Protection against Ischemic Heart Disease: A Joint Role for eNOS and the KATP Channel
Abstract
:1. Introduction
2. Results
3. Discussion
- (1)
- The association of rs5215_G/G of KCNJ11 and rs1799983_T/T of NOS3 is more prevalent in healthy subjects compared with CAD and CMD patients.
- (2)
- The association of rs5215_G/G of KCNJ11 and rs1799983_T/T of NOS3 may potentially represent a protective factor against IHD, regardless of traditional CV risk factors.
4. Materials and Methods
4.1. Study Protocol
- G1: patients affected by significant coronary artery disease (CAD), defined by the presence of a stenosis ≥ 50% of the epicardial vessel lumen.
- G2: patients affected by CMD, defined by the presence of a CFR < 2.5 and IMR ≥ 25, assessed through IC functional tests and under conditions of angiographically normal coronary arteries.
- G3: patients whose CAG and IC functional tests show angiographically and functionally normal coronary arteries (CFR ≥ 2.5 and IMR < 25 after infusion of acetylcholine and adenosine).
4.2. Definition of Cardiovascular Risk Factors, Coronary Artery Disease (CAD), and Coronary Microvascular Dysfunction (CMD)
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [PubMed]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Rev Esp Cardiol (Engl. Ed.) 2022, 75, 429. [Google Scholar] [PubMed]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed]
- Del Buono, M.G.; Montone, R.A.; Camilli, M.; Carbone, S.; Narula, J.; Lavie, C.J.; Niccoli, G.; Crea, F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 1352–1371. [Google Scholar] [CrossRef] [PubMed]
- Taqueti, V.R.; Di Carli, M.F. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2625–2641. [Google Scholar] [CrossRef]
- Severino, P.; D’Amato, A.; Pucci, M.; Infusino, F.; Adamo, F.; Birtolo, L.I.; Netti, L.; Montefusco, G.; Chimenti, C.; Lavalle, C.; et al. Ischemic Heart Disease Pathophysiology Paradigms Overview: From Plaque Activation to Microvascular Dysfunction. Int. J. Mol. Sci. 2020, 21, 8118. [Google Scholar] [CrossRef]
- Mileva, N.; Nagumo, S.; Mizukami, T.; Sonck, J.; Berry, C.; Gallinoro, E.; Monizzi, G.; Candreva, A.; Munhoz, D.; Vassilev, D.; et al. Prevalence of Coronary Microvascular Disease and Coronary Vasospasm in Patients with Nonobstructive Coronary Artery Disease: Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2022, 11, e023207. [Google Scholar] [CrossRef]
- Crea, F.; Montone, R.A.; Rinaldi, R. Pathophysiology of Coronary Microvascular Dysfunction. Circ. J. 2022, 86, 1319–1328. [Google Scholar] [CrossRef]
- Padro, T.; Manfrini, O.; Bugiardini, R.; Canty, J.; Cenko, E.; De Luca, G.; Duncker, D.J.; Eringa, E.C.; Koller, A.; Tousoulis, D.; et al. ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on ‘coronary microvascular dysfunction in cardiovascular disease’. Cardiovasc. Res. 2020, 116, 741–755. [Google Scholar] [CrossRef]
