A Theoretical Study of Hydrogen Abstraction Reactions in Guanosine and Uridine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gibbs Free Energies: and
2.2. Eckart Correction
2.3. Rate Constants
3. Materials and Methods
3.1. Eckart Tunneling Correction
3.2. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DFT | Density functional theory |
RF | Ribofuranose |
TST | Transition state theory |
References
- Levin, W.P.; Kooy, H.; Loeffler, J.S.; DeLaney, T.F. Proton beam therapy. Br. J. Cancer 2005, 93, 849–854. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fokas, E.; Kraft, G.; An, H.; Engenhart-Cabillic, R. Ion beam radiobiology and cancer: Time to update ourselves. Biochim. Biophys. Acta Rev. Cancer 2009, 1796, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.J.S.C.; Steenken, S. Pattern of hydroxyl radical reaction with 6- and 9-substituted purines: Effect of substituents on the rates and activation parameters of the unimolecular transformation reactions of two isomeric hydroxyl adducts. J. Phys. Chem. 1987, 91, 4138–4144. [Google Scholar] [CrossRef]
- Scholes, G. Radiolysis of nucleic acids and their components in aqueous solutions. In Radiation Chemistry of Aqueous Systems; Stein, G., Ed.; John Wiley and Sons, Inc.: New York, NY, USA, 1968; pp. 259–285. [Google Scholar]
- Milhøj, B.O.; Sauer, S.P.A. Kinetics and Thermodynamics of the Reaction between the •OH Radical and Adenine: A Theoretical Investigation. J. Phys. Chem. A 2015, 119, 6516–6527. [Google Scholar] [CrossRef]
- Wala, M.; Bothe, E.; Görner, H.; Schulte-Frohlinde, D. Quantum yields for the generation of hydrated electrons and single-strand breaks in poly(C), poly(A) and single-stranded DNA in aqueous solution on 20 ns laser excitation at 248 nm. J. Photochem. Photobiol A Chem. 1990, 53, 87–108. [Google Scholar] [CrossRef]
- Prasanthkumar, K.P.; Suresh, C.H.; Aravindakumar, C.T. Theoretical study of the addition and abstraction reactions of hydroxyl radical with uracil. Radiat. Phys. Chem. 2012, 81, 267–272. [Google Scholar] [CrossRef]
- Kumar, A.; Pottiboyina, V.; Sevilla, M.D. Hydroxyl Radical (OH•) Reaction with Guanine in an Aqueous Environment: A DFT Study. J. Phys. Chem. B 2011, 115, 15129–15137. [Google Scholar] [CrossRef][Green Version]
- Milhøj, B.O.; Sauer, S.P.A. Insight into the Mechanism of the Initial Reaction of an OH Radical with DNA/RNA Nucleobases: A Computational Investigation of Radiation Damage. Chem. Eur. J. 2015, 21, 17786–17799. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Pogozelski, W.K.; Tullius, T.D. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc. Natl. Acad. Sci. USA 1998, 95, 9738–9743. [Google Scholar] [CrossRef][Green Version]
- Bamatraf, M.M.M.; O’Neill, P.; Rao, B.S.M. OH Radical-Induced Charge Migration in Oligodeoxynucleotides. J. Phys. Chem. B 2000, 104, 636–642. [Google Scholar] [CrossRef]
