Core Promoter Regions of Antisense and Long Intergenic Non-Coding RNAs
Abstract
:1. Introduction
2. Results
2.1. Textual Characteristics of the Nucleotide Sequences Forming Core Promoters of Non-Coding RNAs in H. sapiens and M. musculus
2.2. Physical and Structural Anisotropy of the Naked DNA in the Non-Coding Core Promoters
2.3. Local Variations of Ultrasonic Cleavage and DNase I Cleavage Intensities in Promoter Sequences
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ecker, J.R.; Bickmore, W.A.; Barroso, I.; Pritchard, J.K.; Gilad, Y.; Segal, E. Genomics: ENCODE Explained. Nature 2012, 489, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Hangauer, M.J.; Vaughn, I.W.; McManus, M.T. Pervasive Transcription of the Human Genome Produces Thousands of Previously Unidentified Long Intergenic Noncoding RNAs. PLoS Genet. 2013, 9, e1003569. [Google Scholar] [CrossRef] [PubMed]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of Transcription in Human Cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.B.; Amaral, P.P.; Schlesinger, F.J.; Dinger, M.E.; Taft, R.J.; Rinn, J.L.; Ponting, C.P.; Stadler, P.F.; Morris, K.V.; Morillon, A.; et al. The Reality of Pervasive Transcription. PLoS Biol. 2011, 9, e1000625; discussion e1001102. [Google Scholar] [CrossRef]
- Wu, H.; Yang, L.; Chen, L.-L. The Diversity of Long Noncoding RNAs and Their Generation. Trends Genet. 2017, 33, 540–552. [Google Scholar] [CrossRef]
- Donato, L.; Scimone, C.; Alibrandi, S.; Scalinci, S.Z.; Rinaldi, C.; D’Angelo, R.; Sidoti, A. Epitranscriptome Analysis of Oxidative Stressed Retinal Epithelial Cells Depicted a Possible RNA Editing Landscape of Retinal Degeneration. Antioxidants 2022, 11, 1967. [Google Scholar] [CrossRef]
- Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al. The GENCODE v7 Catalog of Human Long Noncoding RNAs: Analysis of Their Gene Structure, Evolution, and Expression. Genome Res. 2012, 22, 1775–1789. [Google Scholar] [CrossRef]
- Ransohoff, J.D.; Wei, Y.; Khavari, P.A. The Functions and Unique Features of Long Intergenic Non-Coding RNA. Nat. Rev. Mol. Cell Biol. 2018, 19, 143–157. [Google Scholar] [CrossRef]
- Meylan, P.; Dreos, R.; Ambrosini, G.; Groux, R.; Bucher, P. EPD in 2020: Enhanced Data Visualization and Extension to NcRNA Promoters. Nucleic Acids Res. 2020, 48, D65–D69. [Google Scholar] [CrossRef]
- Il’icheva, I.A.; Khodikov, M.V.; Poptsova, M.S.; Nechipurenko, D.Y.; Nechipurenko, Y.D.; Grokhovsky, S.L. Structural Features of DNA That Determine RNA Polymerase II Core Promoter. BMC Genom. 2016, 17, 973. [Google Scholar] [CrossRef]
- Melikhova, A.V.; Anashkina, A.A.; Il’icheva, I.A. Evolutionary Invariant of the Structure of DNA Double Helix in RNAP II Core Promoters. Int. J. Mol. Sci. 2022, 23, 10873. [Google Scholar] [CrossRef]
