Irisin as a Novel Biomarker of Subclinical Atherosclerosis in Severe Obesity
Abstract
:1. Introduction
2. Results
2.1. General Characteristics
2.2. Irisin Levels and Genetic Variability in Subclinical Atherosclerosis
2.3. Association between Irisin Levels and Biochemical Features of Atherosclerosis
2.4. Irisin as a Biomarker of Subclinical Atherosclerosis
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Clinical and Biochemical Evaluations
4.3. Irisin Polymorphism Selection and Genotyping
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blüher, M. Obesity: Global Epidemiology and Pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO European Regional Obesity Report 2022; WHO Regional Office for Europe: København, Denmark, 2022. [Google Scholar]
- Nguyen, N.T.; Varela, J.E. Bariatric Surgery for Obesity and Metabolic Disorders: State of the Art. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, M.P.; Raja, R.; Jamil, A.; Csendes, D.; Gutlapalli, S.D.; Prakash, K.; Swarnakari, K.M.; Bai, M.; Desai, D.M.; Desai, A.; et al. Obesity and Coronary Artery Disease: An Updated Systematic Review 2022. Cureus 2022, 14, e29480. [Google Scholar] [CrossRef] [PubMed]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of All-Cause Mortality with Overweight and Obesity Using Standard Body Mass Index Categories: A Systematic Review and Meta-Analysis. JAMA 2013, 309, 71–82. [Google Scholar] [CrossRef]
- World Health Organization. Cardiovascular Diseases (CVDs), Key Facts. Available online: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 3 May 2022).
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Ellenberger, K.; Jeyaprakash, P.; Sivapathan, S.; Sangha, S.; Kitley, J.; Darshni, A.; Chen, D.; Negishi, K.; Pathan, F. The Effect of Obesity on Echocardiographic Image Quality. Heart Lung Circ. 2022, 31, 207–215. [Google Scholar] [CrossRef]
- Carmona-Maurici, J.; Cuello, E.; Ricart-Jané, D.; Miñarro, A.; Baena-Fustegueras, J.A.; Peinado-Onsurbe, J.; Pardina, E. Effect of Bariatric Surgery on Inflammation and Endothelial Dysfunction as Processes Underlying Subclinical Atherosclerosis in Morbid Obesity. Surg. Obes. Relat. Dis. 2020, 16, 1961–1970. [Google Scholar] [CrossRef]
- Novelle, M.G.; Contreras, C.; Romero-Picó, A.; López, M.; Diéguez, C. Irisin, Two Years Later. Int. J. Endocrinol. 2013, 2013, 746281. [Google Scholar] [CrossRef]
- Aronis, K.N.; Moreno, M.; Polyzos, S.A.; Moreno-Navarrete, J.M.; Ricart, W.; Delgado, E.; de la Hera, J.; Sahin-Efe, A.; Chamberland, J.P.; Berman, R.; et al. Circulating Irisin Levels and Coronary Heart Disease: Association with Future Acute Coronary Syndrome and Major Adverse Cardiovascular Events. Int. J. Obes. 2015, 39, 156–161. [Google Scholar] [CrossRef]
- Bostrom, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Bostrom, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1-Alpha-Dependent Myokine That Drives Brown-Fat-like Development of White Fat and Thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef]
