Effects of Therapeutic Platelet-Rich Plasma on Overactive Bladder via Modulating Hyaluronan Synthesis in Ovariectomized Rat
Abstract
:1. Introduction
2. Results
2.1. Serum Estradiol Concentration Was Reduced after OVX Treatment
2.2. Physical Characteristics
2.3. PRP Treatment Improved Voiding Dysfunction and Ameliorated Bladder Overactivity
2.4. PRP Treatment Improved the Bladder Fibrosis
2.5. Effects of PRP Instillation on Improving OVX-Induced Pathological Alteration
2.6. PRP Instillation Modulated Bladder Angiogenic Remodeling and Interstitial Cells to Coordinate Muscle Contractions
2.7. PRP Treatment Triggered Bladder HA Remodeling through HA Receptors
2.8. The PRP Instillation Modulated HA Synthesis and Degradation
2.9. Proposed Potential Mechanism of PRP Instillation That Promoted Cell Proliferation and Angiogenesis through PI3K/AKT/m-TOR Pathway, Which Contributed to the Pathogenesis of OHD-Induced OAB
2.10. A Proposed Diagram for the Therapeutic Effect of PRP Improved Bladder Overactivity Induced by OHD in Rat Model
3. Discussion
4. Materials and Methods
4.1. Animal Model of OVX Rat
4.2. Evaluation of Estrogen Hormonal and Biochemical Parameters
4.3. Cystometrogram (CMG) Study for Bladder Function
4.4. PRP and PPP Supernatant Preparation and Intravesical Instillation
4.5. Masson’s Trichrome Staining for Morphological Change
4.6. Western Blotting Analysis for Protein Expression
4.7. Immunofluorescence Studies for Localization of Protein Expression
4.8. Real-Time Quantitative PCR (RT-qPCR) Analysis
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Other Materials and Procedures Used in Western Blot Experiments
References
- Hunskaar, S.; Burgio, K.; Diokno, A.; Herzog, A.R.; Hjälmås, K.; Lapitan, M.C. Epidemiology and natural history of urinary incontinence in women. Urology 2003, 62, 16–23. [Google Scholar] [CrossRef]
- Kuo, H.-C. Videourodynamic precision diagnosis and treatment of lower urinary tract symptoms in women. Urol. Sci. 2021, 32, 94–101. [Google Scholar] [CrossRef]
- Przydacz, M.; Golabek, T.; Dudek, P.; Lipinski, M.; Chlosta, P. Prevalence and bother of lower urinary tract symptoms and overactive bladder in Poland, an Eastern European Study. Sci. Rep. 2020, 10, 19819. [Google Scholar] [CrossRef]
- Haylen, B.T.; de Ridder, D.; Freeman, R.M.; Swift, S.E.; Berghmans, B.; Lee, J.; Monga, A.; Petri, E.; Rizk, D.E.; Sand, P.K.; et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Neurourol. Urodyn. 2010, 29, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Iosif, C.S.; Bekassy, Z. Prevalence of genito-urinary symptoms in the late menopause. Acta Obstet. Gynecol. Scand. 1984, 63, 257–260. [Google Scholar] [CrossRef]
- Krause, M.; Wheeler, T.L., 2nd; Snyder, T.E.; Richter, H.E. Local Effects of Vaginally Administered Estrogen Therapy: A Review. J. Pelvic. Med. Surg. 2009, 15, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.L.; Li, J.R.; Lin, C.H.; de Groat, W.C. Positive association of female overactive bladder symptoms and estrogen deprivation: A nationwide population-based cohort study in Taiwan. Medicine 2016, 95, e4107. [Google Scholar] [CrossRef]
- Lin, C.-T.; Chiang, B.-J.; Liao, C.-H. Perspectives of medical treatment for overactive bladder. Urol. Sci. 2020, 31, 91–98. [Google Scholar] [CrossRef]