- Severino, P.; D’Amato, A.; Netti, L.; Pucci, M.; Infusino, F.; Maestrini, V.; Mancone, M.; Fedele, F. Myocardial Ischemia and Diabetes Mellitus: Role of Oxidative Stress in the Connection between Cardiac Metabolism and Coronary Blood Flow. J. Diabetes Res. 2019, 2019, 9489826. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Kathiresan, S. Genetics of coronary artery disease: Discovery, biology and clinical translation. Nat. Rev. Genet. 2017, 18, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Nurnberg, S.T.; Zhang, H.; Hand, N.J.; Bauer, R.C.; Saleheen, D.; Reilly, M.P.; Rader, D.J. From Loci to Biology: Functional Genomics of Genome-Wide Association for Coronary Disease. Circ. Res. 2016, 118, 586–606. [Google Scholar] [CrossRef]
- Hamrefors, V. Common genetic risk factors for coronary artery disease: New opportunities for prevention? Clin. Physiol. Funct. Imaging 2017, 37, 243–254. [Google Scholar] [CrossRef]
- Papageorgiou, N.; Tousoulis, D. Single-nucleotide polymorphisms and their role in coronary artery disease: Where do we stand now? Hellenic J. Cardiol. 2018, 59, 14–15. [Google Scholar] [CrossRef] [PubMed]
- Fedele, F.; Severino, P.; Bruno, N.; Stio, R.; Caira, C.; D’Ambrosi, A.; Brasolin, B.; Ohanyan, V.; Mancone, M. Role of ion channels in coronary microcirculation: A review of the literature. Future Cardiol. 2013, 9, 897–905. [Google Scholar] [CrossRef]
- Aherrahrou, R.; Guo, L.; Nagraj, V.P.; Aguhob, A.; Hinkle, J.; Chen, L.; Yuhl Soh, J.; Lue, D.; Alencar, G.F.; Boltjes, A.; et al. Genetic Regulation of Atherosclerosis-Relevant Phenotypes in Human Vascular Smooth Muscle Cells. Circ. Res. 2020, 127, 1552–1565. [Google Scholar] [CrossRef]
- Severino, P.; D’Amato, A.; Netti, L.; Pucci, M.; Mariani, M.V.; Cimino, S.; Birtolo, L.I.; Infusino, F.; De Orchi, P.; Palmirotta, R.; et al. Susceptibility to ischaemic heart disease: Focusing on genetic variants for ATP-sensitive potassium channel beyond traditional risk factors. Eur. J. Prev. Cardiol. 2020, 2, 2047487320926780. [Google Scholar] [CrossRef]
- Fedele, F.; Mancone, M.; Chilian, W.M.; Severino, P.; Canali, E.; Logan, S.; De Marchis, M.L.; Volterrani, M.; Palmirotta, R.; Guadagni, F. Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease. Basic. Res. Cardiol. 2013, 108, 387. [Google Scholar] [CrossRef]
- Goodwill, A.G.; Dick, G.M.; Kiel, A.M.; Tune, J.D. Regulation of Coronary Blood Flow. Compr. Physiol. 2017, 7, 321–382. [Google Scholar]
- Tune, J.D. Withdrawal of vasoconstrictor influences in local metabolic coronary vasodilation. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H2044–H2046. [Google Scholar] [CrossRef] [PubMed]
- Duncker, D.J.; Sorop, O.; van de Wouw, J.; Fen, G.; de Beer, V.J.; Taverne, Y.J.; de Graaff, H.J.D.; Merkus, D. Integrated control of coronary blood flow in exercising swine by adenosine, nitric oxide, and KATP channels. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H1080–H1090. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; D’Amato, A.; Pucci, M.; Infusino, F.; Birtolo, L.I.; Mariani, M.V.; Lavalle, C.; Maestrini, V.; Mancone, M.; Fedele, F. Ischemic Heart Disease and Heart Failure: Role of Coronary Ion Channels. Int. J. Mol. Sci. 2020, 21, 3167. [Google Scholar] [CrossRef] [PubMed]