- Li, H.; Wang, F.; Yang, M.; Sun, J.; Zhao, Y.; Tang, D. The Effect of Irisin as a Metabolic Regulator and Its Therapeutic Potential for Obesity. Int. J. Endocrinol. 2021, 2021, 6572342. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Anastasilakis, A.D.; Efstathiadou, Z.A.; Makras, P.; Perakakis, N.; Kountouras, J.; Mantzoros, C.S. Irisin in Metabolic Diseases. Endocrine 2018, 59, 260–274. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, H.; Zhang, J.; Zhang, X.; Xin, C.; Zhang, F.; Lee, Y.; Zhang, L.; Lian, K.; Yan, W.; et al. Irisin Improves Endothelial Function in Type 2 Diabetes through Reducing Oxidative/Nitrative Stresses. J. Mol. Cell. Cardiol. 2015, 87, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Bialy, A.I.; Pocheć, E.; Zarawski, M. Anti-Inflammatory Properties of Irisin, Mediator of Physical Activity, Are Connected with TLR4/MyD88 Signaling Pathway Activation. Int. J. Mol. Sci. 2017, 18, 701. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Zaichenko, L.; Brinkoetter, M.; Thakkar, B.; Sahin-Efe, A.; Joung, K.E.; Tsoukas, M.A.; Geladari, E.V.; Huh, J.Y.; Dincer, F.; et al. Circulating Irisin in Relation to Insulin Resistance and the Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2013, 98, 4899–4907. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.; Shen, J.; Liu, Q.; Zhang, Y.; Kuang, J.; Pu, S.; Cheng, S.; Zou, M.; Jiang, W.; Jiang, C.; et al. Irisin Is Regulated by CAR in Liver and Is a Mediator of Hepatic Glucose and Lipid Metabolism. Mol. Endocrinol. 2016, 30, 533–542. [Google Scholar] [CrossRef]
- Carmona-Maurici, J.; Cuello, E.; Ricart-Jané, D.; Miñarro, A.; Olsina Kissler, J.J.; Baena-Fustegueras, J.A.; Peinado-Onsurbe, J.; Pardina, E. Effect of Bariatric Surgery in the Evolution of Oxidative Stress Depending on the Presence of Atheroma in Patients with Morbid Obesity. Surg. Obes. Relat. Dis. 2020, 16, 1258–1265. [Google Scholar] [CrossRef]
- Carmona-Maurici, J.; Cuello, E.; Sánchez, E.; Miñarro, A.; Rius, F.; Bueno, M.; de la Fuente, M.C.; Olsina Kissler, J.J.; Vidal, T.; Maria, V.; et al. Impact of Bariatric Surgery on Subclinical Atherosclerosis in Patients with Morbid Obesity. Surg. Obes. Relat. Dis. 2020, 16, 1419–1428. [Google Scholar] [CrossRef]
- Jia, J.; Yu, F.; Wei, W.-P.; Yang, P.; Zhang, R.; Sheng, Y.; Shi, Y.-Q. Relationship between Circulating Irisin Levels and Overweight/Obesity: A Meta-Analysis. World J. Clin. Cases 2019, 7, 1444–1455. [Google Scholar] [CrossRef] [PubMed]
- Belviranli, M.; Okudan, N.; Çelik, F. Association of Circulating Irisin with Insulin Resistance and Oxidative Stress in Obese Women. Horm. Metab. Res. 2016, 48, 653–657. [Google Scholar] [CrossRef]