- Juan, Y.S.; Chuang, S.M.; Lee, Y.L.; Long, C.Y.; Wu, T.H.; Chang, W.C.; Levin, R.M.; Liu, K.M.; Huang, C.H. Green tea catechins decrease oxidative stress in surgical menopause-induced overactive bladder in a rat model. BJU Int. 2012, 110, E236–E244. [Google Scholar] [CrossRef]
- Juan, Y.S.; Chuang, S.M.; Long, C.Y.; Chen, C.H.; Levin, R.M.; Liu, K.M.; Huang, C.H. Neuroprotection of green tea catechins on surgical menopause-induced overactive bladder in a rat model. Menopause 2012, 19, 346–354. [Google Scholar] [CrossRef]
- Hass, M.A.; Nichol, P.; Lee, L.; Levin, R.M. Estrogen modulates permeability and prostaglandin levels in the rabbit urinary bladder. Prostaglandins Leukot Essent Fat. Acids. 2009, 80, 125–129. [Google Scholar] [CrossRef]
- Losordo, D.W.; Isner, J.M. Estrogen and angiogenesis: A review. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 6–12. [Google Scholar] [CrossRef]
- Aikawa, K.; Sugino, T.; Matsumoto, S.; Chichester, P.; Whitbeck, C.; Levin, R.M. The effect of ovariectomy and estradiol on rabbit bladder smooth muscle contraction and morphology. J. Urol. 2003, 170, 634–637. [Google Scholar] [CrossRef]
- Lee, Y.L.; Lin, K.L.; Wu, B.N.; Chuang, S.M.; Wu, W.J.; Lee, Y.C.; Ho, W.T.; Juan, Y.S. Epigallocatechin-3-gallate alleviates bladder overactivity in a rat model with metabolic syndrome and ovarian hormone deficiency through mitochondria apoptosis pathways. Sci. Rep. 2018, 8, 5358. [Google Scholar] [CrossRef]
- Grodstein, F.; Lifford, K.; Resnick, N.M.; Curhan, G.C. Postmenopausal hormone therapy and risk of developing urinary incontinence. Obstet. Gynecol. 2004, 103, 254–260. [Google Scholar] [CrossRef]
- Hendrix, S.L.; Cochrane, B.B.; Nygaard, I.E.; Handa, V.L.; Barnabei, V.M.; Iglesia, C.; Aragaki, A.; Naughton, M.J.; Wallace, R.B.; McNeeley, S.G. Effects of estrogen with and without progestin on urinary incontinence. JAMA 2005, 293, 935–948. [Google Scholar] [CrossRef]
- Uzuka, M.; Nakajima, K.; Ohta, S.; Mori, Y. Induction of hyaluronic acid synthetase by estrogen in the mouse skin. Biochim. Biophys. Acta. 1981, 673, 387–393. [Google Scholar] [CrossRef]
- Dos Santos, C.C.M.; Uggioni, M.L.R.; Colonetti, T.; Colonetti, L.; Grande, A.J.; Da Rosa, M.I. Hyaluronic Acid in Postmenopause Vaginal Atrophy: A Systematic Review. J. Sex. Med. 2021, 18, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Amable, P.R.; Carias, R.B.; Teixeira, M.V.; da Cruz Pacheco, I.; Correa do Amaral, R.J.; Granjeiro, J.M.; Borojevic, R. Platelet-rich plasma preparation for regenerative medicine: Optimization and quantification of cytokines and growth factors. Stem. Cell Res. Ther. 2013, 4, 67. [Google Scholar] [CrossRef] [PubMed]
- Lacci, K.M.; Dardik, A. Platelet-rich plasma: Support for its use in wound healing. Yale J. Biol Med. 2010, 83, 1–9. [Google Scholar] [PubMed]
- Everts, P.; Onishi, K.; Jayaram, P.; Lana, J.F.; Mautner, K. Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int. J. Mol. Sci. 2020, 21, 7794. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.; Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 2003, 83, 835–870. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, D.J.; Méndez-Bolaina, E.; Trejo-Bahena, N.I. Platelet-rich plasma peptides: Key for regeneration. Int. J. Pept. 2012, 2012, 532519. [Google Scholar] [CrossRef]
