In Silico Investigation of Selected Pesticides and Their Determination in Agricultural Products Using QuEChERS Methodology and HPLC-DAD
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of the Contents of Selected Pesticides in Selected Agricultural Products
2.2. Computational Studies (EIIP Calculation, Conformational Search, Molecular Docking, and ADMET) of Selected Pesticides and Acetylcholine Esterase from Mus musculus and Homo sapiens
2.3. Molecular Docking Studies of Approved Alzheimer’s Medicines and Selected Pesticides against Acetylcholine Esterase from H. sapiens
2.4. In Silico ADMET Studies of Selected Pesticides
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of Real Samples of Agricultural Products (Tomatoes, Cucumbers, Peppers, and Grapes)
3.2.1. Method 1
3.2.2. Method 2
3.3. Preparation of Spiked Samples
3.4. HPLC-DAD Analysis
3.5. Electron-Ion Interaction Potential (EIIP)/Average Quasi-Valence Number (AQVN)
3.6. Unconstrained Conformational Search
3.7. Molecular Docking Studies
3.8. ADMET In Silico Studies
3.9. Determination of log D and pKas Values of Experimentally Determined Pesticides
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinto, M.I.; Burrows, H.D.; Sontag, G.; Vale, C.; Noronha, J.P. Priority pesticides in sediments of European coastal lagoons: A review. Mar. Pollut. Bull. 2016, 112, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Chen, J.; Shi, Y.P. Magnetic graphene solid-phase extraction for the determination of carbamate pesticides in tomatoes coupled with high performance liquid chromatography. Talanta 2015, 141, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Rubio, L.; Ortiz, M.C.; Sarabia, L.A. Identification and quantification of carbamate pesticides in dried lime tree flowers by means of excitation-emission molecular fluorescence and parallel factor analysis when quenching effect exists. Anal. Chim. Acta 2014, 820, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Santalad, A.; Srijaranai, S.; Burakham, R.; Glennon, J.D.; Deming, R.L. Cloud-point extraction and reversed-phase high-performance liquid chromatography for the determination of carbamate insecticide residues in fruits. Anal. Bioanal. Chem. 2009, 394, 1307–1317. [Google Scholar] [CrossRef]
- Zhou, T.; Xiao, X.; Li, G. Microwave accelerated selective Soxhlet extraction for the determination of organophosphorus and carbamate pesticides in ginseng with gas chromatography/mass spectrometry. Anal. Chem. 2012, 84, 5816–5822. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, J.; Wang, X.; Wu, M.; Cheng, M. Development of an improved single-drop microextraction method and its application for the analysis of carbamate and organophosphorus pesticides in water samples. Analyst 2012, 137, 5339–5345. [Google Scholar] [CrossRef]
- Wu, L.; Hu, M.; Li, Z.; Song, Y.; Zhang, H.; Yu, A.; Ma, Q.; Wang, Z. Dynamic microwave-assisted extraction online coupled with single drop microextraction of organophosphorus pesticides in tea samples. J. Chromatogr. A 2015, 1407, 42–51. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and ‘dispersive solid-phase extraction’ for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Ma, X.; Wang, J.; Wu, Q.; Wang, C.; Wang, Z. Extraction of carbamate pesticides in fruit samples by graphene reinforced hollow fibre liquid microextraction followed by high performance liquid chromatographic detection. Food Chem. 2014, 157, 119–124. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, G.; Feng, C.; Wang, C.; Wang, Z. Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. J. Chromatogr. A 2011, 1218, 7936–7942. [Google Scholar] [CrossRef]