- Pérez-Sotelo, D.; Roca-Rivada, A.; Baamonde, I.; Baltar, J.; Castro, A.I.; Domínguez, E.; Collado, M.; Casanueva, F.F.; Pardo, M. Lack of Adipocyte-Fndc5/Irisin Expression and Secretion Reduces Thermogenesis and Enhances Adipogenesis. Sci. Rep. 2017, 7, 16289. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Y.; Gusdon, A.M.; Qu, S. Irisin: A New Molecular Marker and Target in Metabolic Disorder. Lipids Health Dis. 2015, 14, 2. [Google Scholar] [CrossRef]
- Huh, J.Y.; Panagiotou, G.; Mougios, V.; Brinkoetter, M.; Vamvini, M.T.; Schneider, B.E.; Mantzoros, C.S. FNDC5 and Irisin in Humans: I. Predictors of Circulating Concentrations in Serum and Plasma and II. MRNA Expression and Circulating Concentrations in Response to Weight Loss and Exercise. Metabolism 2012, 61, 1725–1738. [Google Scholar] [CrossRef]
- Demirpence, M.; Yilmaz, H.; Colak, A.; Yalcin, H.; Toprak, B.; Turkon, H.; Ugurlu, L.; Aydin, C. The Effect of Sleeve Gastrectomy on Serum Irisin Levels in Patients with Morbid Obesity. Endokrynol. Pol. 2016, 67, 481–486. [Google Scholar] [CrossRef]
- Hisamatsu, T.; Miura, K.; Arima, H.; Fujiyoshi, A.; Kadota, A.; Kadowaki, S.; Zaid, M.; Miyagawa, N.; Satoh, A.; Kunimura, A.; et al. Relationship of Serum Irisin Levels to Prevalence and Progression of Coronary Artery Calcification: A Prospective, Population-Based Study. Int. J. Cardiol. 2018, 267, 177–182. [Google Scholar] [CrossRef]
- Remuzgo-Martínez, S.; Rueda-Gotor, J.; Pulito-Cueto, V.; López-Mejías, R.; Corrales, A.; Lera-Gómez, L.; Pérez-Fernández, R.; Portilla, V.; González-Mazón, Í.; Blanco, R.; et al. Irisin as a Novel Biomarker of Subclinical Atherosclerosis, Cardiovascular Risk and Severe Disease in Axial Spondyloarthritis. Front. Immunol. 2022, 13, 894171. [Google Scholar] [CrossRef] [PubMed]
- Onalan Etem, E.; Dis, O.; Tektemur, A.; Korkmaz, H.; Buran Kavuran, I. Common Single Nucleotide Polymorphisms in the FNDC5 Gene and Serum Irisin Levels in Acute Myocardial Infarction. Anatol. J. Cardiol. 2021, 25, 528–535. [Google Scholar] [CrossRef]
- Cao, R.Y.; Zheng, H.; Redfearn, D.; Yang, J. FNDC5: A Novel Player in Metabolism and Metabolic Syndrome. Biochimie 2019, 158, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Brondani, L.A.; Boelter, G.; Assmann, T.S.; Leitão, C.B.; Canani, L.H.; Crispim, D. Irisin-Encoding Gene (FNDC5) Variant Is Associated with Changes in Blood Pressure and Lipid Profile in Type 2 Diabetic Women but Not in Men. Metabolism 2015, 64, 952–957. [Google Scholar] [CrossRef]
- Badr, E.A.; Mostafa, R.G.; Awad, S.M.; Marwan, H.; Abd El-Bary, H.M.; Shehab, H.E.; Ghanem, S.E. A Pilot Study on the Relation between Irisin Single-Nucleotide Polymorphism and Risk of Myocardial Infarction. Biochem. Biophys. Rep. 2020, 22, 100742. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Li, F.; Tang, Y.; Cai, L.; Zeng, C.; Yang, Y.; Yang, J. The Emerging Role of Irisin in Cardiovascular Diseases. J. Am. Heart Assoc. 2021, 10, e022453. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Li, H.; Zhang, T.; Yang, L.; Yao, S.; Chen, S.; Zheng, M.; Zhao, Q.; Tian, H. Irisin Protects Macrophages from Oxidized Low Density Lipoprotein-Induced Apoptosis by Inhibiting the Endoplasmic Reticulum Stress Pathway. Saudi J. Biol. Sci. 2018, 25, 849–857. [Google Scholar] [CrossRef]
