J. Clin. Investig. 2020, 130, 3734–3749. [Google Scholar] [CrossRef]
- Karcz, T.P.; Whitehead, G.S.; Nakano, K.; Nakano, H.; Grimm, S.A.; Williams, J.G.; Deterding, L.J.; Jacobson, K.A.; Cook, D.N. UDP-Glucose and P2Y14 Receptor Amplify Allergen-Induced Airway Eosinophilia. J. Clin. Investig. 2021, 131, e140709. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, W.; Li, X.; Li, F.; Zhang, L.; Wang, B.; Huang, G.; Guo, X.; Wan, L.; Liu, Y.; et al. Geniposide Attenuates Inflammatory Response by Suppressing P2Y14 Receptor and Downstream ERK1/2 Signaling Pathway in Oxygen and Glucose Deprivation-Induced Brain Microvascular Endothelial Cells. J. Ethnopharmacol. 2016, 185, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Jacobson, K.A. Adipocyte Purinergic Receptors Activated by Uracil Nucleotides as Obesity and Type 2 Diabetes Targets. Curr. Opin. Pharmacol. 2022, 63, 102190. [Google Scholar] [CrossRef] [PubMed]
- Meister, J.; Le Duc, D.; Ricken, A.; Burkhardt, R.; Thiery, J.; Pfannkuche, H.; Polte, T.; Grosse, J.; Schöneberg, T.; Schulz, A. The G Protein-Coupled Receptor P2Y14 Influences Insulin Release and Smooth Muscle Function in Mice. J. Biol. Chem. 2014, 289, 23353–23366. [Google Scholar] [CrossRef]
- Cho, J.; Yusuf, R.; Kook, S.; Attar, E.; Lee, D.; Park, B.; Cheng, T.; Scadden, D.T.; Lee, B.C. Purinergic P2Y14 Receptor Modulates Stress-Induced Hematopoietic Stem/Progenitor Cell Senescence. J. Clin. Investig. 2014, 124, 3159–3171. [Google Scholar] [CrossRef]
- Niimi, A.; Saito, J.; Kamei, T.; Shinkai, M.; Ishihara, H.; Machida, M.; Miyazaki, S. Randomised Trial of the P2X3 Receptor Antagonist Sivopixant for Refractory Chronic Cough. Eur. Respir. J. 2022, 59, 2100725. [Google Scholar] [CrossRef]
- Ribeiro, D.E.; Oliveira-Giacomelli, Á.; Glaser, T.; Arnaud-Sampaio, V.F.; Andrejew, R.; Dieckmann, L.; Baranova, J.; Lameu, C.; Ratajczak, M.Z.; Ulrich, H. Hyperactivation of P2X7 Receptors as a Culprit of COVID-19 Neuropathology. Mol. Psychiatry 2021, 26, 1044–1059. [Google Scholar] [CrossRef]
- Phetsouphanh, C.; Darley, D.R.; Wilson, D.B.; Howe, A.; Munier, C.M.L.; Patel, S.K.; Juno, J.A.; Burrell, L.M.; Kent, S.J.; Dore, G.J.; et al. Immunological Dysfunction Persists for 8 Months Following Initial Mild-to-Moderate SARS-CoV-2 Infection. Nat. Immunol. 2022, 23, 210–216. [Google Scholar] [CrossRef]
- García-Villalba, J.; Hurtado-Navarro, L.; Peñín-Franch, A.; Molina-López, C.; Martínez-Alarcón, L.; Angosto-Bazarra, D.; Baroja-Mazo, A.; Pelegrin, P. Soluble P2X7 Receptor Is Elevated in the Plasma of COVID-19 Patients and Correlates with Disease Severity. Front. Immunol. 2022, 13. [Google Scholar] [CrossRef]
- di Virgilio, F.; Tang, Y.; Sarti, A.C.; Rossato, M. A Rationale for Targeting the P2X7 Receptor in Coronavirus Disease 19. Br. J. Pharmacol. 2020, 177, 4990–4994. [Google Scholar] [CrossRef] [PubMed]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.; Lefebvre, F.; Harlay, M.-L.; Glady, L.; Becker, G.; Muller, C.; Aberkane, O.; Tawk, M.; Julians, M.; Romoli, A.; et al. Impact of Intravenous Lidocaine on Clinical Outcomes of Patients with ARDS during COVID-19 Pandemia (LidoCovid): A Structured Summary of a Study Protocol for a Randomised Controlled Trial. Trials 2021, 22, 131. [Google Scholar] [CrossRef] [PubMed]