- Moreno-González, D.; Huertas-Pérez, J.F.; García-Campaña, A.M.; Bosque-Sendra, J.M.; Gámiz-Gracia, L. Ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of carbamates in wines by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2013, 1315, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro Begnini Konatu, F.; Breitkreitz, M.C.; Sales Fontes Jardim, I.C. Revisiting quick, easy, cheap, effective, rugged, and safe parameters for sample preparation in pesticide residue analysis of lettuce by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2017, 1482, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.N.; Vasudev, K.; Vishnu Vardhana Rao, M. Quantification of organophosphate insecticides and herbicides in vegetable samples using the ‘quick Easy Cheap Effective Rugged and Safe’ (QuEChERS) method and a high-performance liquid chromatography-electrospray ionisation-mass spectrometry (LC-MS/MS) technique. Food Chem. 2012, 132, 1574–1584. [Google Scholar]
- Zhao, F.; She, Y.; Zhang, C.; Cao, X.; Wang, S.; Zheng, L.; Jin, M.; Shao, H.; Jin, F.; Wang, J. Selective solid-phase extraction based on molecularly imprinted technology for the simultaneous determination of 20 triazole pesticides in cucumber samples using high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2017, 1064, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Andrade, G.C.R.M.; Monteiro, S.H.; Francisco, J.G.; Figueiredo, L.A.; Botelho, R.G.; Tornisielo, V.L. Liquid chromatography-electrospray ionization tandem mass spectrometry and dynamic multiple reaction monitoring method for determining multiple pesticide residues in tomato. Food Chem. 2015, 175, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Lehotay, S.J.; Maštovská, K.; Lightfield, A.R. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J. AOAC Int. 2005, 88, 615–629. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Son, K.A.; Kwon, H.; Koesukwiwat, U.; Fu, W.; Mastovska, K.; Hoh, E.; Leepipatpiboon, N. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J. Chromatogr. A 2010, 1217, 2548–2560. [Google Scholar] [CrossRef]
- Farina, Y.; Abdullah, M.P.; Bibi, N.; Khalik, W.M.A.W.M. Determination of pesticide residues in leafy vegetables at parts per billion levels by a chemometric study using GC-ECD in Cameron Highlands, Malaysia. Food Chem. 2017, 224, 186–192. [Google Scholar] [CrossRef]
- Esturk, O.; Yakar, Y.; Ayhan, Z. Pesticide residue analysis in parsley, lettuce and spinach by LC-MS/MS. J. Food Sci. Technol. 2014, 51, 458–466. [Google Scholar] [CrossRef]
- Mladenović, M.; Arsić, B.B.; Stanković, N.; Mihović, N.; Ragno, R.; Regan, A.; Milićević, J.S.; Trtić-Petrović, T.M.; Micić, R. The targeted pesticides as acetylcholinesterase inhibitors: Comprehensive cross-organism molecular modelling studies performed to anticipate the pharmacology of harmfulness to humans in vitro. Molecules 2018, 23, 2192. [Google Scholar] [CrossRef]
- Čolović, M.B.; Krstić, D.Z.; Lazarević -Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Bojić, T.; Sencanski, M.; Perovic, V.; Milicevic, J.; Glisic, S. In silico screening of natural compounds for candidates 5HT6 receptor antagonists against Alzheimer’s disease. Molecules 2022, 27, 2626. [Google Scholar] [CrossRef] [PubMed]