- Pan, J.-A.; Zhang, H.; Yu, Q.; Zhang, J.-F.; Wang, C.-Q.; Gu, J.; Chen, K. Association of Circulating Irisin Levels and the Characteristics and Prognosis of Coronary Artery Disease. Am. J. Med. Sci. 2021, 362, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Anandakumar, P.; Debela, T. A Review on the Role of Irisin in Insulin Resistance and Type 2 Diabetes Mellitus. J. Pharmacopunct. 2017, 20, 235–242. [Google Scholar] [CrossRef]
- Xiong, X.-Q.; Chen, D.; Sun, H.-J.; Ding, L.; Wang, J.-J.; Chen, Q.; Li, Y.-H.; Zhou, Y.-B.; Han, Y.; Zhang, F.; et al. FNDC5 Overexpression and Irisin Ameliorate Glucose/Lipid Metabolic Derangements and Enhance Lipolysis in Obesity. Biochim. Biophys. Acta 2015, 1852, 1867–1875. [Google Scholar] [CrossRef]
- Vanhoutte, P.M.; Shimokawa, H.; Tang, E.H.C.; Feletou, M. Endothelial Dysfunction and Vascular Disease. Acta Physiol. 2009, 196, 193–222. [Google Scholar] [CrossRef]
- Martinez Muñoz, I.Y.; Camarillo Romero, E.D.S.; Garduño Garcia, J.d.J. Irisin a Novel Metabolic Biomarker: Present Knowledge and Future Directions. Int. J. Endocrinol. 2018, 2018, 7816806. [Google Scholar] [CrossRef]
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a Cardiovascular Risk Factor: An Overview of Global Trends of Macro and Micro Vascular Complications. Eur. J. Prev. Cardiol. 2019, 26, 25–32. [Google Scholar] [CrossRef]
- Askari, H.; Fatima, S.; Poorebrahim, M.; Haghi-Aminjan, H.; Raeis-Abdollahi, E.; Abdollahi, M. A Glance at the Therapeutic Potential of Irisin against Diseases Involving Inflammation, Oxidative Stress, and Apoptosis: An Introductory Review. Pharmacol. Res. 2018, 129, 44–55. [Google Scholar] [CrossRef]
- Mazur-Bialy, A.I.; Bilski, J.; Pochec, E.; Brzozowski, T. New Insight into the Direct Anti-Inflammatory Activity of a Myokine Irisin against Proinflammatory Activation of Adipocytes. Implication for Exercise in Obesity. J. Physiol. Pharmacol. 2017, 68, 243–251. [Google Scholar]
- De Heredia, F.P.; Gómez-Martínez, S.; Marcos, A. Obesity, Inflammation and the Immune System. Proc. Nutr. Soc. 2012, 71, 332–338. [Google Scholar] [CrossRef]
- Sillen, M.; Declerck, P.J. Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Front. Cardiovasc. Med. 2020, 7, 622473. [Google Scholar] [CrossRef]
- Mazur-Bialy, A.I.; Kozlowska, K.; Pochec, E.; Bilski, J.; Brzozowski, T. Myokine Irisin-Induced Protection against Oxidative Stress in Vitro. Involvement of Heme Oxygenase-1 and Antioxidazing Enzymes Superoxide Dismutase-2 and Glutathione Peroxidase. J. Physiol. Pharmacol. 2018, 69, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Hou, N.; Han, F.; Sun, X. The Relationship between Circulating Irisin Levels and Endothelial Function in Lean and Obese Subjects. Clin. Endocrinol. 2015, 83, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Askin, L.; Uzel, K.E.; Tanriverdi, O.; Turkmen, S. Serum Irisin: Pathogenesis and Clinical Research in Cardiovascular Diseases. Cardiovasc. Innov. Appl. 2020, 4, 195–200. [Google Scholar] [CrossRef]