- Milhøj, B.O.; Sauer, S.P.A. The Effect of Solvation on the Radiation Damage Rate Constants for Adenine. Chem. Phys. Chem 2016, 17, 3086–3095. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, L.N.; Sauer, S.P.A. Implicit and explicit solvent models have opposite effects on radiation damage rate constant for thymine. Adv. Quantum Chem. 2022, 85, 245–265. [Google Scholar]
- Watson, J.D.; Crick, F.H.C. Molecular Structure Of Nucleic Acids. Am. J. Psychiatry 2003, 160, 623–624. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.K.; Kumar, N.; Mishra, P.C. Hydrogen atom abstraction reactions of the sugar moiety of 2’-deoxyguanosine with an OH-radical: A quantum chemical study. Int. J. Quantum Chem. 2011, 111, 2160–2169. [Google Scholar] [CrossRef]
- Abolfath, R.M.; Biswas, P.K.; Rajnarayanam, R.; Brabec, T.; Kodym, R.; Papiez, L. Multiscale QM/MM Molecular Dynamics Study on the First Steps of Guanine Damage by Free Hydroxyl Radicals in Solution. J. Phys. Chem. A 2012, 116, 3940–3945. [Google Scholar] [CrossRef][Green Version]
- Bell, M.; Kumar, A.; Sevilla, M.D. Electron-Induced Repair of 20-Deoxyribose Sugar Radicals in DNA: A Density Functional Theory (DFT) Study. Int. J. Mol. Sci. 2021, 22, 1736. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, N.E.; Hansen, F.Y. Theories of Molecular Reaction Dynamics: The Microscopic Foundation of Chemical Kinetics, 1st ed.; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Eckart, C. The Penetration of a Potential Barrier by Electrons. Phys. Rev. 1930, 35, 1303–1309. [Google Scholar] [CrossRef]
- Skodje, R.T.; Truhlar, D.G.; Garrett, B.C. A General Small-Curvature Approximation for Transition-State-Theory Transmission Coefficients. J. Phys. Chem. 1981, 85, 3019–3023. [Google Scholar] [CrossRef]
- Chai, J.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef][Green Version]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys. 2001, 115, 3540–3544. [Google Scholar] [CrossRef]
- Chai, J.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 2008, 128, 084106. [Google Scholar] [CrossRef] [PubMed]
- Ahlrichs, R.; Penco, R.; Scoles, G. Intermolecular forces in simple systems. Chem. Phys. 1977, 19, 119–130. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Schlegel, H.B. Optimization of Equilibrium Geometries and Transition Structures. J. Comp. Chem. 1982, 3, 214–218. [Google Scholar] [CrossRef]
- Peng, C.; Schlegel, H.B. Combining Synchronous Transit and Quasi-Newton Methods for Finding Transition States. Israel J. Chem. 1993, 33, 449–454. [Google Scholar] [CrossRef]
- Peng, C.; Ayala, P.Y.; Schlegel, H.B.; Frisch, M.J. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comp. Chem. 1996, 17, 49–56. [Google Scholar] [CrossRef]
Guanosine Hydrogen | Uridine Hydrogen | ||||
---|---|---|---|---|---|
C1’ | 21.86 | −117.1 | C1’ | 19.43 | −110.5 |
C2’ | 16.76 | −110.0 | C2’ | 18.67 | −107.0 |
C3’ | 24.03 | −97.16 | C3’ | 22.41 | −104.6 |
C4’ | 12.82 | −101.3 | C4’ | 16.83 | −101.3 |
C5’_HC | 23.89 | −103.8 | C5’_HC | 21.54 | −104.6 |
C5’_HO | 21.80 | −103.4 | C5’_HO | 21.08 | −104.6 |
O2 | 29.94 | −49.98 | O2 | 44.81 | −49.29 |