- Di Masi, J.A.; Hansen, R.W.; Grabowski, H.G. The price of innovation: New estimates of drug development cost. J. Health Econ. 2003, 22, 151–185. [Google Scholar] [CrossRef]
- European Food Safety Authority. Modern methodologies and tools for human hazard assessment of chemicals. EFSA J. 2014, 12, 3638. [Google Scholar]
- Alves, V.M.; Muratov, E.N.; Zakharov, A.; Muratov, N.N.; Andrade, C.H.; Tropsha, A. Chemical toxicity prediction for major classes of industrial chemicals: Is it possible to develop universal models covering cosmetics, drugs, and pesticides? Food Chem. Toxicol. 2018, 112, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Craciun, D.; Modra, D.; Isvoran, A. ADME-Tox profiles of some food additives and pesticides. AIP Conf. Proc. 2015, 1694, 040007. [Google Scholar]
- Aydin, D.C.; Pineres, J.Z.; Al-Manji, F.; Rijnaarts, H.; Grotenhuis, T. Direct analysis of aromatic pollutants using a HPLC-FLD/DAD method for monitoring biodegradation processes. Anal. Methods 2021, 13, 1635–1642. [Google Scholar] [CrossRef]
- Wang, W.; Chen, H.; Gao, D.; Long, J.; Long, H.; Zhang, Y. Dissipation and dietary risk assessment of thiacloprid and tolfenpyrad in tea in China. Agronomy 2022, 12, 3166. [Google Scholar] [CrossRef]
- Fang, Q.; Shi, Y.; Cao, H.; Tong, Z.; Xiao, J.; Liao, M.; Wu, X.; Hua, R. Degradation dynamics and dietary risk assessments of two neonicotinoid insecticides during lonicera japonica planting, drying, and tea brewing processes. J. Agric. Food Chem. 2017, 65, 1483–1488. [Google Scholar] [CrossRef]
- Kooner, R.; Sahoo, S.K.; Singh, B.; Battu, R.S. Dissipation kinetics of flubendiamide and thiacloprid on tomato (Lycopersicon esculentum Mill) and soil. Qual. Assur. Saf. Crop. Foods 2010, 2, 36–40. [Google Scholar] [CrossRef]
- Liu, Z.J.; Wei, X.; Xu, H.; Li, M.; Zhu, G.B.; Xue, Y.L.; Zhang, Z.; Zhao, G.D.; Du, D.L. Sensitive detection of thiacloprid in environmental and food samples by enhanced chemiluminescent enzyme immunoassay. RSC Adv. 2016, 6, 29460–29465. [Google Scholar] [CrossRef]
- Banno, A.; Yabuki, Y. Simultaneous analysis of seven neonicotinoid pesticides in agricultural products involving solid-phase extraction and surrogate compensation using liquid chromatography-tandem mass spectrometry. J. Pestic. Sci. 2020, 45, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Žunić, A.; Vuković, S.; Lazić, S.; Šunjka, D.; Bošković, D. The efficacy of novel diamide insecticides in Grapholita molesta suppression and their residues in peach fruits. Plant Prot. Sci. 2020, 56, 46–51. [Google Scholar] [CrossRef]
- Zheng, Y.; Adoley, A.T.N.; Fateh, B.; Wu, W.; Hu, G.; Qiu, L.; Chen, J. Determination of methomyl residues in Bohe by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS). Int. J. Anal. Chem. 2020, 2020, 8817964. [Google Scholar] [CrossRef]
- Stafford, S.C.; Lin, W. Determination of oxamyl and methomyl by High-Performance Liquid Chromatography using a single-stage postcolumn derivatization reaction and fluorescence detection. J. Agric. Food Chem. 1992, 40, 1026–1029. [Google Scholar] [CrossRef]
- El-Hefny, D.; Abdallah, I.; Helmy, R.; Mahmoud, H. Dissipation of methomyl residues in tomato fruits, soil and water using LC-MS/MS. J. Plant Prot. Res. 2019, 59, 355–361. [Google Scholar]
- Businelli, M.; Patumi, M.; Marucchini, C. Identification and determination of some metalaxyl degradation products in lettuce and sunflower. J. Agric. Food Chem. 1984, 32, 644–647. [Google Scholar] [CrossRef]