- Rylova, A.; Chowdhury, S.; Amirfarzan, H.; Leissner, K.; Schumann, R. Intravenous Lidocaine Infusion in a Case of Severe COVID-19 Infection. J. Anaesthesiol. Clin. Pharmacol. 2021, 37, 481. [Google Scholar] [CrossRef] [PubMed]
- Kory, P.; Meduri, G.U.; Varon, J.; Iglesias, J.; Marik, P.E. Review of the Emerging Evidence Demonstrating the Efficacy of Ivermectin in the Prophylaxis and Treatment of COVID-19. Am. J. Ther. 2021, 28, e299–e318. [Google Scholar] [CrossRef] [PubMed]
- Bryant, A.; Lawrie, T.A.; Dowswell, T.; Fordham, E.J.; Mitchell, S.; Hill, S.R.; Tham, T.C. Ivermectin for Prevention and Treatment of COVID-19 Infection: A Systematic Review, Meta-Analysis, and Trial Sequential Analysis to Inform Clinical Guidelines. Am. J. Ther. 2021, 28, e434–e460. [Google Scholar] [CrossRef]
- Shafiee, A.; Athar, M.M.T.; Gargari, O.K.; Jafarabady, K.; Siahvoshi, S.; Mozhgani, S.-H. Ivermectin under Scrutiny: A Systematic Review and Meta-Analysis of Efficacy and Possible Sources of Controversies in COVID-19 Patients. Virol. J. 2022, 19, 102. [Google Scholar] [CrossRef]
- Reis, G.; Silva, E.A.S.M.; Silva, D.C.M.; Thabane, L.; Milagres, A.C.; Ferreira, T.S.; dos Santos, C.V.Q.; Campos, V.H.S.; Nogueira, A.M.R.; de Almeida, A.P.F.G.; et al. Effect of Early Treatment with Ivermectin among Patients with COVID-19. N. Engl. J. Med. 2022, 386, 1721–1731. [Google Scholar] [CrossRef]
- Chaccour, C.; Casellas, A.; Blanco-Di Matteo, A.; Pineda, I.; Fernandez-Montero, A.; Ruiz-Castillo, P.; Richardson, M.-A.; Rodríguez-Mateos, M.; Jordán-Iborra, C.; Brew, J.; et al. The Effect of Early Treatment with Ivermectin on Viral Load, Symptoms and Humoral Response in Patients with Non-Severe COVID-19: A Pilot, Double-Blind, Placebo-Controlled, Randomized Clinical Trial. EClinicalMedicine 2021, 32, 100720. [Google Scholar] [CrossRef]
- Effendi, W.I.; Nagano, T.; Kobayashi, K.; Nishimura, Y. Focusing on Adenosine Receptors as a Potential Targeted Therapy in Human Diseases. Cells 2020, 9, 785. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Barroso-Aranda, J. Harnessing Adenosine A2A Receptors as a Strategy for Suppressing the Lung Inflammation and Thrombotic Complications of COVID-19: Potential of Pentoxifylline and Dipyridamole. Med. Hypotheses 2020, 143, 110051. [Google Scholar] [CrossRef] [PubMed]
- Romero-Martínez, B.S.; Montaño, L.M.; Solís-Chagoyán, H.; Sommer, B.; Ramírez-Salinas, G.L.; Pérez-Figueroa, G.E.; Flores-Soto, E. Possible Beneficial Actions of Caffeine in SARS-CoV-2. Int. J. Mol. Sci. 2021, 22, 5460. [Google Scholar] [CrossRef] [PubMed]
- Caracciolo, M.; Correale, P.; Mangano, C.; Foti, G.; Falcone, C.; Macheda, S.; Cuzzola, M.; Conte, M.; Falzea, A.C.; Iuliano, E.; et al. Efficacy and Effect of Inhaled Adenosine Treatment in Hospitalized COVID-19 Patients. Front. Immunol. 2021, 12, 613070. [Google Scholar] [CrossRef] [PubMed]
- Henkin, R.I. How Does COVID-19 Infection Affect Smell? Am. J. Otolaryngol. 2021, 42, 102912. [Google Scholar] [CrossRef] [PubMed]
