Characteristics and Application of a Novel Cold-Adapted and Salt-Tolerant Protease EK4-1 Produced by an Arctic Bacterium Mesonia algae K4-1
Abstract
:1. Introduction
2. Results
2.1. Purification of Protease EK4-1
2.2. Enzymatic Properties of EK4-1
2.3. Structural Properties of EK4-1
2.4. EK4-1 Efficiently Degrades Low-Value Protein Substrates at Low Temperature
3. Discussion
4. Materials and Methods
4.1. Culture and Enzyme-Producing Fermentation of Strains
4.2. Protease Activity Assay and Protein Quantification
4.3. Protease Purification and Mass Spectrum Identification
4.4. Characterization of Extracellular Protease EK4-1
4.4.1. Optimum Temperature and Thermal Stability of Protease EK4-1
4.4.2. Optimum pH, Acid–Base Stability and Salt Tolerance
4.4.3. Effect of Metal Ions, Oxidants, Surfactants, Organic Solvents and Inhibitor on Protease EK4-1 Activity
4.5. Structure Analysis
4.6. Enzyme Cleavage Site Analysis of Protease EK4-1
4.7. Degradation of Low-Value Protein via Cold-Adapted Protease EK4-1
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, C.G.; Takagi, H. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv. 1999, 17, 561–594. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Wu, C.; Liu, D.; Yang, X.; Huang, J.; Zhang, J.; Liao, B.; He, H. Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease. Food Chem. 2018, 248, 346–352. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018, 46, D624–D632. [Google Scholar] [CrossRef] [PubMed]
- Kasana, R.C.; Salwan, R.; Yadav, S.K. Microbial proteases: Detection, production, and genetic improvement. Crit. Rev. Microbiol. 2011, 37, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.F.; Hou, Y.H.; Xu, Z.; Miao, J.L.; Li, G.Y. Optimization of cold-active protease production by the psychrophilic bacterium Colwellia sp NJ341 with response surface methodology. Bioresour. Technol. 2008, 99, 1926–1931. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Kahler, J.P.; van de Plassche, M.A.T.; Vanhoutte, R.; Verhelst, S.H.L. Recent Advances in Activity-Based Protein Profiling of Proteases. Curr. Top Microbiol. Immunol. 2019, 420, 253–281. [Google Scholar] [PubMed]
- Margesin, R.; Collins, T. Microbial ecology of the cryosphere (glacial and permafrost habitats): Current knowledge. Appl. Microbiol. Biotechnol. 2019, 103, 2537–2549. [Google Scholar] [CrossRef]
- Marx, J.C.; Collins, T.; D’Amico, S.; Feller, G.; Gerday, C. Cold-adapted enzymes from marine Antarctic microorganisms. Mar. Biotechnol. 2007, 9, 293–304. [Google Scholar] [CrossRef]
- Hao, J.H.; Sun, M. Purification and Characterization of a Cold Alkaline Protease from a Psychrophilic Pseudomonas aeruginosa HY1215. Appl. Biochem. Biotechnol. 2015, 175, 715–722. [Google Scholar] [CrossRef]
- He, H.L.; Chen, X.L.; Li, J.W.; Zhang, Y.Z.; Gao, P.J. Taste improvement of refrigerated meat treated with cold-adapted Protease. Food Chem. 2004, 84, 307–311. [Google Scholar] [CrossRef]
