Synthesis and Evaluation of Hypoglycemic Activity of Structural Isomers of ((Benzyloxy)phenyl)propanoic Acid Bearing an Aminobornyl Moiety
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. In Vitro Study
2.3. In Vivo Study
3. Discussion
4. Materials and Methods
4.1. Chemistry
4.1.1. General
4.1.2. General Procedure for Mitsunobu Reaction
4.1.3. General Procedure for Dimethylacetal Deprotection
4.1.4. General Procedure for Reductive Amination
4.1.5. General Procedure for Hydrolysis
4.2. In Vitro
4.2.1. Cell Culture
4.2.2. The Design of the Experiment on HepG2 Cells
4.2.3. Glucose Consumption and Lactate Release Assays
4.2.4. MTT Assay for Cell Viability
4.2.5. In Vitro FFA1 Activation Assay
4.3. In Vivo
4.3.1. Animals
4.3.2. Oral Glucose Tolerance Test (OGTT)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Kaabi, J.A. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Roden, M.; Shulman, G.I. The integrative biology of type 2 diabetes. Nature 2019, 576, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Chen, Y.; Deng, X.; Li, Y.; Ma, X.; Zeng, J.; Zhao, Y. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation. Biomed. Pharmacother. 2023, 159, 114252. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, P.H. Diabetic retinopathy. Medicine 2022, 50, 696–703. [Google Scholar] [CrossRef]
- Laakso, M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 1999, 48, 937–942. [Google Scholar] [CrossRef]
- Srinivasan, B.T.; Davies, M. Glycaemic management of type 2 diabetes. Medicine 2019, 47, 32–39. [Google Scholar] [CrossRef]
- Fuh, M.T.; Tseng, C.C.; Li, S.M.; Tsai, S.E.; Chuang, T.J.; Lu, C.H.; Yang, Y.C.; Tsai, H.J.; Wong, F.F. Design, synthesis and biological evaluation of glycolamide, glycinamide, and β-amino carbonyl 1,2,4-triazole derivatives as DPP-4 inhibitors. Bioorg. Chem. 2021, 114, 105049. [Google Scholar] [CrossRef]
- Vo, D.V.; Hong, K.H.; Lee, J.; Park, H. Synthesis, in vitro evaluation, and computational simulations studies of 1,2,3-triazole analogues as DPP-4 inhibitors. Bioorg. Med. Chem. 2021, 29, 115861. [Google Scholar] [CrossRef]
- Sun, J.; Liu, H.Y.; Zhang, Y.H.; Fang, Z.Y.; Lv, P.C. Design, synthesis and bioactivity evaluation of thiazolidinedione derivatives as partial agonists targeting PPARγ. Bioorg. Chem. 2021, 116, 105342. [Google Scholar] [CrossRef] [PubMed]
- Shakour, N.; Sahebkar, A.; Karimi, G.; Paseban, M.; Tasbandi, A.; Mosaffa, F.; Tayarani-Najaran, Z.; Ghodsi, R.; Hadizadeh, F. Design, synthesis and biological evaluation of novel 5-(imidazolyl-methyl) thiazolidinediones as antidiabetic agents. Bioorg. Chem. 2021, 115, 105162. [Google Scholar] [CrossRef] [PubMed]
- Tseng, P.S.; Ande, C.; Moremen, K.W.; Crich, D. Influence of Side Chain Conformation on the Activity of Glycosidase. Inhibitors. Angew. Chem. Int. Ed. 2023, 62, 202217809. [Google Scholar]
- Rajasekaran, P.; Ande, C.; Vankar, Y.D. Synthesis of (5,6 & 6,6)-oxa-oxa annulated sugars as glycosidase inhibitors from 2-formyl galactal using iodocyclization as a key step. Arkivoc 2022, 2022, 5–23. [Google Scholar]
- Chennaiah, A.; Bhowmick, S.; Vankar, Y.D. Conversion of glycals into vicinal-1,2-diazides and 1,2-(or 2,1)-azidoacetates using hypervalent iodine reagents and Me3SiN3. Application in the synthesis of N-glycopeptides, pseudo-trisaccharides and an iminosugar. RSC Adv. 2017, 7, 41755–41762. [Google Scholar] [CrossRef]