- Henkin, R.I.; Velicu, I. CAMP and CGMP in Nasal Mucus Related to Severity of Smell Loss in Patients with Smell Dysfunction. Clin. Investig. Med. 2008, 31, 78. [Google Scholar] [CrossRef] [PubMed]
- Henkin, R.I.; Velicu, I.; Papathanassiu, A. CAMP and CGMP in Human Parotid Saliva: Relationships to Taste and Smell Dysfunction, Gender, and Age. Am. J. Med. Sci. 2007, 334, 431–440. [Google Scholar] [CrossRef]
- Henkin, R.I.; Schultz, M.; Minnick-Poppe, L. Intranasal Theophylline Treatment of Hyposmia and Hypogeusia. Arch. Otolaryngol. Head Neck. Surg. 2012, 138, 1064. [Google Scholar] [CrossRef]
- Neta, F.I.; Fernandes, A.C.L.; Vale, A.J.M.; Pinheiro, F.I.; Cobucci, R.N.; de Azevedo, E.P.; Guzen, F.P. Pathophysiology and Possible Treatments for Olfactory-Gustatory Disorders in Patients Affected by COVID-19. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100035. [Google Scholar] [CrossRef]
- Gupta, S.; Lee, J.J.; Perrin, A.; Khan, A.; Smith, H.J.; Farrell, N.; Kallogjeri, D.; Piccirillo, J.F. Efficacy and Safety of Saline Nasal Irrigation Plus Theophylline for Treatment of COVID-19–Related Olfactory Dysfunction. JAMA Otolaryngol.-Head Neck Surg. 2022, 148, 830. [Google Scholar] [CrossRef]
- Lee, J.J.; Peterson, A.M.; Kallogjeri, D.; Jiramongkolchai, P.; Kukuljan, S.; Schneider, J.S.; Klatt-Cromwell, C.N.; Drescher, A.J.; Brunworth, J.D.; Piccirillo, J.F. Smell Changes and Efficacy of Nasal Theophylline (SCENT) Irrigation: A Randomized Controlled Trial for Treatment of Post-Viral Olfactory Dysfunction. Am. J. Otolaryngol. 2022, 43, 103299. [Google Scholar] [CrossRef]
- Wall, G.C.; Smith, H.L.; Trump, M.W.; Mohr, J.D.; DuMontier, S.P.; Sabates, B.L.; Ganapathiraju, I.; Kable, T.J. Pentoxifylline or Theophylline Use in Hospitalized COVID-19 Patients Requiring Oxygen Support. Clin. Respir. J. 2021, 15, 843–846. [Google Scholar] [CrossRef] [PubMed]
- Rolta, R.; Salaria, D.; Sharma, B.; Awofisayo, O.; Fadare, O.A.; Sharma, S.; Patel, C.N.; Kumar, V.; Sourirajan, A.; Baumler, D.J.; et al. Methylxanthines as Potential Inhibitor of SARS-CoV-2: An In Silico Approach. Curr. Pharmacol. Rep. 2022, 8, 149–170. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-S.; Chiang, H.-M.; Chen, Y.; Chen, C.-Y.; Chen, H.-F.; Su, W.-C.; Wang, W.-J.; Chou, Y.-C.; Chang, W.-C.; Wang, S.-C.; et al. Prospects of Coffee Leaf against SARS-CoV-2 Infection. Int. J. Biol. Sci. 2022, 18, 4677–4689. [Google Scholar] [CrossRef] [PubMed]
- Díaz-García, E.; García-Tovar, S.; Alfaro, E.; Zamarrón, E.; Mangas, A.; Galera, R.; Ruíz-Hernández, J.J.; Solé-Violán, J.; Rodríguez-Gallego, C.; Van-Den-Rym, A.; et al. Role of CD39 in COVID-19 Severity: Dysregulation of Purinergic Signaling and Thromboinflammation. Front. Immunol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Dorneles, G.P.; Teixeira, P.C.; da Silva, I.M.; Schipper, L.L.; Filho, P.C.S.; Junior, L.C.R.; Bonorino, C.; Peres, A.; Fonseca, S.G.; Monteiro, M.C.; et al. Alterations in CD39/CD73 Axis of T Cells Associated with COVID-19 Severity. J. Cell. Physiol. 2022, 237, 3394–3407. [Google Scholar] [CrossRef]
- Kreuzberger, N.; Hirsch, C.; Chai, K.L.; Tomlinson, E.; Khosravi, Z.; Popp, M.; Neidhardt, M.; Piechotta, V.; Salomon, S.; Valk, S.J.; et al. SARS-CoV-2-Neutralising Monoclonal Antibodies for Treatment of COVID-19. Cochrane Database Syst. Rev. 2021, 2021. [Google Scholar] [CrossRef]