- Huan, R.; Huang, J.; Liu, D.; Wang, M.; Liu, C.; Zhang, Y.; Yi, C.; Xiao, D.; He, H. Genome Sequencing of Mesonia algae K4-1 Reveals Its Adaptation to the Arctic Ocean. Front. Microbiol. 2019, 10, 2812. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.-S.; Kim, W.; Yoon, J.-H. Mesonia aestuariivivens sp. nov., isolated from a tidal flat. Arch. Microbiol. 2022, 204, 550. [Google Scholar] [CrossRef]
- Bruno, S.; Coppola, D.; di Prisco, G.; Giordano, D.; Verde, C. Enzymes from Marine Polar Regions and Their Biotechnological Applications. Mar. Drugs 2019, 17, 544. [Google Scholar] [CrossRef]
- D’Amico, S.; Collins, T.; Marx, J.C.; Feller, G.; Gerday, C. Psychrophilic microorganisms: Challenges for life. Embo Rep. 2006, 7, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Mokashe, N.; Chaudhari, B.; Patil, U. Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector. Int. J. Biol. Macromol. 2018, 117, 493–522. [Google Scholar] [CrossRef]
- Radka, C.D.; DeLucas, L.J.; Wilson, L.S.; Lawrenz, M.B.; Perry, R.D.; Aller, S.G. Crystal structure of Yersinia pestis virulence factor YfeA reveals two polyspecific metal-binding sites. Acta Crystallogr. D Struct. Biol. 2017, 73, 557–572. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M.; Takagi, M.; Imanaka, T.; Aiba, S. Molecular cloning of a thermostable neutral protease gene from Bacillus stearothermophilus in a vector plasmid and its expression in Bacillus stearothermophilus and Bacillus subtilis. J. Bacteriol. 1983, 154, 831–837. [Google Scholar] [CrossRef]
- Shi, T.; Li, X.Q.; Zheng, L.; Zhang, Y.H.; Dai, J.J.; Shang, E.L.; Yu, Y.Y.; Zhang, Y.T.; Hu, W.P.; Shi, D.Y. Sesquiterpenoids From the Antarctic Fungus Pseudogymnoascus sp. HSX2#-11. Front. Microbiol. 2021, 12, 688202. [Google Scholar] [PubMed]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef]
- Xie, B.B.; Bian, F.; Chen, X.L.; He, H.L.; Guo, J.; Gao, X.; Zeng, Y.X.; Chen, B.; Zhou, B.C.; Zhang, Y.Z. Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics. J. Biol. Chem. 2009, 284, 9257–9269. [Google Scholar] [CrossRef]
- De Maayer, P.; Anderson, D.; Cary, C.; Cowan, D.A. Some like it cold: Understanding the survival strategies of psychrophiles. Embo Rep. 2014, 15, 508–517. [Google Scholar] [CrossRef]
- Siddiqui, K.S.; Cavicchioli, R. Cold-adapted enzymes. Annu. Rev. Biochem. 2006, 75, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Mevarech, M.; Frolow, F.; Gloss, L.M. Halophilic enzymes: Proteins with a grain of salt. Biophys. Chem. 2000, 86, 155–164. [Google Scholar] [CrossRef]
- Richard, S.B.; Madern, D.; Garcin, E.; Zaccai, G. Halophilic adaptation: Novel solvent protein interactions observed in the 2.9 and 2.6 A resolution structures of the wild type and a mutant of malate dehydrogenase from Haloarcula marismortui. Biochemistry 2000, 39, 992–1000. [Google Scholar] [CrossRef]
- Feller, G. Psychrophilic enzymes: From folding to function and biotechnology. Scientifica 2013, 2013, 512840. [Google Scholar] [CrossRef]