- Patikoglou, G.A.; Kim, J.L.; Sun, L.; Yang, S.-H.; Kodadek, T.; Burley, S.K. TATA Element Recognition by the TATA Box-Binding Protein Has Been Conserved throughout Evolution. Genes Dev. 1999, 13, 3217–3230. [Google Scholar] [CrossRef]
- Okonogi, T.M.; Alley, S.C.; Reese, A.W.; Hopkins, P.B.; Robinson, B.H. Sequence-Dependent Dynamics of Duplex DNA: The Applicability of a Dinucleotide Model. Biophys. J. 2002, 83, 3446–3459. [Google Scholar] [CrossRef]
- Grokhovsky, S.L.; Il’icheva, I.A.; Nechipurenko, D.Y.; Golovkin, M.V.; Panchenko, L.A.; Polozov, R.V.; Nechipurenko, Y.D. Sequence-Specific Ultrasonic Cleavage of DNA. Biophys. J. 2011, 100, 117–125. [Google Scholar] [CrossRef]
- Kladde, M.P.; Kohwi, Y.; Kohwi-Shigematsu, T.; Gorski, J. The Non-B-DNA Structure of d(CA/TG)n Differs from That of Z-DNA. Proc. Natl. Acad. Sci. USA 1994, 91, 1898–1902. [Google Scholar] [CrossRef]
- Travers, A.A. DNA Conformation and Protein Binding. Annu. Rev. Biochem. 1989, 58, 427–452. [Google Scholar] [CrossRef]
- Friedel, M.; Nikolajewa, S.; Sühnel, J.; Wilhelm, T. DiProDB: A Database for Dinucleotide Properties. Nucleic Acids Res. 2009, 37, D37–D40. [Google Scholar] [CrossRef]
- Suzuki, M.; Allen, M.D.; Yagi, N.; Finch, J.T. Analysis of Co-Crystal Structures to Identify the Stereochemical Determinants of the Orientation of TBP on the TATA Box. Nucleic Acids Res. 1996, 24, 2767–2773. [Google Scholar] [CrossRef]
- Vargason, J.M.; Henderson, K.; Ho, P.S. A Crystallographic Map of the Transition from B-DNA to A-DNA. Proc. Natl. Acad. Sci. USA 2001, 98, 7265–7270. [Google Scholar] [CrossRef]
- Lu, X.-J.; Olson, W.K. 3DNA: A Software Package for the Analysis, Rebuilding and Visualization of Three-Dimensional Nucleic Acid Structures. Nucleic Acids Res. 2003, 31, 5108–5121. [Google Scholar] [CrossRef]
- Pérez, A.; Noy, A.; Lankas, F.; Luque, F.J.; Orozco, M. The Relative Flexibility of B-DNA and A-RNA Duplexes: Database Analysis. Nucleic Acids Res. 2004, 32, 6144–6151. [Google Scholar] [CrossRef] [PubMed]
- Goñi, J.R.; Pérez, A.; Torrents, D.; Orozco, M. Determining Promoter Location Based on DNA Structure First-Principles Calculations. Genome Biol. 2007, 8, R263. [Google Scholar] [CrossRef] [PubMed]
- Gartenberg, M.R.; Crothers, D.M. DNA Sequence Determinants of CAP-Induced Bending and Protein Binding Affinity. Nature 1988, 333, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Grokhovsky, S.L. Specificity of DNA Cleavage by Ultrasound. Mol. Biol. 2006, 40, 276–283. [Google Scholar] [CrossRef]
- Grokhovsky, S.L.; Il’icheva, I.A.; Nechipurenko, D.Y.; Panchenko, L.A.; Polozov, R.V.; Nechipurenko, Y.D. Ultrasonic Cleavage of DNA: Quantitative Analysis of Sequence Specificity. Biophysics 2008, 53, 250–251. [Google Scholar] [CrossRef]