- Putapatri, S.R.; Kanwal, A.; Banerjee, S.K.; Kantevari, S. Synthesis of novel l-rhamnose derived acyclic C-nucleosides with substituted 1,2,3-triazole core as potent sodium-glucose co-transporter (SGLT) inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 1528–1531. [Google Scholar] [CrossRef]
- Xu, G.; Gaul, M.D.; Kuo, G.H.; Du, F.; Xu, J.Z.; Wallace, N.; Hinke, S.; Kirchner, T.; Silva, J.; Huebert, N.D.; et al. Design, synthesis and biological evaluation of (2S,3R,4R,5S,6R)-5-fluoro-6-(hydroxymethyl)-2-aryltetrahydro-2H-pyran-3,4-diols as potent and orally active SGLT dual inhibitors. Bioorg. Med. Chem. Lett. 2018, 28, 3446–3453. [Google Scholar] [CrossRef]
- Poitout, V.; Lin, D.C. Modulating GPR40: Therapeutic promise and potential in diabetes. Drug Discov. Today 2013, 18, 1301–1308. [Google Scholar] [CrossRef]
- Prentki, M.; Tornheim, K.; Corkey, B.E. Signal transduction mechanisms in nutrient-induced insulin secretion. Diabetologia 1997, 40, 32–41. [Google Scholar] [CrossRef]
- Kolczynska, K.; Loza-Valdes, A.; Hawro, I.; Sumara, G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: A review. Lipids Health Dis. 2020, 19, 113. [Google Scholar] [CrossRef]
- Governa, P.; Caroleo, M.C.; Carullo, G.; Aiello, F.; Cione, E.; Manetti, F. FFAR1/GPR40: One target, different binding sites, many agonists, no drugs, but a continuous and unprofitable tug-of-war between ligand lipophilicity, activity, and toxicity. Bioorg. Med. Chem. Lett. 2021, 41, 127969. [Google Scholar] [CrossRef] [PubMed]
- Briscoe, C.P.; Tadayyon, M.; Andrews, J.L.; Benson, W.G.; Chambers, J.K.; Eilert, M.M.; Ellis, C.; Elshourbagy, N.A.; Goetz, A.S.; Minnick, D.T.; et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem. 2003, 278, 11303–11311. [Google Scholar] [CrossRef] [PubMed]
- Kuranov, S.O.; Luzina, O.A.; Salakhutdinov, N.F. FFA1 (GPR40) Receptor Agonists Based on Phenylpropanoic Acid as Hypoglycemic Agents: Structure–Activity Relationship. Russ. J. Bioorg. Chem. 2020, 46, 972–988. [Google Scholar] [CrossRef]
- Kuranov, S.O.; Luzina, O.A.; Onopchenko, O.; Pishel, I.; Zozulya, S.; Gureev, M.; Salakhutdinov, N.F.; Krasavin, M. Exploring bulky natural and natural-like periphery in the design of p-(benzyloxy)phenylpropionic acid agonists of free fatty acid receptor 1 (GPR40). Bioorg. Chem. 2020, 99, 103830. [Google Scholar] [CrossRef]
- Kuranov, S.; Luzina, O.; Khvostov, M.; Baev, D.; Kuznetsova, D.; Zhukova, N.; Vassiliev, P.; Kochetkov, A.; Tolstikova, T.; Salakhutdinov, N. Bornyl Derivatives of p-(Benzyloxy)Phenylpropionic Acid: In Vivo Evaluation of Antidiabetic Activity. Pharmaceuticals 2020, 13, 404. [Google Scholar] [CrossRef]
- Pon`kina, D.; Kuranov, S.; Khvostov, M.; Zhukova, N.; Meshkova, Y.; Marenina, M.; Luzina, O.; Tolstikova, T.; Salakhutdinov, N. Hepatoprotective Effect of a New FFAR1 Agonist—N-Alkylated Isobornylamine. Molecules 2023, 28, 396. [Google Scholar] [CrossRef]
- Plummer, C.W.; Clements, M.J.; Chen, H.; Rajagopalan, M.; Josien, H.; Hagmann, W.K.; Miller, M.; Trujillo, M.E.; Kirkland, M.; Kosinski, D.; et al. Design and Synthesis of Novel, Selective GPR40 AgoPAMs. ACS Med. Chem. Lett. 2017, 8, 221–226. [Google Scholar] [CrossRef]
- Edfalk, S.; Steneberg, P.; Edlund, H. GPR40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 2008, 57, 2280–2287. [Google Scholar] [CrossRef]
- Mitsunobu, O. The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products. Synthesis 1981, 1, 1–28. [Google Scholar] [CrossRef]