- Ohanyan, V.; Yin, L.; Bardakjian, R.; Kolz, C.; Enrick, M.; Hakobyan, T.; Luli, J.; Graham, K.; Khayata, M.; Logan, S.; et al. Kv1.3 channels facilitate the connection between metabolism and blood flow in the heart. Microcirculation 2017, 24, e12334. [Google Scholar] [CrossRef] [PubMed]
- Dwenger, M.M.; Raph, S.M.; Reyzer, M.L.; Lisa Manier, M.; Riggs, D.W.; Wohl, Z.B.; Ohanyan, V.; Mack, G.; Pucci, T.; Moore, J.B.; et al. Pyridine nucleotide redox potential in coronary smooth muscle couples myocardial blood flow to cardiac metabolism. Nat. Commun. 2022, 13, 2051. [Google Scholar] [CrossRef]
- Ohanyan, V.; Yin, L.; Bardakjian, R.; Kolz, C.; Enrick, M.; Hakobyan, T.; Kmetz, J.; Bratz, I.; Luli, J.; Nagane, M.; et al. Requisite Role of Kv1.5 Channels in Coronary Metabolic Dilation. Circ. Res. 2015, 117, 612–621. [Google Scholar] [CrossRef]
- Farah, C.; Michel, L.Y.M.; Balligand, J.L. Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 2018, 15, 292–316. [Google Scholar] [CrossRef]
- Alexander, Y.; Osto, E.; Schmidt-Trucksäss, A.; Shechter, M.; Trifunovic, D.; Duncker, D.J.; Aboyans, V.; Bäck, M.; Badimon, L.; Cosentino, F.; et al. Endothelial function in cardiovascular medicine: A consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc. Res. 2021, 117, 29–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Wernly, B.; Cao, X.; Mustafa, S.J.; Tang, Y.; Zhou, Z. Adenosine and adenosine receptor-mediated action in coronary microcirculation. Basic. Res. Cardiol. 2021, 116, 22. [Google Scholar] [CrossRef]
- Aziz, Q.; Li, Y.; Anderson, N.; Ojake, L.; Tsisanova, E.; Tinker, A. Molecular and functional characterization of the endothelial ATP-sensitive potassium channel. J. Biol. Chem. 2017, 292, 17587–17597. [Google Scholar] [CrossRef]
- Severino, P.; D’Amato, A.; Netti, L.; Pucci, M.; De Marchis, M.; Palmirotta, R.; Volterrani, M.; Mancone, M.; Fedele, F. Diabetes Mellitus and Ischemic Heart Disease: The Role of Ion Channels. Int. J. Mol. Sci. 2018, 19, 802. [Google Scholar] [CrossRef] [PubMed]
- Brayden, J.E. Functional roles of KATP channels in vascular smooth muscle. Clin. Exp. Pharmacol. Physiol. 2002, 29, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Brini, M.; Carafoli, E. Calcium pumps in health and disease. Physiol. Rev. 2009, 89, 1341–1378. [Google Scholar] [CrossRef] [PubMed]
- Dick, G.M.; Tune, J.D. Role of potassium channels in coronary vasodilation. Exp. Biol. Med. 2010, 235, 10–22. [Google Scholar] [CrossRef]
- Ko, E.A.; Han, J.; Jung, I.D.; Park, W.S. Physiological roles of K+ channels in vascular smooth muscle cells. J. Smooth Muscle Res. 2008, 44, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Schrage, W.G.; Dietz, N.M.; Joyner, M.J. Effects of combined inhibition of ATP-sensitive potassium channels, nitric oxide, and prostaglandins on hyperemia during moderate exercise. J. Appl. Physiol. 2006, 100, 1506–1512. [Google Scholar] [CrossRef]