- Pavlovic, V.; Ciric, M.; Jovanovic, V.; Stojanovic, P. Platelet Rich Plasma: A short overview of certain bioactive components. Open Med. 2016, 11, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Chellini, F.; Tani, A.; Vallone, L.; Nosi, D.; Pavan, P.; Bambi, F.; Zecchi Orlandini, S.; Sassoli, C. Platelet-Rich Plasma Prevents In Vitro Transforming Growth Factor-β1-Induced Fibroblast to Myofibroblast Transition: Involvement of Vascular Endothelial Growth Factor (VEGF)-A/VEGF Receptor-1-Mediated Signaling (†). Cells 2018, 7, 142. [Google Scholar] [CrossRef]
- Squecco, R.; Chellini, F.; Idrizaj, E.; Tani, A.; Garella, R.; Pancani, S.; Pavan, P.; Bambi, F.; Zecchi-Orlandini, S.; Sassoli, C. Platelet-Rich Plasma Modulates Gap Junction Functionality and Connexin 43 and 26 Expression During TGF-β1-Induced Fibroblast to Myofibroblast Transition: Clues for Counteracting Fibrosis. Cells 2020, 9, 1199. [Google Scholar] [CrossRef]
- Gaur, M.; Dobke, M.; Lunyak, V.V. Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging. Int. J. Mol. Sci. 2017, 18, 208. [Google Scholar] [CrossRef]
- Boswell, S.G.; Cole, B.J.; Sundman, E.A.; Karas, V.; Fortier, L.A. Platelet-rich plasma: A milieu of bioactive factors. Arthroscopy 2012, 28, 429–439. [Google Scholar] [CrossRef]
- Nagaoka, A.; Yoshida, H.; Nakamura, S.; Morikawa, T.; Kawabata, K.; Kobayashi, M.; Sakai, S.; Takahashi, Y.; Okada, Y.; Inoue, S. Regulation of Hyaluronan (HA) Metabolism Mediated by HYBID (Hyaluronan-binding Protein Involved in HA Depolymerization, KIAA1199) and HA Synthases in Growth Factor-stimulated Fibroblasts. J. Biol. Chem. 2015, 290, 30910–30923. [Google Scholar] [CrossRef]
- Reitinger, S.; Lepperdinger, G. Hyaluronan, a ready choice to fuel regeneration: A mini-review. Gerontology 2013, 59, 71–76. [Google Scholar] [CrossRef]
- Chen, W.Y.; Abatangelo, G. Functions of hyaluronan in wound repair. Wound Repair Regen 1999, 7, 79–89. [Google Scholar] [CrossRef]
- Croce, M.A.; Dyne, K.; Boraldi, F.; Quaglino, D., Jr.; Cetta, G.; Tiozzo, R.; Pasquali Ronchetti, I. Hyaluronan affects protein and collagen synthesis by in vitro human skin fibroblasts. Tissue Cell 2001, 33, 326–331. [Google Scholar] [CrossRef]
- Lee, Y.L.; Lin, K.L.; Chuang, S.M.; Lee, Y.C.; Lu, M.C.; Wu, B.N.; Wu, W.J.; Yuan, S.F.; Ho, W.T.; Juan, Y.S. Elucidating Mechanisms of Bladder Repair after Hyaluronan Instillation in Ketamine-Induced Ulcerative Cystitis in Animal Model. Am. J. Pathol. 2017, 187, 1945–1959. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Lee, W.-C.; Chuang, Y.-C.; Tsai, C.-N.; Yu, C.-C.; Wang, H.-J.; Su, C.-H. Using a rat model to translate and explore the pathogenesis of ketamine-induced cystitis. Urol. Sci. 2022, 33, 176–181. [Google Scholar] [CrossRef]
- Kim, A.; Yu, H.Y.; Heo, J.; Song, M.; Shin, J.H.; Lim, J.; Yoon, S.J.; Kim, Y.; Lee, S.; Kim, S.W.; et al. Mesenchymal stem cells protect against the tissue fibrosis of ketamine-induced cystitis in rat bladder. Sci. Rep. 2016, 6, 30881. [Google Scholar] [CrossRef]
- Dönmez, M.; İnci, K.; Zeybek, N.D.; Doğan, H.S.; Ergen, A. The Early Histological Effects of Intravesical Instillation of Platelet-Rich Plasma in Cystitis Models. Int. Neurourol. J. 2016, 20, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, M.; Daneshpajooh, A.; Farsinezhad, A.; Jafarian, Z.; Ebadzadeh, M.R.; Saberi, N.; Teimorian, M. The Therapeutic Effect of Intravesical Instillation of Platelet Rich Plasma on Recurrent Bacterial Cystitis in Women: A Randomized Clinical Trial. Urol. J. 2019, 16, 609–613. [Google Scholar] [CrossRef]