- Zlamal, J.; Althaus, K.; Jaffal, H.; Häberle, H.; Pelzl, L.; Singh, A.; Witzemann, A.; Weich, K.; Bitzer, M.; Malek, N.; et al. Upregulation of CAMP Prevents Antibody-Mediated Thrombus Formation in COVID-19. Blood Adv. 2022, 6, 248–258. [Google Scholar] [CrossRef]
- Gresele, P.; Momi, S.; Falcinelli, E. Anti-Platelet Therapy: Phosphodiesterase Inhibitors. Br. J. Clin. Pharmacol. 2011, 72, 634–646. [Google Scholar] [CrossRef]
- Macatangay, B.J.C.; Jackson, E.K.; Abebe, K.Z.; Comer, D.; Cyktor, J.; Klamar-Blain, C.; Borowski, L.; Gillespie, D.G.; Mellors, J.W.; Rinaldo, C.R.; et al. A Randomized, Placebo-Controlled, Pilot Clinical Trial of Dipyridamole to Decrease Human Immunodeficiency Virus–Associated Chronic Inflammation. J. Infect. Dis. 2020, 221, 1598–1606. [Google Scholar] [CrossRef]
PMID | Title | Year of Publication | Purinergic Signalling Target | Drug | Purpose | Results |
---|---|---|---|---|---|---|
36268115 | Effects of Purinergic Receptor Deletion or Pharmacologic Modulation on Pulmonary Inflammation in Mice [13] | 2022 | P2Y14R, P2X7R, 2Y14R and A3AR | P2Y14R, P2X7R genetic deletion and modulation with 2Y14R antagonists, A3AR agonists | Treatment | The extent of these responses was diminished by genetic deletion (P2Y14R, P2X7R) or pharmacologic modulation (P2Y14R antagonists, A3AR agonists) of purinergic receptors |
35790489 | Istradefylline, an adenosine A2a receptor antagonist, inhibits the CWHID4+ T-cell hypersecretion of IL-17A and IL-8 in humans [14] | 2022 | A2A | A2A antagonist (istradefylline) | Treatment | Attenuation of IL-8 and IL-17A release |
35754396 | Alterations in CD39/CD73 axis of T cells associated with COVID-19 severity [15] | 2022 | CD39 and CD73 | Adenosine | Prognosis and Treatment | PBMC from severe COVID-19 patients treated with adenosine reduced the NF-κB activation in both CD3+ T cells and CD14+ monocytes. Lower levels of IL-1β and IL-17a were found in the culture supernatant of PBMC treated with adenosine, despite no changes in IL-10 and TNF-α production |
35623041 | Signalling via dopamine and adenosine receptors modulate viral peptide-specific and T-cell IL-8 response in COVID-19 [14] | 2022 | A2A | A2A antagonist (istradefylline) | Treatment | Attenuation of Il-8 release |
35315874 | Effect of Antiplatelet Therapy on Survival and Organ Support-Free Days in Critically Ill Patients with COVID-19: A Randomized Clinical Trial [13] | 2022 | P2Y12 | Clopidogrel, prasugrel and ticagrelor; | Treatment | Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support-free days within 21 days |
35040887 | Effect of P2Y12 Inhibitors on Survival Free of Organ Support Among Non-Critically Ill Hospitalized Patients with COVID-19: A Randomized Clinical Trial [16] | 2022 | P2Y12 | Ticagrelor | Treatment | Among non-critically ill patients hospitalized for COVID-19, the use of a P2Y12 inhibitor in addition to a therapeutic dose of heparin, compared with a therapeutic dose of heparin only, did not result in increased odds of improvement in organ support-free days within 21 days during hospitalization. |