- Nedashkovskaya, O.I.; Kim, S.B.; Han, S.K.; Lysenko, A.M.; Rohde, M.; Zhukova, N.V.; Falsen, E.; Frolova, G.M.; Mikhailov, V.V.; Bae, K.S. Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kutz) Kornm. Int. J. Syst. Evol. Microbiol. 2003, 53 Pt 6, 1967–1971. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, D.; Yang, X.; Wu, R.; Zhang, J.; Huang, J.; He, H. Improving Production of Protease from Pseudoalteromonas sp. CSN423 by Random Mutagenesis. Mar. Biotechnol. 2016, 18, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yang, X.; Huang, J.; Wu, R.; Wu, C.; He, H.; Li, H. In situ demonstration and characteristic analysis of the protease components from marine bacteria using substrate immersing zymography. Appl. Biochem. Biotechnol. 2015, 175, 489–501. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef]
- Gao, R.; Shi, T.; Liu, X.; Zhao, M.; Cui, H.; Yuan, L. Purification and characterisation of a salt-stable protease from the halophilic archaeon Halogranum rubrum. J. Sci. Food Agric. 2017, 97, 1412–1419. [Google Scholar] [CrossRef] [PubMed]
- Zhur, O.; Yang, Y.; Yin, T.T.; Yan, X.T.; Rao, H.L.; Xun, X.; Dong, X.; Wu, C.L.; He, H.L. Simultaneous preparation of antioxidant peptides and lipids from microalgae by pretreatment with bacterial proteases. Bioresour. Technol. 2022, 348, 126759. [Google Scholar] [CrossRef]
- Geourjon, C.; Deléage, G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 1995, 11, 681–684. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Volkamer, A.; Griewel, A.; Grombacher, T.; Rarey, M. Analyzing the Topology of Active Sites: On the Prediction of Pockets and Subpockets. J. Chem. Inf. Model. 2010, 50, 2041–2052. [Google Scholar] [CrossRef]
- Gattiker, A.; Bienvenut, W.V.; Bairoch, A.; Gasteiger, E. FindPept, a tool to identify unmatched masses in peptide mass fingerprinting protein identification. Proteomics 2002, 2, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, G.; Rao, H.; Xiao, X.; Chen, Y.; Wu, C.; Bian, F.; He, H. Novel Antioxidant Peptides Identified from Arthrospira platensis Hydrolysates Prepared by a Marine Bacterium Pseudoalteromonas sp. JS4-1 Extracellular Protease. Mar. Drugs 2023, 21, 133. [Google Scholar] [CrossRef] [PubMed]
Purification Steps | Total Volume (mL) | Total Protein (mg) | Total Activity (U) | Specific Activity (U/mg) | Purification Fold | Yield (%) |
---|---|---|---|---|---|---|
Crude broth | 1200 | 2062.5 | 129,846 | 62.95 | 1.00 | 100 |
Ammonium sulfate precipitation | 120 | 117.25 | 82,044.58 | 699.74 | 11.12 | 63.19 |
Anion-exchange chromatography | 100 | 50.36 | 42,721.21 | 848.24 | 13.47 | 32.90 |
Size-exclusion chromatography | 50 | 10.94 | 9777.06 | 893.92 | 14.20 | 7.53 |
Protease | EK4-1 | E495 | MCP-02 | Stearolysin | |
---|---|---|---|---|---|
Sources of strains | Arctic sea water | Arctic sea ice | Deep-sea sediment | Canned corn | |
Small side chain (%) | Gly | 10.2 | 10.9 | 9.5 | 12.2 |
Ser | 12.5 | 12.1 | 9.9 | 5.8 | |