- Velkoska-Markovska, L.; Petanovska-Ilievska, B.; Jankulovska, M.S.; Ilievski, U. Development and validation of High-Performance Liquid Chromatography method for determination of some pesticide residues in table grape. Acta Chromatogr. 2018, 30, 250–254. [Google Scholar] [CrossRef]
- Česnik, H.B. Validation of the multiresidual GC-MS method for determining plant protection product residues in strawberries. Acta Agric. Slov. 2018, 111, 377–391. [Google Scholar] [CrossRef]
- Malhat, F.M. Persistence of metalaxyl residues on tomato fruit using high performance liquid chromatography and QuEChERS methodology. Arab. J. Chem. 2017, 10, S765–S768. [Google Scholar] [CrossRef]
- Andrade, G.C.R.; Freguglia, R.M.O.; Furlani, R.Z.; Torres, N.T.; Tornisielo, V.L. Determination of pesticide residues in tomato using dispersive solid-phase extraction and gas chromatography/ion trap mass spectrometry. J. Braz. Chem. Soc. 2011, 22, 1701–1708. [Google Scholar] [CrossRef]
- Souza, D.F.; Souza, E.L.; Borges, E.M. Determination of pesticides in grape juices by QuEChERS and Liquid Chromatography-Tandem Mass Spectrometry. J. Braz. Chem. Soc. 2016, 27, 1626–1635. [Google Scholar] [CrossRef]
- Deng, L.; Chen, L.; Guan, S.; Liu, J.; Liang, J.; Li, X.; Li, Z. Dissipation of emamectin benzoate residues in rice and rice-growing environments. Molecules 2020, 25, 483. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Wu, X.; Chen, J.; Chen, J.; Lian, W.; Su, J.; Shi, L. Establishment of an LC-MS/MS method for the determination of 45 pesticide residues in fruits and vegetables from Fujian, China. Molecules 2022, 27, 8674. [Google Scholar] [CrossRef]
- Zhu, Z.; Shi, Q.; Wu, J.; He, K.; Feng, J.; Dong, S. Determination of acetamiprid residues in vegetables by Indirect Competitive Chemiluminescence Enzyme Immunoassay. Foods 2022, 11, 2507. [Google Scholar] [CrossRef]
- Apostolou, T.; Loizou, K.; Hadjilouka, A.; Inglezakis, A.; Kintzios, S. Newly developed system for acetamiprid residue screening in the lettuce samples based on a bioelectric cell biosensor. Biosensors 2020, 10, 8. [Google Scholar] [CrossRef]
- Lazić, S.; Šunjka, D.; Panić, S.; Inđić, D.; Grahovac, N.; Guzsvány, V.; Jovanov, P. Dissipation rate of acetamiprid in sweet cherries. Pestic. Phytomed. 2014, 29, 75–82. [Google Scholar] [CrossRef]
- Pan, T.-t.; Guo, W.; Lu, P.; Hu, D. In situ and rapid determination of acetamiprid residue on cabbage leaf using surface-enhanced Raman scattering. J. Sci. Food Agric. 2021, 101, 3595–3604. [Google Scholar] [CrossRef]
- Fukuto, T.R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 1990, 87, 245–254. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Massoud, A.H.; Derbalah, A.S.; Al-Brakati, A.; Al-Abdawani, M.A.; Eltahir, H.A.; Yanai, T.; Elmahallawy, E.K. Biochemical and histopathological alterations in different tissues of rats due to repeated oral dose toxicity of cymoxanil. Animals 2020, 10, 2205. [Google Scholar] [CrossRef]
- Casida, J.E.; Durkin, K.A. Neuroactive insecticides: Targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 2013, 58, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021, 190, 108352. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012, 55, 10282–10286. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Duffy, E.M. Prediction of drug solubility from structure. Adv. Drug Deliv. Rev. 2002, 54, 355–366. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Baell, J.B.; Holloway, G.A. New substructure filters for removal of Pan Assay Interference Compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53, 2719–2740. [Google Scholar] [CrossRef]
- Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 2009, 1, 8. [Google Scholar] [CrossRef]
- Lehotay, S.J. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. J. AOAC Int. 2007, 90, 485–520. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Cao, X.; Li, J. Determination of agrochemical residues in aquatic vegetables by solid-phase extraction combined with HPLC spectrometry analyses. Res. Chem. Intermed. 2015, 41, 2841–2853. [Google Scholar] [CrossRef]
- Veljkovic, V.; Slavic, I. Simple general-model pseudopotential. Phys. Rev. Lett. 1972, 29, 105–107. [Google Scholar] [CrossRef]
- Duran, A.; Zamora, I.; Pastor, M. Suitability of GRIND-based principal properties for the description of molecular similarity and ligand-based virtual screening. J. Chem. Inf. Model. 2009, 49, 2129–2138. [Google Scholar] [CrossRef] [PubMed]
- Veljkovic, V. A Theoretical Approach to Preselection of Carcinogens and Chemical Carcinogenesis; Gordon & Breach Science Publishers: New York, NY, USA, 1980. [Google Scholar]
- Veljkovic, V.; Veljkovic, N.; Esté, J.A.; Hüther, A.; Dietrich, U. Application of the EIIP/ISM bioinformatics concept in development of new drugs. Curr. Med. Chem. 2007, 14, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Katz, F.S.; Pecic, S.; Tran, T.H.; Trakht, I.; Schneider, L.; Zhu, Z.; Ton-That, L.; Luzac, M.; Zlatanic, V.; Damera, S.; et al. Discovery of new classes of compounds that reactivate acetylcholinesterase inhibited by organophosphates. ChemBioChem 2015, 16, 2205–2215. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Đorđević, J.; Trtić-Petrović, T.; Kumrić, K.; Purenović, M. Application of ACD/LABS 12 program for determination of conditions for experimental membrane extraction of pesticides. Hem. Ind. 2010, 64, 221–225. [Google Scholar]
Pesticides | Linear Regression Equations | Correlation Coefficients (R2) | Retention Time (min) |
---|---|---|---|
Chlorantraniliprole | y = 30.083x − 54.359 | 0.9826 | 14.25 |
Methomyl | y = 21.122x − 32.026 | 0.9986 | 1.8 |
Metalaxyl | y = 2.2131x + 14.37 | 0.9969 | 9.9 |
Thiacloprid | y = 321.89x + 167.29 | 0.9984 | 2.844 |
Acetamiprid | y = 102.59x − 107.96 | 0.9977 | 2.427 |
Emamectin benzoate | y = 1.165x + 5.8913 | 0.9785 | 1.17 |
Cymoxanil * | y = 24.121x + 4.4977 y = 28.514x − 21.374 | 0.9978 0.9996 | 2.846 2.800 |
Pesticide | Class | Molecular Formula | Z* (Ry) | EIIP’ (Ry) | log D | pKa1 | pKa2 | pKa3 |
---|---|---|---|---|---|---|---|---|
Acetamiprid | Neonicotinoid insecticide; pyridylmethylamine neonicotinoid insecticide | C10H11ClN4 | 2.769 | 0.041 | 1.55 | −2.47 | −0.44 | / |
Chlorantraniliprole | Diamide insecticide; pyridylpyrazole insecticide | C18H14BrCl2N5O2 | 3.000 | 0.044 | 3.64 | 10.19 | 14.77 | / |
Cymoxanil | Cyanoacetamide oxime fungicide; urea fungicide; nitrile fungicide | C7H10N4O3 | 3.167 | 0.100 | 0.67 (pH = 2), −0.21 (pH = 5.5), −0.96 (pH = 6.5), −1.26 (pH = 7.4), −1.33 (pH = 10) | −1.54 | 5.59 | 16.14 |
Emamectin Benzoate | Avermectin class insecticide | C56H81NO15 | 2.614 | 0.080 | 3.38 (pH = 2), 3.63 (pH = 5.5), 5.16 (pH = 7.4), 6.46 (pH = 10) | 8.71 | 12.42 | 13.37 |
Metalaxyl | Anilide fungicide; acylamino acid fungicide | C15H21NO4 | 2.683 | 0.065 | 1.76 | 1.41 | / | / |
Methomyl | Carbamate insecticide; oxime carbamate insecticide; carbamate acariicide; oxime carbamate acaricide | C5H10N2O2S | 2.90 | 0.006 | 0.6 | −1.25 | 13.27 | / |