- Il’icheva, I.A.; Nechipurenko, D.Y.; Grokhovsky, S.L. Ultrasonic Cleavage of Nicked DNA. J. Biomol. Struct. Dyn. 2009, 27, 391–397. [Google Scholar] [CrossRef]
- Poptsova, M.S.; Il’icheva, I.A.; Nechipurenko, D.Y.; Panchenko, L.A.; Khodikov, M.V.; Oparina, N.Y.; Polozov, R.V.; Nechipurenko, Y.D.; Grokhovsky, S.L. Non-Random DNA Fragmentation in next-Generation Sequencing. Sci. Rep. 2014, 4, 4532. [Google Scholar] [CrossRef]
- Grokhovsky, S.L.; Il’icheva, I.A.; Golovkin, M.V.; Nechipurenko, Y.D.; Nechipurenko, D.Y.; Panchenko, L.A.; Polozov, R.V. Mechanochemical Cleavage of DNA by Ultrasound. Adv. Eng. Res. 2013, 213, 1–24. [Google Scholar]
- Suck, D.; Lahm, A.; Oefner, C. Structure Refined to 2A of a Nicked DNA Octanucleotide Complex with DNase I. Nature 1988, 332, 464–468. [Google Scholar] [CrossRef]
- Weston, S.A.; Lahm, A.; Suck, D. X-Ray Structure of the DNase I-d(GGTATACC)2 Complex at 2.3 A Resolution. J. Mol. Biol. 1992, 226, 1237–1256. [Google Scholar] [CrossRef]
- Suck, D. DNA Recognition by DNase I. J. Mol. Recognit. 1994, 7, 65–70. [Google Scholar] [CrossRef]
- Lazarovici, A.; Zhou, T.; Shafer, A.; Dantas Machado, A.C.; Riley, T.R.; Sandstrom, R.; Sabo, P.J.; Lu, Y.; Rohs, R.; Stamatoyannopoulos, J.A.; et al. Probing DNA Shape and Methylation State on a Genomic Scale with DNase I. Proc. Natl. Acad. Sci. USA 2013, 110, 6376–6381. [Google Scholar] [CrossRef]
- Girbig, M.; Misiaszek, A.D.; Müller, C.W. Structural Insights into Nuclear Transcription by Eukaryotic DNA-Dependent RNA Polymerases. Nat. Rev. Mol. Cell Biol. 2022, 23, 603–622. [Google Scholar] [CrossRef]
- Drachkova, I.; Savinkova, L.; Arshinova, T.; Ponomarenko, M.; Peltek, S.; Kolchanov, N. The Mechanism by Which TATA-Box Polymorphisms Associated with Human Hereditary Diseases Influence Interactions with the TATA-Binding Protein. Hum. Mutat. 2014, 35, 601–608. [Google Scholar] [CrossRef]
M. musculus (−31: −24) | H. sapiens (−31: −24) | |||
---|---|---|---|---|
1 | TTTTTTTT | 0.42% | GTTTATCA | 0.47% |
2 | ACAATATA | 0.16% | AGAATAAA | 0.38% |
3 | GTATAAAA | 0.13% | TTTTATAA | 0.26% |
4 | TAGTTATG | 0.13% | TTTGTTTA | 0.21% |
5 | TTTAAAAG | 0.13% | CTATAAAG | 0.17% |
6 | AATAAAAG | 0.13% | CCCGGAAG | 0.17% |
7 | CTATAAAA | 0.13% | CCCCGCCC | 0.17% |
8 | AGGGTAAA | 0.10% | TATTTAAA | 0.17% |
9 | AACAGGAG | 0.10% | TATAAAAG | 0.17% |
10 | AATAGCAG | 0.10% | CTATAAAA | 0.17% |
11 | CCTTGCTA | 0.10% | GCCTTGCA | 0.13% |
12 | GTATATAA | 0.10% | TATATAAA | 0.13% |
13 | CCCGCCCG | 0.10% | GAGCTAAT | 0.13% |
14 | TTAAGACC | 0.10% | CCTTAAAA | 0.13% |
15 | AAATAAAT | 0.10% | CCCCTCCC | 0.13% |
16 | AGAGAGAG | 0.10% | GTTGAGGT | 0.13% |