- Cervelli, V.; Gentile, P.; Scioli, M.G.; Grimaldi, M.; Casciani, C.U.; Spagnoli, L.G.; Orlandi, A. Application of platelet-rich plasma in plastic surgery: Clinical and in vitro evaluation. Tissue Eng. Part Methods 2009, 15, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Sassoli, C.; Vallone, L.; Tani, A.; Chellini, F.; Nosi, D.; Zecchi-Orlandini, S. Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: New therapeutic perspectives for skeletal muscle repair/regeneration. Cell Tissue Res. 2018, 372, 549–570. [Google Scholar] [CrossRef] [PubMed]
- De Mos, M.; van der Windt, A.E.; Jahr, H.; van Schie, H.T.; Weinans, H.; Verhaar, J.A.; van Osch, G.J. Can platelet-rich plasma enhance tendon repair? A cell culture study. Am. J. Sports Med. 2008, 36, 1171–1178. [Google Scholar] [CrossRef]
- Choi, B.H.; Zhu, S.J.; Kim, B.Y.; Huh, J.Y.; Lee, S.H.; Jung, J.H. Effect of platelet-rich plasma (PRP) concentration on the viability and proliferation of alveolar bone cells: An in vitro study. Int. J. Oral. Maxillofac. Surg. 2005, 34, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Kanno, T.; Takahashi, T.; Tsujisawa, T.; Ariyoshi, W.; Nishihara, T. Platelet-rich plasma enhances human osteoblast-like cell proliferation and differentiation. J. Oral. Maxillofac. Surg. 2005, 63, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Graziani, F.; Ivanovski, S.; Cei, S.; Ducci, F.; Tonetti, M.; Gabriele, M. The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin. Oral. Implant. Res. 2006, 17, 212–219. [Google Scholar] [CrossRef]
- Arpornmaeklong, P.; Kochel, M.; Depprich, R.; Kubler, N.R.; Wurzler, K.K. Influence of platelet-rich plasma (PRP) on osteogenic differentiation of rat bone marrow stromal cells. An in vitro study. Int. J. Oral. Maxillofac. Surg. 2004, 33, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Long, C.Y.; Lin, K.L.; Shen, C.R.; Ker, C.R.; Liu, Y.Y.; Loo, Z.X.; Hsiao, H.H.; Lee, Y.C. A pilot study: Effectiveness of local injection of autologous platelet-rich plasma in treating women with stress urinary incontinence. Sci. Rep. 2021, 11, 1584. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Kuo, Y.C.; Jhang, J.F.; Lee, C.L.; Hsu, Y.H.; Ho, H.C.; Kuo, H.C. Repeated intravesical injections of platelet-rich plasma improve symptoms and alter urinary functional proteins in patients with refractory interstitial cystitis. Sci. Rep. 2020, 10, 15218. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jhang, J.F.; Hsu, Y.H.; Ho, H.C.; Lin, T.Y.; Birder, L.A.; Kuo, H.C. Urothelial health after platelet-rich plasma injection in intractable recurrent urinary tract infection: Improved cell proliferation, cytoskeleton, and barrier function protein expression. Low Urin. Tract Symptoms 2021, 13, 271–278. [Google Scholar] [CrossRef]
- Lin, C.C.; Huang, Y.C.; Lee, W.C.; Chuang, Y.C. New Frontiers or the Treatment of Interstitial Cystitis/Bladder Pain Syndrome—Focused on Stem Cells, Platelet-Rich Plasma, and Low-Energy Shock Wave. Int. Neurourol. J. 2020, 24, 211–221. [Google Scholar] [CrossRef]
- Ke, Q.S.; Jhang, J.F.; Lin, T.Y.; Ho, H.C.; Jiang, Y.H.; Hsu, Y.H.; Kuo, H.C. Therapeutic potential of intravesical injections of platelet-rich plasma in the treatment of lower urinary tract disorders due to regenerative deficiency. Ci Ji Yi Xue Za Zhi 2019, 31, 135–143. [Google Scholar] [CrossRef]