- Merkus, D.; Haitsma, D.B.; Fung, T.Y.; Assen, Y.J.; Verdouw, P.D.; Duncker, D.J. Coronary blood flow regulation in exercising swine involves parallel rather than redundant vasodilator pathways. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H424–H433. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Duncker, D.J.; Zhang, J.; Bache, R.J. ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise. Circ. Res. 1998, 82, 346–359. [Google Scholar] [CrossRef]
- Hein, T.W.; Kuo, L. cAMP-independent dilation of coronary arterioles to adenosine: Role of nitric oxide, G proteins, and K(ATP) channels. Circ. Res. 1999, 85, 634–642. [Google Scholar] [CrossRef]
- Fujii, N.; McGarr, G.W.; Kenny, G.P.; Amano, T.; Honda, Y.; Kondo, N.; Nishiyasu, T. NO-mediated activation of KATP channels contributes to cutaneous thermal hyperemia in young adults. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 318, R390–R398. [Google Scholar] [CrossRef]
- Li, S.; Lei, Y.; Chen, J.D. Roles of ATP sensitive potassium channel inmodulating gastric tone and accommodation in dogs. Scand. J. Gastroenterol. 2017, 52, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.A.M.; da Silva, C.H.F.; de Souza, P.; de Almeida, C.L.B.; Cechinel-Filho, V.; Lourenço, E.L.B.; Gasparotto Junior, A. Nitric oxide and Ca2+-activated high-conductance K+ channels mediate nothofagin-induced endothelium-dependent vasodilation in the perfused rat kidney. Chem. Biol. Interact. 2020, 327, 109182. [Google Scholar] [CrossRef] [PubMed]
- Fujii, N.; Halili, L.; Nishiyasu, T.; Kenny, G.P. Voltage-gated potassium channels and NOS contribute to a sustained cutaneous vasodilation elicited by local heating in an interactive manner in young adults. Microvasc. Res. 2018, 117, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.; Campillo, A.; Schmitt, M. Prediction and management of CAD risk based on genetic stratification. Trends Cardiovasc. Med. 2020, 30, 328–334. [Google Scholar] [CrossRef]
- Inouye, M.; Abraham, G.; Nelson, C.P.; Wood, A.M.; Sweeting, M.J.; Dudbridge, F.; Lai, F.Y.; Kaptoge, S.; Brozynska, M.; Wang, T.; et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. J. Am. Coll. Cardiol. 2018, 72, 1883–1893. [Google Scholar] [CrossRef]
- Lederer, W.J.; Nichols, C.G. Nucleotide modulation of the activity of rat heart ATP-sensitive K+ channels in isolated membrane patches. J. Physiol. 1989, 419, 193–211. [Google Scholar] [CrossRef]
- Vallance, P.; Collier, J.; Moncada, S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989, 2, 997–1000. [Google Scholar] [CrossRef]
- Palmer, R.M.; Ashton, D.S.; Moncada, S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988, 333, 664–666. [Google Scholar] [CrossRef]
- Agewall, S.; Beltrame, J.F.; Reynolds, H.R.; Niessner, A.; Rosano, G.; Caforio, A.L.; De Caterina, R.; Zimarino, M.; Roffi, M.; Kjeldsen, K.; et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur. Heart J. 2017, 38, 143–153. [Google Scholar] [CrossRef]
- Jo, I.; Moon, J.; Yoon, S.; Kim, H.T.; Kim, E.; Park, H.Y.; Shin, C.; Min, J.; Jin, Y.M.; Cha, S.H.; et al. Interaction between -786TC polymorphism in the endothelial nitric oxide synthase gene and smoking for myocardial infarction in Korean population. Clin. Chim. Acta 2006, 365, 86–92. [Google Scholar] [CrossRef]