Thiacloprid | Neonicotinoid insecticide; pyridylmethylamine neonicotinoid insecticide; thiazolidine insecticide | C10H9ClN4S | 3.04 | 0.059 | 2.2 | 0.01 | / | / |
Pesticide | Global Minimum Energy (kJ/mol) | Number of Repeats | Glide Score (kcal/mol) | |
---|---|---|---|---|
Mus musculus | Homo sapiens | |||
Acetamiprid | −79.3 | 53 | −4.69 | −5.21 |
Chlorantraniliprole | 91.1 | 15 | −5.17 | −4.94 |
Cymoxanil | −236.8 | 28 | −3.9 | −3.85 |
Emamectin benzoate | 98.3 | 13 | −5.76 | −3.97 |
Metalaxyl | 318.7 | 9 | −1.37 | −5.01 |
Methomyl | −82.4 | 65 | −4.94 | −2.82 |
Thiacloprid | −204 | 70 | −4.55 | −4.56 |
Compound | MW | RB | DM | MV | DHB | AHB | PSA | logP | logS | PCaco | PM | %HOA | VRF | VRT | herg K+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
methomyl | 162.2 | 3 | 6.5 | 599.3 | 1 | 4 | 68.1 | 0.9 | −1.8 | 1305 | 0 | 88 | 0 | 0 | −3.4 |
thiacloprid | 252.7 | 4 | 8.8 | 776.9 | 0 | 4 | 51.9 | 2.3 | −2.9 | 1157 | 2 | 95 | 0 | 0 | −4.3 |
metalaxyl | 279.3 | 5 | 7.1 | 488.9 | 0 | 6.7 | 55.4 | 1.6 | −1.2 | 3809 | 6 | 100 | 0 | 0 | −3.5 |
chlorantraniliprole | 483.1 | 3 | 5.9 | 1182.8 | 1 | 6 | 79.2 | 4.7 | −6.7 | 1816 | 2 | 100 | 0 | 1 | −5.9 |
acetamiprid | 222.7 | 4 | 7.1 | 737.8 | 0 | 4 | 59.4 | 1.8 | −2.2 | 927 | 2 | 91 | 0 | 0 | −3.9 |
emamectin benzoate | 1008.2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
cymoxanil | 198.2 | 5 | 12.8 | 713.5 | 1 | 6.7 | 121.4 | 14.1 | −1.9 | 73 | 0 | 55 | 0 | 0 | −3.1 |
Compound | MW | TPSA | C logPo/w | log S-ali | P-gp | Lipinski | Egan | PAINS | SAscore |
---|---|---|---|---|---|---|---|---|---|
methomyl | 162.2 | 75.9 | 0.8 | −1.8 | No | 0 | 0 | 0 | 2.8 |
thiacloprid | 252.7 | 77.6 | 1.7 | −3.1 | No | 0 | 0 | 0 | 2.9 |
metalaxyl | 279.3 | 55.8 | 2.0 | −2.4 | No | 0 | 0 | 0 | 2.6 |
chlorantraniliprole | 483.1 | 88.9 | 3.76 | −6.4 | No | 0 | 0 | 0 | 3.1 |
acetamiprid | 222.7 | 52.3 | 1.64 | −2.1 | No | 0 | 0 | 0 | 2.4 |
emamectin benzoate | 1008.2 | 199.2 | 4.6 | −7.1 | Yes | 2 | 2 | 0 | 10 |
cymoxanil | 198.2 | 103.6 | −0.45 | −2.3 | No | 0 | 0 | 0 | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrović, S.; Arsić, B.; Zlatanović, I.; Milićević, J.; Glišić, S.; Mitić, M.; Đurović-Pejčev, R.; Stojanović, G. In Silico Investigation of Selected Pesticides and Their Determination in Agricultural Products Using QuEChERS Methodology and HPLC-DAD. Int. J. Mol. Sci. 2023, 24, 8003. https://doi.org/10.3390/ijms24098003
Petrović S, Arsić B, Zlatanović I, Milićević J, Glišić S, Mitić M, Đurović-Pejčev R, Stojanović G. In Silico Investigation of Selected Pesticides and Their Determination in Agricultural Products Using QuEChERS Methodology and HPLC-DAD. International Journal of Molecular Sciences. 2023; 24(9):8003. https://doi.org/10.3390/ijms24098003
Chicago/Turabian StylePetrović, Stefan, Biljana Arsić, Ivana Zlatanović, Jelena Milićević, Sanja Glišić, Milan Mitić, Rada Đurović-Pejčev, and Gordana Stojanović. 2023. "In Silico Investigation of Selected Pesticides and Their Determination in Agricultural Products Using QuEChERS Methodology and HPLC-DAD" International Journal of Molecular Sciences 24, no. 9: 8003. https://doi.org/10.3390/ijms24098003
APA StylePetrović, S., Arsić, B., Zlatanović, I., Milićević, J., Glišić, S., Mitić, M., Đurović-Pejčev, R., & Stojanović, G. (2023). In Silico Investigation of Selected Pesticides and Their Determination in Agricultural Products Using QuEChERS Methodology and HPLC-DAD. International Journal of Molecular Sciences, 24(9), 8003. https://doi.org/10.3390/ijms24098003