- Jhang, J.F.; Lin, T.Y.; Kuo, H.C. Intravesical injections of platelet-rich plasma is effective and safe in treatment of interstitial cystitis refractory to conventional treatment-A prospective clinical trial. Neurourol. Urodyn. 2019, 38, 703–709. [Google Scholar] [CrossRef]
- Jhang, J.F.; Wu, S.Y.; Lin, T.Y.; Kuo, H.C. Repeated intravesical injections of platelet-rich plasma are effective in the treatment of interstitial cystitis: A case control pilot study. Low Urin. Tract Symptoms 2019, 11, O42–O47. [Google Scholar] [CrossRef]
- Chancellor, M.; Lamb, L.; Ward, E.; Bartolone, S.; Carabulea, A.; Sharma, P.; Janicki, J.; Smith, C.; Laudano, M.; Abraham, N.; et al. Comparing concentration of urinary inflammatory cytokines in interstitial cystitis, overactive bladder, urinary tract infection, and bladder cancer. Urol. Sci. 2022, 33, 199–204. [Google Scholar] [CrossRef]
- Trama, F.; Illiano, E.; Marchesi, A.; Brancorsini, S.; Crocetto, F.; Pandolfo, S.D.; Zucchi, A.; Costantini, E. Use of Intravesical Injections of Platelet-Rich Plasma for the Treatment of Bladder Pain Syndrome: A Comprehensive Literature Review. Antibiotics 2021, 10, 1194. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kawase, T.; Okuda, K.; Wolff, L.F.; Yoshie, H. In vitro immunological and biological evaluations of the angiogenic potential of platelet-rich fibrin preparations: A standardized comparison with PRP preparations. Int. J. Implant. Dent. 2015, 1, 31. [Google Scholar] [CrossRef]
- Richardson, T.P.; Peters, M.C.; Ennett, A.B.; Mooney, D.J. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 2001, 19, 1029–1034. [Google Scholar] [CrossRef]
- Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H.; Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair Regen 2008, 16, 585–601. [Google Scholar] [CrossRef]
- Kalluri, R.; Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Investig. 2003, 112, 1776–1784. [Google Scholar] [CrossRef]
- Lee, J.Y.; Spicer, A.P. Hyaluronan: A multifunctional, megaDalton, stealth molecule. Curr. Opin. Cell Biol. 2000, 12, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Stern, R.; Asari, A.A.; Sugahara, K.N. Hyaluronan fragments: An information-rich system. Eur. J. Cell Biol. 2006, 85, 699–715. [Google Scholar] [CrossRef] [PubMed]
- Tolg, C.; Hamilton, S.R.; Nakrieko, K.A.; Kooshesh, F.; Walton, P.; McCarthy, J.B.; Bissell, M.J.; Turley, E.A. Rhamm−/− fibroblasts are defective in CD44-mediated ERK1,2 motogenic signaling, leading to defective skin wound repair. J. Cell Biol. 2006, 175, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Savani, R.C.; Wang, C.; Yang, B.; Zhang, S.; Kinsella, M.G.; Wight, T.N.; Stern, R.; Nance, D.M.; Turley, E.A. Migration of bovine aortic smooth muscle cells after wounding injury. The role of hyaluronan and RHAMM. J. Clin. Investig. 1995, 95, 1158–1168. [Google Scholar] [CrossRef]
- Koyama, H.; Hibi, T.; Isogai, Z.; Yoneda, M.; Fujimori, M.; Amano, J.; Kawakubo, M.; Kannagi, R.; Kimata, K.; Taniguchi, S.; et al. Hyperproduction of hyaluronan in neu-induced mammary tumor accelerates angiogenesis through stromal cell recruitment: Possible involvement of versican/PG-M. Am. J. Pathol. 2007, 170, 1086–1099. [Google Scholar] [CrossRef]
- Koyama, H.; Kobayashi, N.; Harada, M.; Takeoka, M.; Kawai, Y.; Sano, K.; Fujimori, M.; Amano, J.; Ohhashi, T.; Kannagi, R.; et al. Significance of tumor-associated stroma in promotion of intratumoral lymphangiogenesis: Pivotal role of a hyaluronan-rich tumor microenvironment. Am. J. Pathol. 2008, 172, 179–193. [Google Scholar] [CrossRef]