- Doshi, A.A.; Ziolo, M.T.; Wang, H.; Burke, E.; Lesinski, A.; Binkley, P. A promoter polymorphism of the endothelial nitric oxide synthase gene is associated with reduced mRNA and protein expression in failing human myocardium. J. Card. Fail. 2010, 16, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; D’Amato, A.; Prosperi, S.; Magnocavallo, M.; Mariani, M.V.; Netti, L.; Birtolo, L.I.; De Orchi, P.; Chimenti, C.; Maestrini, V.; et al. Potential Role of eNOS Genetic Variants in Ischemic Heart Disease Susceptibility and Clinical Presentation. J. Cardiovasc. Dev. Dis. 2021, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Liu, S.; Guo, Y.; Liu, S.; Xu, J.; Pan, L.; Hu, Y.; Liu, Y.; Cheng, Y. Association between eNOS rs1799983 polymorphism and hypertension: A meta-analysis involving 14,185 cases and 13,407 controls. BMC Cardiovasc. Disord. 2021, 21, 385. [Google Scholar] [CrossRef] [PubMed]
- Ben Ali, M.; Messaoudi, S.; Ezzine, H.; Mahjoub, T. Contribution of eNOS variants to the genetic susceptibility of coronary artery disease in a Tunisian population. Genet. Test. Mol. Biomark. 2015, 19, 203–208. [Google Scholar] [CrossRef]
- Mitchell, G.F.; Guo, C.Y.; Kathiresan, S.; Vasan, R.S.; Larson, M.G.; Vita, J.A.; Keyes, M.J.; Vyas, M.; Newton-Cheh, C.; Musone, S.L.; et al. Vascular stiffness and genetic variation at the endothelial nitric oxide synthase locus: The Framingham Heart study. Hypertension 2007, 49, 1285–1290. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Saito, Y.; Kajiyama, N.; Yoshimura, M.; Shimasaki, Y.; Nakayama, M.; Kamitani, S.; Harada, M.; Ishikawa, M.; Kuwahara, K.; et al. Endothelial nitric oxide synthase gene is positively associated with essential hypertension. Hypertension 1998, 32, 3–8. [Google Scholar] [CrossRef]
- Nawaz, S.K.; Rani, A.; Yousaf, M.; Noreen, A.; Arshad, M. Genetic etiology of coronary artery disease considering NOS 3 gene variant rs1799983. Vascular 2015, 23, 270–276. [Google Scholar] [CrossRef]
- Raza, S.T.; Singh, S.P.; Rizvi, S.; Zaidi, A.; Srivastava, S.; Hussain, A.; Mahdi, F. Association of eNOS (G894T, rs1799983) and KCNJ11 (E23K, rs5219) gene polymorphism with coronary artery disease in North Indian population. Afr. Health Sci. 2021, 21, 1163–1171. [Google Scholar] [CrossRef]
- Seckin, Y.; Yigit, A.; Yesilada, E.; Gulbay, G.; Cagin, Y.F.; Gozukara, H.; Bılgıc, Y.; Yildirim, O.; Turkoz, Y.; Aksungur, Z. Association of eNOS Gene Polymorphisms G894T and T-786C with Risk of Hepatorenal Syndrome. Gastroenterol. Res. Pract. 2016, 2016, 2579626. [Google Scholar] [CrossRef]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef]
- Perera, D.; Berry, C.; Hoole, S.P.; Sinha, A.; Rahman, H.; Morris, P.D.; Kharbanda, R.K.; Petraco, R.; Channon, K.; UK Coronary Microvascular Dysfunction Working Group. Invasive coronary physiology in patients with angina and non-obstructive coronary artery disease: A consensus document from the coronary microvascular dysfunction workstream of the British Heart Foundation/National Institute for Health Research Partnership. Heart 2022, 109, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Kunadian, V.; Chieffo, A.; Camici, P.G.; Berry, C.; Escaned, J.; Maas, A.H.E.M.; Prescott, E.; Karam, N.; Appelman, Y.; Fraccaro, C.; et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur. Heart J. 2020, 41, 3504–3520. [Google Scholar] [PubMed]