- Woollard, K.J.; Chin-Dusting, J. Therapeutic Targeting of P-Selectin in Atherosclerosis. Inflamm. Allergy Drug Targets 2007, 6, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Bots, M.L. Carotid Intima-Media Thickness as a Surrogate Marker for Cardiovascular Disease in Intervention Studies. Curr. Med. Res. Opin. 2006, 22, 2181–2190. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, Q.; Zhou, Z.; Song, H.; Zhang, Y.; Wu, F.; Jiang, M.; Wang, F.; Zhang, W.; Li, L.; et al. Protective Effect of Irisin on Atherosclerosis via Suppressing Oxidized Low Density Lipoprotein Induced Vascular Inflammation and Endothelial Dysfunction. PLoS ONE 2016, 11, e0158038. [Google Scholar] [CrossRef]
- Lu, J.; Xiang, G.; Liu, M.; Mei, W.; Xiang, L.; Dong, J. Irisin Protects against Endothelial Injury and Ameliorates Atherosclerosis in Apolipoprotein E-Null Diabetic Mice. Atherosclerosis 2015, 243, 438–448. [Google Scholar] [CrossRef]
- Korta, P.; Pocheć, E.; Mazur-Biały, A. Irisin as a Multifunctional Protein: Implications for Health and Certain Diseases. Medicina 2019, 55, 485. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Sabetai, M.M.; Tegos, T.J.; Nicolaides, A.N.; Dhanjil, S.; Pare, G.J.; Stevens, J.M. Reproducibility of Computer-Quantified Carotid Plaque Echogenicity: Can We Overcome the Subjectivity? Stroke 2000, 31, 2189–2196. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
Variables | With Plaque (n = 30) | Without Plaque (n = 31) | p Value | |||||
---|---|---|---|---|---|---|---|---|
SO | 6M | 12M | SO | 6M | 12M | Plaque/Time/Interaction | ||
Anthropometrical | Sex (women/men) | 16/14 | - | - | 26/5 | - | - | 0.0134 |
Age (years) | 51.9 ± 1.9 | - | - | 43.2 ± 1.8 | - | - | 0.0021 | |
BMI (kg/m2) | 46.5 ± 1.3 | 32.0 ± 1.0 ooo | 29.5 ± 0.8 ooo | 48.8± 1.2 | 33.0 ± 0.9 ooo | 29.7 ± 0.8 ooo | ns/<0.0001/ns | |
Biochemical | TC (mg/dL) | 185.0 ± 8.4 | 161.5 ± 8.6 o | 181.4 ± 7.5 | 173.9 ± 4.8 | 150.7 ± 5.7 oo | 163.0 ± 7.4 | ns/<0.0001/ns |
cHDL (mg/dL) | 42.9 ± 1.7 | 44.5 ± 1.7 | 53.2 ± 1.9 ooo | 46.2 ± 1.4 | 45.3 ± 1.5 | 55.2 ± 2.1 ooo | ns/<0.0001/ns | |
cLDL (mg/dL) | 109.1 ± 7.1 | 91.5 ± 6.5 o | 108.1 ± 6.7 | 104.5 ± 4.7 | 86.7 ± 5.3 o | 93.8 ± 7.2 | ns/0.0024/ns | |
TAG (mg/dL) | 162.4 ± 14.8 | 116.9 ± 10.3 ooo | 98.4 ± 11.5 ooo | 120.4 ± 7.2 ** | 92.2 ± 4.5 o | 74.9 ± 4.6 ooo | 0.0073/<0.0001/ns | |
Glucose (mg/dL) | 125.4 ± 7.2 | 90.9 ± 3.6 ooo | 100.6 ± 12.9 o | 97.2 ± 3.1 ** | 81.1 ± 1.7 | 82.7 ± 1.8 | 0.0028/<0.0001/ns | |
HOMA-IR | 5.2 ± 0.9 | 1.2 ± 0.4 o | 1.3 ± 0.4 o | 1.8 ± 0.4 * | 0.7 ± 0.1 | 0.5 ± 0.1 o | 0.0029/0.0001/0.0091 | |
Hba1C (%) | 6.61 ± 0.25 | 5.57 ± 0.22 ooo | 5.54 ± 0.15 ooo | 5.70 ± 0.16 *** | 5.16 ± 0.11 o | 5.13 ± 0.07 o | 0.0060/<0.0001/ns | |