- Chueh, K.S.; Huang, K.H.; Lu, J.H.; Juan, T.J.; Chuang, S.M.; Lin, R.J.; Lee, Y.C.; Long, C.Y.; Shen, M.C.; Sun, T.W.; et al. Therapeutic Effect of Platelet-Rich Plasma Improves Bladder Overactivity in the Pathogenesis of Ketamine-Induced Ulcerative Cystitis in a Rat Model. Int. J. Mol. Sci. 2022, 23, 5771. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.W.; Lv, G.Y.; Xie, S.L.; Wang, G.Y. Effects of STAT3 gene silencing and rapamycin on apoptosis in hepatocarcinoma cells. Int. J. Med. Sci. 2012, 9, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, P.T.; Hay, N. The two TORCs and Akt. Dev. Cell. 2007, 12, 487–502. [Google Scholar] [CrossRef]
- Sheng, L.; Mao, X.; Yu, Q.; Yu, D. Effect of the PI3K/AKT signaling pathway on hypoxia-induced proliferation and differentiation of bone marrow-derived mesenchymal stem cells. Exp. Ther. Med. 2017, 13, 55–62. [Google Scholar] [CrossRef]
- Yang, L.; Wang, R.; Gao, Y.; Xu, X.; Fu, K.; Wang, S.; Li, Y.; Peng, R. The protective role of interleukin-11 against neutron radiation injury in mouse intestines via MEK/ERK and PI3K/Akt dependent pathways. Dig. Dis. Sci. 2014, 59, 1406–1414. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Yu, X.; Li, Q.; Wang, Q.; Chang, A.; Huang, X.; Han, X.; Song, Y.; Hu, J.; et al. SOX9/miR-203a axis drives PI3K/AKT signaling to promote esophageal cancer progression. Cancer Lett. 2020, 468, 14–26. [Google Scholar] [CrossRef]
- Chang, L.; Graham, P.H.; Ni, J.; Hao, J.; Bucci, J.; Cozzi, P.J.; Li, Y. Targeting PI3K/Akt/mTOR signaling pathway in the treatment of prostate cancer radioresistance. Crit. Rev. Oncol. Hematol. 2015, 96, 507–517. [Google Scholar] [CrossRef]
- Chen, S.; Li, K.; Zhong, X.; Wang, G.; Wang, X.; Cheng, M.; Chen, J.; Chen, Z.; Chen, J.; Zhang, C.; et al. Sox9-expressing cells promote regeneration after radiation-induced lung injury via the PI3K/AKT pathway. Stem. Cell Res. Ther. 2021, 12, 381. [Google Scholar] [CrossRef] [PubMed]
- Sadoghi, P.; Lohberger, B.; Aigner, B.; Kaltenegger, H.; Friesenbichler, J.; Wolf, M.; Sununu, T.; Leithner, A.; Vavken, P. Effect of platelet-rich plasma on the biologic activity of the human rotator-cuff fibroblasts: A controlled in vitro study. J. Orthop. Res. 2013, 31, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Haunschild, E.D.; Huddleston, H.P.; Chahla, J.; Gilat, R.; Cole, B.J.; Yanke, A.B. Platelet-Rich Plasma Augmentation in Meniscal Repair Surgery: A Systematic Review of Comparative Studies. Arthrosc. J. Arthrosc. Relat. Surg. 2020, 36, 1765–1774. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, X.; Wang, C.; Tang, T.; Chai, Y. The dose-effect relationship in extracorporeal shock wave therapy: The optimal parameter for extracorporeal shock wave therapy. J. Surg. Res. 2014, 186, 484–492. [Google Scholar] [CrossRef]
- Wu, A.K.; Zhang, X.; Wang, J.; Ning, H.; Zaid, U.; Villalta, J.D.; Wang, G.; Banie, L.; Lin, G.; Lue, T.F. Treatment of stress urinary incontinence with low-intensity extracorporeal shock wave therapy in a vaginal balloon dilation induced rat model. Transl. Androl. Urol. 2018, 7, S7–S16. [Google Scholar] [CrossRef]