- Palmirotta, R.; Ludovici, G.; de Marchis, M.L.; Savonarola, A.; Leone, B.; Spila, A.; De Angelis, F.; Della Morte, D.; Ferroni, P.; Guadagni, F. Preanalytical procedures for DNA Studies: The experience of the Interinstitutional Multidisciplinary BioBank (BioBIM). Biopreserv Biobank 2011, 9, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wu, X.; Ni, J.; Zhang, J. Relationship between common eNOS gene polymorphisms and predisposition to coronary artery disease: Evidence from a meta-analysis of 155 published association studies. Genomics 2020, 112, 2452–2458. [Google Scholar] [CrossRef] [PubMed]
- Jeron, A.; Hengstenberg, C.; Holmer, S.; Wollnik, B.; Riegger, G.A.; Schunkert, H.; Erdmann, J. KCNJ11 polymorphisms and sudden cardiac death in patients with acute myocardial infarction. J. Mol. Cell. Cardiol. 2004, 36, 287–293. [Google Scholar] [CrossRef] [PubMed]
Parameters | G1 (N = 328) | G2 (N = 68) | G3 (N = 66) | p-Value | Post-hoc p-Value |
---|---|---|---|---|---|
Age, years [Q1;Q3] | 69 [60;78] | 65 [56;71] | 60.5 [54.8;69] | <0.001 | G1-G2 < 0.001; G1-G3 < 0.001 |
Male, n (%) | 252 (76.8%) | 30 (44.1%) | 31 (47%) | <0.001 | G1-G2 < 0.001; G1-G3 < 0.001 |
BMI [Q1;Q3] | 26 [24.5;27.2] | 26 [24.4;27.8] | 26 [24.3;26.5] | 0.783 | G1-G2 = 1; G1-G3 = 1 |
Arterial hypertension, n (%) | 276 (84.1%) | 67 (98.5%) | 66 (100%) | <0.001 | G1-G2 < 0.001; G1-G3 < 0.001 |
Diabetes mellitus, n (%) | 103 (31.4%) | 12 (17.6%) | 13 (19.7%) | 0.020 | G1-G2 = 0.027; G1-G3 = 0.037 |
Dyslipidemia, n (%) | 187 (57%) | 29 (42.6%) | 24 (36.4%) | 0.002 | G1-G2 = 0.033; G1-G3 = 0.002 |
Smoking habit, n (%) | 164 (50%) | 19 (27.9%) | 23 (34.8%) | <0.001 | G1-G2 = 0.001; G1-G3 = 0.017 |
Family history of IHD, n (%) | 140 (42.7%) | 24 (35.3%) | 21 (31.8%) | 0.178 | G1-G2 = 0.282; G1-G3 = 0.131 |
LVEF, % [Q1;Q3] | 50 [40;55] | 55 [50;56.5] | 55 [51.5;56.5] | <0.001 | G1-G2 < 0.001; G1-G3 < 0.001 |
Protein/Gene: SNP | G1 (N = 328) | G2 (N = 68) | G3 (N = 66) | p-Value | Post-Hoc p-Value |
---|---|---|---|---|---|
Kir6.2/KCNJ11: rs5215_A/A, n (%) | 142 (43.3%) | 35 (51.5%) | 31 (47%) | 0.440 | G1-G2 = 0.230; G1-G3 = 0.590; G2-G3 = 0.602 |
Kir6.2/KCNJ11: rs5215_G/A, n (%) | 145 (44.2%) | 27 (39.7%) | 23 (34.8%) | 0.337 | G1-G2 = 0.591; G1-G3 = 0.174; G2-G3 = 0.561 |
Kir6.2/KCNJ11: rs5215_G/G, n (%) | 41 (12.5%) | 6 (8.8%) | 12 (18.2%) | 0.258 | G1-G2 = 0.536; G1-G3 = 0.236; G2-G3 = 0.112 |
eNOS/NOS3: rs1799983_G/G, n (%) | 68 (45.3%) | 17 (37.8%) | 20 (48.8%) | 0.557 | G1-G2 = 0.396; G1-G3 = 0.726; G2-G3 = 0.303 |
eNOS/NOS3: rs1799983_T/T, n (%) | 58 (38.7%) | 16 (35.6%) | 18 (43.9%) | 0.724 | G1-G2 = 0.730; G1-G3 = 0.591; G2-G3 = 0.429 |
eNOS/NOS3: rs1799983_G/T, n (%) | 24 (16%) | 12 (26.7%) | 3 (7.3%) | 0.052 | G1-G2 = 0.126; G1-G3 = 0.209; G2-G3 = 0.018 |