O3 | 27.25 | −42.17 | O3 | 50.31 | −36.51 |
H1 | 25.14 | −100.52 | H3 | 66.18 | 13.92 |
H8 | 42.03 | −9.39 | H5 | 47.83 | 0.5437 |
H21 | 17.59 | −114.00 | H6 | 51.75 | −19.85 |
H22 | 27.76 | −100.99 | N/A | N/A | N/A |
Guanosine Hydrogen | Forward Energy Barrier (kJ/mol) | Reverse Energy Barrier (kJ/mol) | Eckart Correction | Uridine Hydrogen | Forward Energy Barrier (kJ/mol) | Reverse Energy Barrier (kJ/mol) | Eckart Correction |
---|---|---|---|---|---|---|---|
C1’ | 11.229 | 116.530 | 1.02 | C1’ | 0.053 | 107.238 | 0.72 |
C2’ | −1.764 | 112.584 | 1.00 | C2’ | −1.806 | 111.547 | 1.00 |
C3’ | 11.959 | 107.168 | 1.02 | C3’ | −0.412 | 97.755 | 1.00 |
C4’ | 4.001 | 97.768 | 1.14 | C4’ | 6.091 | 99.669 | 1.31 |
C5’_HC | 14.467 | 110.940 | 1.03 | C5’_HC | 13.889 | 111.807 | 1.05 |
C5’_HO | 3.148 | 97.952 | 1.14 | C5’_HO | 2.095 | 118.861 | 1.06 |
O2 | 20.647 | 76.279 | 15.05 | O2 | 21.618 | 87.784 | 12.55 |
O3 | 19.959 | 54.371 | 14.26 | O3 | 40.422 | 71.487 | 55.17 |
H1 | 29.818 | 123.136 | 12.06 | H3 | 57.913 | 35.505 | 24.23 |
H8 | 43.843 | 39.351 | 22.83 | H5 | 40.700 | 27.909 | 18.19 |
H21 | 0.509 | 127.731 | 0.82 | H6 | 32.186 | 44.547 | 27.44 |
H22 | 23.853 | 115.021 | 19.27 | N/A | N/A | N/A | N/A |
Hydrogen | Guanosine | Hydrogen | Uridine |
---|---|---|---|
C1′ | 1.603 × 109 | C1′ | 7.037 × 108 |
C2′ | 1.225 × 1010 | C2′ | 1.326 × 109 |
C3′ | 6.667 × 108 | C3′ | 2.942 × 108 |
C4′ | 6.856 × 1010 | C4′ | 3.655 × 109 |
C5′_HC | 7.123 × 108 | C5′_HC | 4.380 × 108 |
C5′_HO | 1.830 × 109 | C5′_HO | 5.316 × 108 |
O2 | 9.078 × 108 | O2 | 4.386 × 105 |
O3 | 2.543 × 109 | O3 | 2.096 × 105 |
H1 | 5.034 × 109 | H3 | 1.527 × 102 |
H8 | 1.048 × 107 | H5 | 1.878 × 105 |
H21 | 7.202 × 109 | H6 | 5.836 × 104 |
H22 | 2.795 × 109 | N/A | N/A |
Hydrogen | Guanosine | Guanine |
---|---|---|
H1 | 5.034 × 109 | 6.925 × 108 |
H8 | 1.048 × 107 | 8.732 × 105 |
H21 | 7.202 × 109 | 1.036 × 1010 |
H22 | 2.795 × 109 | 7.347 × 108 |
Hydrogen | Uridine | Uracil |
---|---|---|
H3 | 1.527 × 102 | 2.430 × 102 |
H5 | 1.878 × 105 | 2.987 × 105 |
H6 | 5.836 × 104 | 9.281 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schaltz, K.F.; Sauer, S.P.A. A Theoretical Study of Hydrogen Abstraction Reactions in Guanosine and Uridine. Int. J. Mol. Sci. 2023, 24, 8192. https://doi.org/10.3390/ijms24098192
Schaltz KF, Sauer SPA. A Theoretical Study of Hydrogen Abstraction Reactions in Guanosine and Uridine. International Journal of Molecular Sciences. 2023; 24(9):8192. https://doi.org/10.3390/ijms24098192
Chicago/Turabian StyleSchaltz, Kasper F., and Stephan P. A. Sauer. 2023. "A Theoretical Study of Hydrogen Abstraction Reactions in Guanosine and Uridine" International Journal of Molecular Sciences 24, no. 9: 8192. https://doi.org/10.3390/ijms24098192
APA StyleSchaltz, K. F., & Sauer, S. P. A. (2023). A Theoretical Study of Hydrogen Abstraction Reactions in Guanosine and Uridine. International Journal of Molecular Sciences, 24(9), 8192. https://doi.org/10.3390/ijms24098192