17 | TATAAATA | 0.10% | CCATGCAG | 0.13% |
18 | TCTATAAA | 0.10% | GGGCGGGG | 0.13% |
19 | AGCGCGCG | 0.10% | TATTTATA | 0.13% |
20 | TATATAAG | 0.10% | TTAAATAG | 0.09% |
M. musculus (−31: −24) | H. sapiens (−31: −24) | |||
---|---|---|---|---|
1 | ACAATATA | 1.61% | AGAATAAA | 3.60% |
2 | AATAAAAG | 1.29% | TTTTATAA | 2.40% |
3 | TTTAAAAG | 1.29% | CTATAAAA | 1.60% |
4 | GTATAAAA | 1.29% | TATAAAAG | 1.60% |
5 | CTATAAAA | 1.29% | TATTTAAA | 1.60% |
6 | TATAAAAG | 0.96% | CTATAAAG | 1.60% |
7 | ATATAAGG | 0.96% | TATATAAA | 1.20% |
8 | AAATAAAT | 0.96% | CCTTAAAA | 1.20% |
9 | GTATATAA | 0.96% | TATTTATA | 1.20% |
10 | TATTTATT | 0.96% | TTATAAAG | 0.80% |
11 | AATAAAAA | 0.96% | CCTTTAAA | 0.80% |
12 | TATATAAG | 0.96% | ATAAAAAC | 0.80% |
13 | TTTAAAAC | 0.96% | GGATAAAA | 0.80% |
14 | TATAAATA | 0.96% | TTTAAAGG | 0.80% |
15 | CTATTTAG | 0.96% | GTAGAAAA | 0.80% |
16 | TATAAAAA | 0.64% | CCCATAAA | 0.80% |
17 | TATAAATG | 0.64% | TTTATAAA | 0.80% |
18 | CTATATAA | 0.64% | GAAATAAA | 0.80% |
19 | ATAAAAGA | 0.64% | TTTTAAAA | 0.80% |
20 | TTTAAAAA | 0.64% | CTATAAAT | 0.80% |
PyPu | PuPu | PyPy | PuPy | |
---|---|---|---|---|
H. sapiens | 79.86% | 9.66% | 8.59% | 1.84% |
M. musculus | 76.02% | 10.98% | 9.23% | 3.74% |
M. musculus | H. sapiens | |
---|---|---|
CA | 42.77% | 34.67% |
TG | 13.94% | 20.52% |
TA | 12.58% | 11.54% |
CG | 6.73% | 13.13% |
CC | 4.29% | 4.53% |
GA | 4.22% | 2.27% |
TC | 4.06% | 3.04% |
GG | 2.66% | 1.75% |
AA | 2.11% | 0.68% |
AG | 1.98% | 4.96% |
GC | 1.49% | 0.94% |
AC | 1.27% | 0.51% |
CT | 0.71% | 0.77% |
GT | 0.55% | 0.30% |
AT | 0.42% | 0.09% |
TT | 0.16% | 0.26% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savina, E.A.; Shumilina, T.G.; Tumanyan, V.G.; Anashkina, A.A.; Il’icheva, I.A. Core Promoter Regions of Antisense and Long Intergenic Non-Coding RNAs. Int. J. Mol. Sci. 2023, 24, 8199. https://doi.org/10.3390/ijms24098199
Savina EA, Shumilina TG, Tumanyan VG, Anashkina AA, Il’icheva IA. Core Promoter Regions of Antisense and Long Intergenic Non-Coding RNAs. International Journal of Molecular Sciences. 2023; 24(9):8199. https://doi.org/10.3390/ijms24098199
Chicago/Turabian StyleSavina, Ekaterina A., Tatiana G. Shumilina, Vladimir G. Tumanyan, Anastasia A. Anashkina, and Irina A. Il’icheva. 2023. "Core Promoter Regions of Antisense and Long Intergenic Non-Coding RNAs" International Journal of Molecular Sciences 24, no. 9: 8199. https://doi.org/10.3390/ijms24098199
APA StyleSavina, E. A., Shumilina, T. G., Tumanyan, V. G., Anashkina, A. A., & Il’icheva, I. A. (2023). Core Promoter Regions of Antisense and Long Intergenic Non-Coding RNAs. International Journal of Molecular Sciences, 24(9), 8199. https://doi.org/10.3390/ijms24098199