- Hamdouchi, C.; Kahl, S.D.; Patel Lewis, A.; Cardona, G.R.; Zink, R.W.; Chen, K.; Eessalu, T.E.; Ficorilli, J.V.; Marcelo, M.C.; Otto, K.A.; et al. The Discovery, Preclinical, and Early Clinical Development of Potent and Selective GPR40 Agonists for the Treatment of Type 2 Diabetes Mellitus (LY2881835, LY2922083, and LY2922470). J. Med. Chem. 2016, 59, 10891–10916. [Google Scholar] [CrossRef]
- Carullo, G.; Mazzotta, S.; Vega-Holm, M.; Iglesias-Guerra, F.; Vega-Pérez, J.M.; Aiello, F.; Brizzi, A. GPR120/FFAR4 Pharmacology: Focus on Agonists in Type 2 Diabetes Mellitus Drug Discovery. J. Med. Chem. 2021, 64, 4312–4332. [Google Scholar] [CrossRef]
- Nevin, D.K.; Lloyd, D.G.; Fayne, D. Rational targeting of peroxisome proliferating activated receptor subtypes. Curr. Med. Chem. 2011, 18, 5598–5623. [Google Scholar] [CrossRef]
- Miyachi, H.; Uchiki, H. Analysis of the critical structural determinant(s) of species-selective peroxisome proliferator-activated receptor alpha (PPAR alpha)-activation by phenylpropanoic acid-type PPAR alpha agonists. Bioorg. Med. Chem. Lett. 2003, 13, 3145–3149. [Google Scholar] [CrossRef]
- Colín-Lozano, B.; Estrada-Soto, S.; Chávez-Silva, F.; Gutiérrez-Hernández, A.; Cerón-Romero, L.; Giacoman-Martínez, A.; Almanza-Pérez, J.C.; Hernández-Núñez, E.; Wang, Z.; Xie, X.; et al. Design, Synthesis and in Combo Antidiabetic Bioevaluation of Multitarget Phenylpropanoic Acids. Molecules 2018, 23, 340. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.B.; Liu, J.Z.; Zhang, S.E.; Du, X.; Nie, F.; Tian, J.Y.; Ye, F.; Huang, K.; Hu, J.P.; Li, Y.; et al. 3-Phenylpropanoic acid-based phosphotyrosine (pTyr) mimetics: Hit evolution to a novel orally active protein tyrosine phosphatase 1B (PTP1B) inhibitor. ChemMedChem 2014, 9, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, G.; Nigro, C.; Sirico, A.; Novelli, R.; Prevenzano, I.; Miele, C.; Beguinot, F.; Aramini, A. A new synthetic dual agonist of GPR120/GPR40 induces GLP-1 secretion and improves glucose homeostasis in mice. Biomed. Pharmacother. 2021, 139, 111613. [Google Scholar] [CrossRef]
- Hidalgo-Figueroa, S.; Rodríguez-Luévano, A.; Almanza-Pérez, J.C.; Giacoman-Martínez, A.; Ortiz-Andrade, R.; León-Rivera, I.; Navarrete-Vázquez, G. Synthesis, molecular docking, dynamic simulation and pharmacological characterization of potent multifunctional agent (dual GPR40-PPARγ agonist) for the treatment of experimental type 2 diabetes. Eur. J. Pharmacol. 2021, 907, 174244. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.B.; Miranda-Perez, E.; Verjan, J.C.G.; de Los Angeles Fortis Barrera, M.; Perez-Ramos, J.; Alarcon-Aguilar, F.J. Potential of the chlorogenic acid as multitarget agent: Insulin-secretagogue and PPAR α/γ dual agonist. Biomed. Pharmacother. 2017, 94, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Bhurruth-Alcor, Y.; Røst, T.; Jorgensen, M.R.; Kontogiorgis, C.; Skorve, J.; Cooper, R.G.; Sheridan, J.M.; Hamilton, W.D.; Heal, J.R.; Berge, R.K.; et al. Synthesis of novel PPARα/γ dual agonists as potential drugs for the treatment of the metabolic syndrome and diabetes type II designed using a new de novo design program protobuild. Org. Biomol. Chem. 2011, 9, 1169–1188. [Google Scholar] [CrossRef]
- Brown, S.P.; Dransfield, P.J.; Vimolratana, M.; Jiao, X.; Zhu, L.; Pattaropong, V.; Sun, Y.; Liu, J.; Luo, J.; Zhang, J.; et al. Discovery of AM-1638: A Potent and Orally Bioavailable GPR40/FFA1 Full Agonist. ACS Med. Chem. Lett. 2012, 3, 726–730. [Google Scholar] [CrossRef]