Kir6.2/KCNJ11: rs5215_A/A x eNOS/NOS3: rs1799983_G/G, n (%) | 32 (12.8%) | 11 (19.6%) | 8 (15.1%) | 0.407 | G1-G2 = 0.202; G1-G3 = 0.657; G2-G3 = 0.532 |
Kir6.2/KCNJ11: rs5215_A/A x eNOS/NOS3: rs1799983_T/T, n (%) | 21 (8.4%) | 5 (8.9%) | 9 (17%) | 0.156 | G1-G2 = 0.797; G1-G3 = 0.074; G2-G3 = 0.209 |
Kir6.2/KCNJ11: rs5215_A/A x eNOS/NOS3: rs1799983_G/T, n (%) | 21 (8.4%) | 5 (8.9%) | 9 (17%) | 0.156 | G1-G2 = 0.797; G1-G3 = 0.074; G2-G3 = 0.209 |
Kir6.2/KCNJ11: rs5215_G/G x eNOS/NOS3: rs1799983_G/G, n (%) | 8 (2.6%) | 3 (4.5%) | 2 (3.2%) | 0.722 | G1-G2 = 0.426; G1-G3 = 0.684; G2-G3 = 0.699 |
Kir6.2/KCNJ11: rs5215_G/G x eNOS/NOS3: rs1799983_T/T, n (%) | 6 (2%) | 0 (0%) | 5 (7.9%) | 0.008 | G1-G2 = 0.246; G1-G3 = 0.026; G2-G3 = 0.019 |
Kir6.2/KCNJ11: rs5215_G/G x eNOS/NOS3: rs1799983_G/T, n (%) | 3 (1%) | 2 (3%) | 2 (3.2%) | 0.284 | G1-G2 = 0.199; G1-G3 = 0.205; G2-G3 = 0.950 |
Kir6.2/KCNJ11: rs5215_G/A x eNOS/NOS3: rs1799983: G/G, n (%) | 28 (11.1%) | 3 (5.2%) | 10 (17.5%) | 0.109 | G1-G2 = 0.174; G1-G3 = 0.185; G2-G3 = 0.036 |
Kir6.2/KCNJ11: rs5215_G/A x eNOS/NOS3: rs1799983_T/T, n (%) | 31 (12.3%) | 11 (19%) | 4 87%) | 0.151 | G1-G2 = 0.181; G1-G3 = 0.355; G2-G3 = 0.057 |
Kir6.2/KCNJ11: rs5215_G/A x eNOS/NOS3: rs1799983_G/T, n (%) | 10 (4%) | 3 (5.2%) | 0 (0%) | 0.262 | G1-G2 = 0.680; G1-G3 = 0.218; G2-G3 = 0.082 |
Univariable | Multivariable | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age | 1.047 | 1.029–1.064 | <0.001 | 1.063 | 1.040–1.086 | <0.001 |
Male gender | 3.968 | 2.592–6.075 | <0.001 | 5.248 | 3.148–8.751 | <0.001 |
Arterial hypertension | 0.040 | 0.005–0.292 | 0.002 | 0.041 | 0.006–0.309 | 0.002 |
Diabetes mellitus | 1.996 | 1.219–3.268 | 0.006 | 1.646 | 0.932–2.908 | 0.086 |
Dyslipidemia | 2.027 | 1.346–3.053 | <0.001 | 1.986 | 1.221–3.229 | 0.006 |
Smoking habit | 2.190 | 1.433–3.348 | <0.001 | 2.192 | 1.312–3.660 | 0.003 |
Familial history of IHD | 1.473 | 0.968–2.242 | 0.071 | 1.757 | 1.070–2.884 | 0.026 |
Kir6.2/KCNJ11: rs5215_A/A | 0.787 | 0.526–1.177 | 0.243 | |||
Kir6.2/KCNJ11: rs5215_G/A | 0.751 | 0.497–1.135 | 0.174 | |||
Kir6.2/KCNJ11: rs5215_G/G | 0.921 | 0.508–1.669 | 0.785 | |||
eNOS/NOS3: rs1799983_G/G | 0.911 | 0.534–1.554 | 0.731 | |||
eNOS/NOS3: rs1799983_T/T | 0.964 | 0.560–1.660 | 0.895 | |||
eNOS/NOS3: rs1799983_G/T | 0.902 | 0.444–1.829 | 0.774 | |||
Kir6.2/KCNJ11: rs5215_G/G x eNOS/NOS3 rs1799983_T/T | 0.503 | 0.151–1.680 | 0.264 |
Univariable | Multivariable | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age | 0.970 | 0.950–0.990 | 0.003 | 0.961 | 0.933–0.990 | 0.009 |
Male gender | 0.310 | 0.183–0.524 | <0.001 | 0.288 | 0.139–0.595 | <0.001 |
Arterial hypertension | 10.187 | 1.384–74.971 | 0.023 | 9.372 | 1.453–81.329 | 0.037 |
Diabetes mellitus | 0.514 | 0.265–0.994 | 0.048 | 0.533 | 0.208–1.366 | 0.190 |
Dyslipidemia | 0.645 | 0.384–1.085 | 0.098 | 0.736 | 0.356–1.519 | 0.407 |
Smoking habit | 0.429 | 0.244–0.756 | 0.003 | 0.429 | 0.191–0.967 | 0.041 |
Familial history of IHD | 0.789 | 0.462–1.350 | 0.387 | |||