Thr | 8.8 | 7.7 | 7.6 | 6.9 | |
Asn | 8.4 | 8.9 | 10.3 | 5.5 | |
(Gly + Ser + Thr + Asn) | 39.9 | 39.6 | 37.3 | 29.5 | |
Large side chain (%) | Arg | 1.6 | 1.8 | 2.1 | 5.1 |
Leu | 5.6 | 6.8 | 7.8 | 6.9 | |
Lys | 4.3 | 3.8 | 4.0 | 3.3 | |
(Arg + Leu + Lys) | 11.5 | 12.4 | 13.9 | 15.3 | |
Acidic amino acid (%) | Asp | 5.7 | 5.5 | 5.8 | 6.0 |
Glu | 4.8 | 3.6 | 3.4 | 4.2 | |
(Asp + Glu) | 10.5 | 9.1 | 9.2 | 10.2 | |
Basic amino acid (%) | Arg | 1.6 | 1.8 | 2.1 | 5.1 |
Lys | 4.3 | 3.8 | 4.0 | 3.3 | |
His | 1.5 | 1.2 | 1.2 | 2.2 | |
(Arg + Lys + His) | 7.4 | 6.8 | 7.3 | 10.6 | |
Acidic/basic amino acid | (Asp + Glu)/(Arg + Lys + His) | 1.42 | 1.34 | 1.26 | 0.96 |
α-helix (%) | 18.19 | 23.56 | 26.82 | 29.56 | |
β-sheet (%) | 29.78 | 22.60 | 23.66 | 22.08 | |
Random coil (%) | 48.07 | 47.12 | 43.47 | 42.88 |
Peptide | Mr (Experimental) 1 | Mr (Calculated) 2 | Position |
---|---|---|---|
H.LCGSHLVE.A | 904.4072 | 904.3960 | 6–13 |
H.LCGSHLVEAL.Y | 1088.4974 | 1088.5172 | 6–15 |
L.CGSHLVEALYLVCGERG.F | 1900.7811 | 1900.8295 | 7–23 |
G.SHLVEAL.Y | 767.4086 | 767.4177 | 9–15 |
G.SHLVEALY.L | 930.4758 | 930.4811 | 9–16 |
G.SHLVEALYL.V | 1043.5594 | 1043.5651 | 9–17 |
G.SHLVEALYLVCGERG.F | 1692.8301 | 1692.8141 | 9–23 |
S.HLVEALY.L | 843.4443 | 843.4490 | 10–16 |
S.HLVEALYL.V | 956.4919 | 956.5331 | 10–17 |
H.LVEALYLVCGER.G | 1411.7626 | 1411.7017 | 11–22 |
H.LVEALYLVCGERG.F | 1468.6918 | 1468.7232 | 11–23 |
E.ALYLVCGERG.F | 1127.5095 | 1127.5281 | 14–23 |
A.LYLVCGERG.F | 1056.5012 | 1056.4910 | 15–23 |
L.YLVCGERG.F | 943.4132 | 943.4069 | 16–23 |
Synthetic Substrate | kcat/Km (mM−1S−1) | [E] (μM) | [S] (mM) |
---|---|---|---|
FA-Gly-Phe-NH2 | 3.513 | 0.0541 | 0.5 |
FA-Gly-Leu-NH2 | 2.925 | 0.0541 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, H.; Huan, R.; Chen, Y.; Xiao, X.; Li, W.; He, H. Characteristics and Application of a Novel Cold-Adapted and Salt-Tolerant Protease EK4-1 Produced by an Arctic Bacterium Mesonia algae K4-1. Int. J. Mol. Sci. 2023, 24, 7985. https://doi.org/10.3390/ijms24097985
Rao H, Huan R, Chen Y, Xiao X, Li W, He H. Characteristics and Application of a Novel Cold-Adapted and Salt-Tolerant Protease EK4-1 Produced by an Arctic Bacterium Mesonia algae K4-1. International Journal of Molecular Sciences. 2023; 24(9):7985. https://doi.org/10.3390/ijms24097985
Chicago/Turabian StyleRao, Hailian, Ran Huan, Yidan Chen, Xun Xiao, Wenzhao Li, and Hailun He. 2023. "Characteristics and Application of a Novel Cold-Adapted and Salt-Tolerant Protease EK4-1 Produced by an Arctic Bacterium Mesonia algae K4-1" International Journal of Molecular Sciences 24, no. 9: 7985. https://doi.org/10.3390/ijms24097985
APA StyleRao, H., Huan, R., Chen, Y., Xiao, X., Li, W., & He, H. (2023). Characteristics and Application of a Novel Cold-Adapted and Salt-Tolerant Protease EK4-1 Produced by an Arctic Bacterium Mesonia algae K4-1. International Journal of Molecular Sciences, 24(9), 7985. https://doi.org/10.3390/ijms24097985