- Lin, K.L.; Lu, J.H.; Chueh, K.S.; Juan, T.J.; Wu, B.N.; Chuang, S.M.; Lee, Y.C.; Shen, M.C.; Long, C.Y.; Juan, Y.S. Low-Intensity Extracorporeal Shock Wave Therapy Promotes Bladder Regeneration and Improves Overactive Bladder Induced by Ovarian Hormone Deficiency from Rat Animal Model to Human Clinical Trial. Int. J. Mol. Sci. 2021, 22, 9296. [Google Scholar] [CrossRef]
- Juan, Y.S.; Lee, Y.L.; Long, C.Y.; Wong, J.H.; Jang, M.Y.; Lu, J.H.; Wu, W.J.; Huang, Y.S.; Chang, W.C.; Chuang, S.M. Translocation of NF-κB and expression of cyclooxygenase-2 are enhanced by ketamine-induced ulcerative cystitis in rat bladder. Am. J. Pathol. 2015, 185, 2269–2285. [Google Scholar] [CrossRef]
- Liu, K.M.; Chuang, S.M.; Long, C.Y.; Lee, Y.L.; Wang, C.C.; Lu, M.C.; Lin, R.J.; Lu, J.H.; Jang, M.Y.; Wu, W.J.; et al. Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am. J. Physiol. Renal. Physiol. 2015, 309, F318–F331. [Google Scholar] [CrossRef]
- Lee, C.L.; Jiang, Y.H.; Kuo, H.C. Increased apoptosis and suburothelial inflammation in patients with ketamine-related cystitis: A comparison with non-ulcerative interstitial cystitis and controls. BJU Int. 2013, 112, 1156–1162. [Google Scholar] [CrossRef]
- Sonnleitner, D.; Huemer, P.; Sullivan, D.Y. A simplified technique for producing platelet-rich plasma and platelet concentrate for intraoral bone grafting techniques: A technical note. Int. J. Oral Maxillofac. Implant. 2000, 15, 879–882. [Google Scholar]
- Vahdatpour, B.; Kianimehr, L.; Moradi, A.; Haghighat, S. Beneficial effects of platelet-rich plasma on improvement of pain severity and physical disability in patients with plantar fasciitis: A randomized trial. Adv. Biomed. Res. 2016, 5, 179. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.M.; Liu, K.M.; Li, Y.L.; Jang, M.Y.; Lee, H.H.; Wu, W.J.; Chang, W.C.; Levin, R.M.; Juan, Y.S. Dual involvements of cyclooxygenase and nitric oxide synthase expressions in ketamine-induced ulcerative cystitis in rat bladder. Neurourol. Urodyn. 2013, 32, 1137–1143. [Google Scholar] [CrossRef]
- Rives, J.; Fernandez-Rodriguez, I.; Rieradevall, J.; Gabarrell, X. Environmental analysis of raw cork extraction in cork oak forests in southern Europe (Catalonia—Spain). J. Environ. Manag. 2012, 110, 236–245. [Google Scholar] [CrossRef]
Variable | Sham | OVX | OVX + PRP | OVX + PPP |
---|---|---|---|---|
No. rats | 10 | 10 | 10 | 10 |
Serum estradiol conc. (pg/mL) before treatment | 31.6 ± 4.2 | 32.6 ± 3.4 | 31.8 ± 2.9 | 33.0 ± 2.5 |
Serum estradiol conc. (pg/mL) after treatment | 32.8 ± 3.6 | 16.2 ± 3.5 ** | 15.8 ± 2.1 ** | 16.9 ± 2.3 ** |
Physical characteristics | ||||
Water intake (mL/24 h) | 38.7 ± 8.9 | 35.7 ± 7.7 | 37.7 ± 5.3 | 36.0± 6.1 |
Urine output (mL/24 h) | 22.6 ± 5.2 | 17.0 ± 4.5 | 18.6 ± 3.0 | 17.9 ± 3.3 |
Waist circumference (cm) | 17.6 ± 2.6 | 22.6 ± 3.8 * | 21.4 ± 2.5 * | 21.8 ± 3.0 * |
Body weight (g) | 345.2 ± 28.6 | 469. 8 ± 41.4 ** | 450.7 ± 37.6 ** | 459.3 ± 38.2 ** |
Bladder weight (mg) | 218.0 ± 16.6 | 196.7 ± 25.8 * | 230.0 ± 19.7 † | 226.7 ± 16.8 † |
The ratio of bladder weight (mg)/ body weight (g) | 0.60 ± 0.09 | 0.41 ± 0.06 ** | 0.55 ± 0.07 † | 0.49 ± 0.05 *,† |
Serum parameters | ||||
GOT (U/dL) | 42.3 ± 33.1 | 126.3 ± 38.0 * | 116.3 ± 23.1 * | 121.8 ± 18.2 * |
GPT (U/dL) | 38.0 ± 6.0 | 79.0 ± 12.6 * | 64.7 ± 12.3 * | 69.7 ± 17.9 * |
Triglyceride (mg/dL) | 76.7 ± 13.3 | 128.8 ± 27.8 ** | 83.3 ± 14.2 ** | 89.8 ± 33.3 ** |
Cholesterol (mg/dL) | 66.9 ± 14.8 | 162.8 ± 12.2 ** | 150.7 ± 9.5 ** | 163.3 ± 8.9 ** |