Kir6.2/KCNJ11: rs5215_A/A | 1.355 | 0.809–2.269 | 0.248 | |||
Kir6.2/KCNJ11: rs5215_G/A | 0.886 | 0.524–1.498 | 0.651 | |||
Kir6.2/KCNJ11: rs5215_G/G | 0.623 | 0.257–1.511 | 0.295 | |||
eNOS/NOS3: rs1799983_G/G | 0.711 | 0.365–1.384 | 0.315 | |||
eNOS/NOS3: rs1799983_T/T | 0.835 | 0.425–1.641 | 0.601 | |||
eNOS/NOS3: rs1799983_G/T | 0.453 | 0.208–0.984 | 0.045 | 0.768 | 0.157–0.962 | 0.121 |
Kir6.2/KCNJ11: rs5215_G/G x eNOS/NOS3 rs1799983_T/T | 0.490 | 0.062–3.862 | 0.499 |
Univariable | Multivariable | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age | 1.047 | 1.029–1.064 | <0.001 | 1.047 | 1.015–1.080 | 0.003 |
Male gender | 2.793 | 1.644–4.745 | <0.001 | 3.835 | 1.777–8.275 | <0.001 |
Arterial hypertension | 0.418 | 0.146–1.195 | 0.104 | |||
Diabetes mellitus | 1.668 | 0.876–3.178 | 0.119 | |||
Dyslipidemia | 2.1 | 1.225–3.6 | 0.007 | 1.158 | 0.554–2.422 | 0.696 |
Smoking habit | 1.606 | 0.933–2.766 | 0.087 | 1.826 | 0.785–4.248 | 0.162 |
Familial history of IHD | 1.515 | 0.869–2.639 | 0.143 | |||
Kir6.2/KCNJ11: rs5215_A/A | 0.913 | 0.541–1.539 | 0.731 | |||
Kir6.2/KCNJ11: rs5215_G/A | 1.436 | 0.833–2.473 | 0.193 | |||
Kir6.2/KCNJ11: rs5215_G/G | 0.606 | 0.302–1.215 | 0.158 | |||
eNOS/NOS 3: rs1799983_G/G | 0.811 | 0.413–1.593 | 0.544 | |||
eNOS/NOS3: rs1799983_T/T | 0.781 | 0.395–1.544 | 0.478 | |||
eNOS/NOS3: rs1799983_G/T | 2.868 | 0.838–9.810 | 0.093 | 2.623 | 0.728–9.442 | 0.140 |
Kir6.2/KCNJ11: rs5215_G/G x eNOS/NOS3 rs1799983_T/T | 0.191 | 0.056–0.645 | 0.008 | 0.185 | 0.440–0.770 | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Severino, P.; D’Amato, A.; Mancone, M.; Palazzuoli, A.; Mariani, M.V.; Prosperi, S.; Myftari, V.; Lavalle, C.; Forleo, G.B.; Birtolo, L.I.; et al. Protection against Ischemic Heart Disease: A Joint Role for eNOS and the KATP Channel. Int. J. Mol. Sci. 2023, 24, 7927. https://doi.org/10.3390/ijms24097927
Severino P, D’Amato A, Mancone M, Palazzuoli A, Mariani MV, Prosperi S, Myftari V, Lavalle C, Forleo GB, Birtolo LI, et al. Protection against Ischemic Heart Disease: A Joint Role for eNOS and the KATP Channel. International Journal of Molecular Sciences. 2023; 24(9):7927. https://doi.org/10.3390/ijms24097927
Chicago/Turabian StyleSeverino, Paolo, Andrea D’Amato, Massimo Mancone, Alberto Palazzuoli, Marco Valerio Mariani, Silvia Prosperi, Vincenzo Myftari, Carlo Lavalle, Giovanni Battista Forleo, Lucia Ilaria Birtolo, and et al. 2023. "Protection against Ischemic Heart Disease: A Joint Role for eNOS and the KATP Channel" International Journal of Molecular Sciences 24, no. 9: 7927. https://doi.org/10.3390/ijms24097927
APA StyleSeverino, P., D’Amato, A., Mancone, M., Palazzuoli, A., Mariani, M. V., Prosperi, S., Myftari, V., Lavalle, C., Forleo, G. B., Birtolo, L. I., Caputo, V., Miraldi, F., Chimenti, C., Badagliacca, R., Maestrini, V., Palmirotta, R., Vizza, C. D., & Fedele, F. (2023). Protection against Ischemic Heart Disease: A Joint Role for eNOS and the KATP Channel. International Journal of Molecular Sciences, 24(9), 7927. https://doi.org/10.3390/ijms24097927