Comorbidities | Healthy (no HT, DLP and DM2) yes/no (%) | 10/90 | 50/50 oo | 60/40 ooo | 55/45 *** | 68/32 | 81/19 o | |
HT yes/no (%) | 77/23 | 43/57 oo | 33/67 ooo | 35/65 *** | 26/74 * | 13/87 ***,o | - | |
DLP yes/no (%) | 70/30 | 33/67 ooo | 17/83 ooo | 26/74 *** | 13/87 **,o | 6/94 *,oo | - | |
T2DM yes/no (%) | 67/33 | 30/70 ooo | 20/80 ooo | 16/84 *** | 6/94 * | 0/100 *,o | - |
With Plaque (n = 30) | Without Plaque (n = 31) | |||||||
---|---|---|---|---|---|---|---|---|
rs3480 Genotype (A/G) | Irisin (ng/mL) (Mean ± SEM) | Irisin (ng/mL) (Mean ± SEM) | ||||||
Frequencies n (%) | SO | 6M | 12M | Frequencies n (%) | SO | 6M | 12M | |
AA | 12 (40%) | 15.4 ± 1.1 | 14.0 ± 1.8 | 14.3 ± 1.2 | 11 (35.5%) | 20.9 ± 1.0 | 17.8 ± 1.0 | 19.8 ± 1.0 |
AG | 11 (36.7%) | 19.5 ± 1.6 | 15.8 ± 2.3 | 17.5 ± 1.9 | 14 (45.2%) | 23.0 ± 1.5 | 19.3 ± 1.4 | 21.8 ± 2.2 |
GG | 7 (23.3%) | 14.1 ± 1.1 | 12.6 ± 1.1 | 16.9 ± 1.3 | 6 (19.4%) | 19.2 ± 2.1 | 17.8 ± 1.7 | 20.3 ± 0.9 |
Irisin (ng/mL) | |||
---|---|---|---|
Process | Parameters | r | p |
Correlation before BS | |||
Inflammation | NEFA (mmol/L) | −0.310 | 0.019 |
PAI-1 (ng/mL) | −0.121 | 0.038 | |
Correlation all the study times | |||
Metabolism | Leptin (ng/mL) | 0.263 | 0.002 |
T2DM | Glucose (mg/dL) | −0.359 | 0.006 |
Hba1c (%) | −0.421 | 0.003 | |
Oxidative stress | oxLDL (U/L) | −0.226 | 0.006 |
Endothelial function | P-sel (ng/mL) | −0.399 | <0.001 |
cIMT (mm) | −0.182 | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona-Maurici, J.; Rosa, A.; Azcona-Granada, N.; Peña, E.; Ricart-Jané, D.; Viñas, A.; López-Tejero, M.D.; Domingo, J.C.; Miñarro, A.; Baena-Fustegueras, J.A.; et al. Irisin as a Novel Biomarker of Subclinical Atherosclerosis in Severe Obesity. Int. J. Mol. Sci. 2023, 24, 8171. https://doi.org/10.3390/ijms24098171
Carmona-Maurici J, Rosa A, Azcona-Granada N, Peña E, Ricart-Jané D, Viñas A, López-Tejero MD, Domingo JC, Miñarro A, Baena-Fustegueras JA, et al. Irisin as a Novel Biomarker of Subclinical Atherosclerosis in Severe Obesity. International Journal of Molecular Sciences. 2023; 24(9):8171. https://doi.org/10.3390/ijms24098171
Chicago/Turabian StyleCarmona-Maurici, Júlia, Araceli Rosa, Natalia Azcona-Granada, Elionora Peña, David Ricart-Jané, Anna Viñas, Maria Dolores López-Tejero, Joan Carles Domingo, Antonio Miñarro, Juan Antonio Baena-Fustegueras, and et al. 2023. "Irisin as a Novel Biomarker of Subclinical Atherosclerosis in Severe Obesity" International Journal of Molecular Sciences 24, no. 9: 8171. https://doi.org/10.3390/ijms24098171
APA StyleCarmona-Maurici, J., Rosa, A., Azcona-Granada, N., Peña, E., Ricart-Jané, D., Viñas, A., López-Tejero, M. D., Domingo, J. C., Miñarro, A., Baena-Fustegueras, J. A., Peinado-Onsurbe, J., & Pardina, E. (2023). Irisin as a Novel Biomarker of Subclinical Atherosclerosis in Severe Obesity. International Journal of Molecular Sciences, 24(9), 8171. https://doi.org/10.3390/ijms24098171