34867791 | Follow Your Nose: A Key Clue to Understanding and Treating COVID-19 [17] | 2021 | ATP | Dexamethasone and spironolactone | Treatment and Pathophysiology | Mineralocorticoid Receptor blockade can inhibit the release of ATP |
33249452 | New Horizons: Does Mineralocorticoid Receptor Activation by Cortisol Cause ATP Release and COVID-19 Complications? [18] | 2021 | Mineralocorticoid receptor, ATP and P2X3 | Dexamethasone | Treatment | COVID-19 cough symptom is caused by the activation of purinergic receptors in the lungs following ATP release from virus-infected type II alveolar cells. This raises the question as to when treatment with dexamethasone and spironolactone should be started |
Purinergic Element | Pharmacological Mechanism | Medication | Original Therapeutic Use | Clinical Application on COVID-19 | Clinical Trial |
P2Y12 | Antagonist | Clopidogrel | Antiplatelet | Antiplatelet | NCT04333407 (N = 320) NCT02735707 (N = 10.000) |
Antithrombotic and antiplatelet | NCT04368377 (N = 5) NCT04505774 (N = 3.000) NCT04409834 (N = 390) | ||||
NCT02735707 (N = 10.000) | |||||
Antagonist | Prasugrel | Antiplatelet | NCT04445623 (N = 128) | ||
Antithrombotic and antiplatelet | NCT04505774 (N = 3.000) | ||||
Inhibitor | Ticagrelor | Antiplatelet | NCT02735707 (N = 10.000) | ||
A2A | Agonist | Regadenoson | Vasodilator used in radionuclide myocardial perfusion imaging | Anti-inflammatory | NCT04606069 (N = 40) |
A1, A2A, A2B | Antagonist | Theophylline | Treat airflow obstruction associated with chronic lung diseases | NCT04789499 (N = 62) | |
PDE3A *, PDE4A *, PDE5A * | |||||
A1, A2A, A2B, A3 | Agonist | Adenosine | Myocardial perfusion scintigraphy and converts sinus rhythm of paroxysmal supraventricular tachycardia | NCT04588441 (N = 30) | |
A1, A2A, A2B, A3 | Antagonist | Caffeine | Stimulant, and prevents and treats pulmonary complications of premature birth | NCT05594615 (N = 24) | |
PDE enzymes * | |||||
A2A | Potentiator | Midazolam | Benzodiazepine with rapid onset that is used in seizures, anesthesia, and anxiety disorders |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korb, V.G.; Schultz, I.C.; Beckenkamp, L.R.; Wink, M.R. A Systematic Review of the Role of Purinergic Signalling Pathway in the Treatment of COVID-19. Int. J. Mol. Sci. 2023, 24, 7865. https://doi.org/10.3390/ijms24097865
Korb VG, Schultz IC, Beckenkamp LR, Wink MR. A Systematic Review of the Role of Purinergic Signalling Pathway in the Treatment of COVID-19. International Journal of Molecular Sciences. 2023; 24(9):7865. https://doi.org/10.3390/ijms24097865
Chicago/Turabian StyleKorb, Vitoria Guero, Iago Carvalho Schultz, Liziane Raquel Beckenkamp, and Márcia Rosângela Wink. 2023. "A Systematic Review of the Role of Purinergic Signalling Pathway in the Treatment of COVID-19" International Journal of Molecular Sciences 24, no. 9: 7865. https://doi.org/10.3390/ijms24097865
APA StyleKorb, V. G., Schultz, I. C., Beckenkamp, L. R., & Wink, M. R. (2023). A Systematic Review of the Role of Purinergic Signalling Pathway in the Treatment of COVID-19. International Journal of Molecular Sciences, 24(9), 7865. https://doi.org/10.3390/ijms24097865