- Yin, J.; Hu, R.; Chen, M.; Tang, J.; Li, F.; Yang, Y.; Chen, J. Effects of berberine on glucose metabolism in vitro. Metab. Clin. Exp. 2002, 51, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Pang, T.; Gu, M.; Gao, A.H.; Xie, C.M.; Li, J.Y.; Nan, F.J.; Li, J. Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochim. Biophys. Acta 2006, 1760, 1682–1689. [Google Scholar] [CrossRef] [PubMed]
- Tai, M.M. A mathematical model for the determination of total area under glucose tolerance and other metabolic curves. Diabetes Care 1994, 17, 152–154. [Google Scholar] [CrossRef] [PubMed]
Group | Glucose Consumption, % | Lactate Release, % | |
---|---|---|---|
Control | 25.00 ± 0.51 | 15.00 ± 0.72 | |
6a (PPX) | 10 μM | 33.94 ± 0.24 * # | 26.52 ± 1.33 * # |
25 μM | 47.08 ± 0.87 * # | 37.58 ± 1.03 * # | |
6b (PPN) | 10 μM | 30.34 ± 2.21 * # | 20.54 ± 0.53 * # |
25 μM | 38.55 ± 1.28 * # | 24.77 ± 0.36 * # | |
6c (PMX) | 10 μM | 35.82 ± 1.94 * # | 18.72 ± 0.60 * # |
25 μM | 40.88 ± 1.09 * # | 26.56 ± 0.68 * # | |
6d (PMN) | 10 μM | 29.94 ± 1.64 * # | 18.81 ± 0.40 * # |
25 μM | 35.16 ± 2.15 * # | 20.44 ± 1.89 * # | |
6e (MPX) | 10 μM | 27.20 ± 1.79 # | 21.31 ± 0.70 * # |
25 μM | 40.03 ± 1.35 * # | 29.19 ± 0.71 * # | |
6f (MPN) | 10 μM | 27.53 ± 0.60 # | 16.51 ± 0.41 # |
25 μM | 35.55 ± 0.24 * # | 22.25 ± 0.50 * # | |
6g (MMX) | 10 μM | 28.16 ± 1.75 * # | 21.28 ± 0.69 * # |
25 μM | 39.73 ± 0.47 * # | 25.87 ± 1.07 * # | |
6h (MMN) | 10 μM | 32.57 ± 0.73 * # | 15.23 ± 0.34 # |
25 μM | 35.55 ± 0.83 * # | 20.65 ± 0.31 * # | |
GW9508 | 10 μM | 44.66 ± 0.35 * | 34.57 ± 0.38 * |
25 μM | 54.21 ± 0.83 * | 46.43 ± 0.43 * |
Compound | AUC Difference (5 mg/kg), % | AUC Difference (15 mg/kg), % |
---|---|---|
6a(QS-528) | - 1 | - |
6b | - | - |
6c | - | - |
6d | - | - |
6e (MPX) | 14.0 | 20.8 |
6f | - | - |
6g (MMX) | - | 23.4 |
6h | - | - |
Vildagliptin | 25.4 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuranov, S.O.; Pon`kina, D.A.; Meshkova, Y.V.; Marenina, M.K.; Khvostov, M.V.; Luzina, O.A.; Tolstikova, T.G.; Salakhutdinov, N.F. Synthesis and Evaluation of Hypoglycemic Activity of Structural Isomers of ((Benzyloxy)phenyl)propanoic Acid Bearing an Aminobornyl Moiety. Int. J. Mol. Sci. 2023, 24, 8022. https://doi.org/10.3390/ijms24098022
Kuranov SO, Pon`kina DA, Meshkova YV, Marenina MK, Khvostov MV, Luzina OA, Tolstikova TG, Salakhutdinov NF. Synthesis and Evaluation of Hypoglycemic Activity of Structural Isomers of ((Benzyloxy)phenyl)propanoic Acid Bearing an Aminobornyl Moiety. International Journal of Molecular Sciences. 2023; 24(9):8022. https://doi.org/10.3390/ijms24098022
Chicago/Turabian StyleKuranov, Sergey O., Darya A. Pon`kina, Yulia V. Meshkova, Mariya K. Marenina, Mikhail V. Khvostov, Olga A. Luzina, Tatiana G. Tolstikova, and Nariman F. Salakhutdinov. 2023. "Synthesis and Evaluation of Hypoglycemic Activity of Structural Isomers of ((Benzyloxy)phenyl)propanoic Acid Bearing an Aminobornyl Moiety" International Journal of Molecular Sciences 24, no. 9: 8022. https://doi.org/10.3390/ijms24098022
APA StyleKuranov, S. O., Pon`kina, D. A., Meshkova, Y. V., Marenina, M. K., Khvostov, M. V., Luzina, O. A., Tolstikova, T. G., & Salakhutdinov, N. F. (2023). Synthesis and Evaluation of Hypoglycemic Activity of Structural Isomers of ((Benzyloxy)phenyl)propanoic Acid Bearing an Aminobornyl Moiety. International Journal of Molecular Sciences, 24(9), 8022. https://doi.org/10.3390/ijms24098022