HDL (mg/dL) | 68.9 ± 7.5 | 61.3 ± 10.0 | 54.7 ± 7.8 | 53.3 ± 8.7 |
LDL (mg/dL) | 13.5 ± 0.7 | 50.7 ± 4.5 ** | 40.9 ± 6.5 ** | 46.7 ± 1.8 ** |
Glucose (mg/dL) | 102.5 ± 10.7 | 127.8 ± 18.6 * | 117.0 ± 7.7 | 118.3 ± 11.0 |
Insulin (Bayer) (mU/L) | 0.4 ± 0.05 | 0.5 ± 0.06 | 0.4 ± 0.04 | 0.5 ± 0.06 |
LDH | 133.8 ± 12.8 | 394.5 ± 41.0 ** | 254.2 ± 27.9 **,†† | 274.0 ± 34.4 **,†† |
Urodynamic parameters | ||||
Frequency (No. voids/1 h) | 4.2 ± 0.8 | 10.8 ± 2.2 ** | 4.5 ± 1.0 †† | 5.8 ± 1.2 *,†† |
Peak micturition pressure (cmH2O) | 35.6 ± 5.0 | 51.6 ± 6.2 * | 37.9 ± 3.1 | 41.8 ± 4.5 † |
Voided volume (mL) | 2.1 ± 0.4 | 0.7 ± 0.3 ** | 1.6 ± 0.4 † | 1.3 ± 0.3 *,† |
No. non-voiding contractions between micturition (No./60 mins) | 0 | 1.3 * | 0 | 0 |
Gene Name | Accession Number | Forward Primer Sequence (5’→3’) | Reverse Primer Sequence (5’→3’) | Tm (°C) | Product Size (bp) |
---|---|---|---|---|---|
β-actin | NM_007393 | ATCTCCTTCTGCATCCTGTCGGCAAT | CATGGAGTCCTGGCATCCACGAAAC | 59 | 145 |
Hyaluronan (HA) receptor | |||||
CD44 | NM_012924.2 | AGAAGGTGTGGGCAGAAGAA | AAATGCACCATTTCCTGAGA | 59 | 116 |
TLR4 | NM_019178.1 | GGGTGAGAAACGAGCT | TTGTCCTCCCACTCGA | 59 | 101 |
RHAMM | NM_012964.2 | TGCAAAGCCAGTCACTTCTG | GACATTCCTCTCGGAGGTCA | 59 | 101 |
Hyaluronan synthase (HAS) | |||||
HAS1 | NM_172323.1 | AGTATACCTCGCGCTCCAGA | ACCACAGGGCGTTGTATAGC | 59 | 120 |
HAS2 | NM_013153.1 | ATAAGCGGTCCTCTGGGAAT | CCCTGTTGGTAAGGTGCCTA | 59 | 124 |
HAS3 | NM_172319.1 | AGCAGCGTGAGGTACTGGTA | AGTCCTCCAGGAACTGCTGA | 60 | 130 |
PH20 | NM_053967.2 | ACTATCCTCACATAGATGCACAGC | TCGACTCGACTTCAAATCTTTCTT | 60 | 524 |
Hyaluronidases (HYAL) | |||||
HYAL1 | NM_207616.1 | ATGACCAGCTAGGGTGGTTG | CTCTTGCACACGGTATCGAA | 59 | 119 |
HYAL2 | NM_172040.2 | AGGCCTGTATCCACGTTTTG | GTTCCACAGCTTCCTTCAGC | 59 | 107 |
HYAL3 | NM_207599.2 | GTGTTCGAGCTGTGGTGTGG | GGGGATCTTCCTCCAAGACC | 59 | 122 |
HYAL4 | NM_001100780.1 | ACCCATCAATGGTGGTCTTC | GCGCCAATATTCCCAGTCTA | 59 | 133 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.-H.; Chueh, K.-S.; Juan, T.-J.; Mao, J.-W.; Lin, R.-J.; Lee, Y.-C.; Shen, M.-C.; Sun, T.-W.; Lin, H.-Y.; Juan, Y.-S. Effects of Therapeutic Platelet-Rich Plasma on Overactive Bladder via Modulating Hyaluronan Synthesis in Ovariectomized Rat. Int. J. Mol. Sci. 2023, 24, 8242. https://doi.org/10.3390/ijms24098242
Lu J-H, Chueh K-S, Juan T-J, Mao J-W, Lin R-J, Lee Y-C, Shen M-C, Sun T-W, Lin H-Y, Juan Y-S. Effects of Therapeutic Platelet-Rich Plasma on Overactive Bladder via Modulating Hyaluronan Synthesis in Ovariectomized Rat. International Journal of Molecular Sciences. 2023; 24(9):8242. https://doi.org/10.3390/ijms24098242
Chicago/Turabian StyleLu, Jian-He, Kuang-Shun Chueh, Tai-Jui Juan, Jing-Wen Mao, Rong-Jyh Lin, Yi-Chen Lee, Mei-Chen Shen, Ting-Wei Sun, Hung-Yu Lin, and Yung-Shun Juan. 2023. "Effects of Therapeutic Platelet-Rich Plasma on Overactive Bladder via Modulating Hyaluronan Synthesis in Ovariectomized Rat" International Journal of Molecular Sciences 24, no. 9: 8242. https://doi.org/10.3390/ijms24098242
APA StyleLu, J. -H., Chueh, K. -S., Juan, T. -J., Mao, J. -W., Lin, R. -J., Lee, Y. -C., Shen, M. -C., Sun, T. -W., Lin, H. -Y., & Juan, Y. -S. (2023). Effects of Therapeutic Platelet-Rich Plasma on Overactive Bladder via Modulating Hyaluronan Synthesis in Ovariectomized Rat. International Journal of Molecular Sciences, 24(9), 8242. https://doi.org/10.3390/ijms24098242