Heck Macrocyclization in Forging Non-Natural Large Rings including Macrocyclic Drugs
Abstract
:1. Introduction
2. Drug Discovery Research
2.1. Peptidomimetic Macrocycles
2.2. Non-Peptidic Macrocycles
2.3. Natural Product Analogues
3. Synthetic Methodology Development
3.1. Allenic Precursors
3.2. Single, Double, or Multifold Heck Reactions
3.3. Supramolecular Catalysts
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Oestreich, M. (Ed.) The Mizoroki-Heck Reaction; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Seechurn, C.C.J.; Kitching, M.O.; Colacot, T.J.; Snieckus, V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012, 51, 5062–5085. [Google Scholar] [CrossRef] [PubMed]
- Beletskaya, I.P.; Cheprakov, A.V. The Heck reaction as a sharpening stone of palladium catalysis. Chem. Rev. 2000, 100, 3009–3066. [Google Scholar] [CrossRef] [PubMed]
- Gibson, S.E.; Middleton, R.J. The intramolecular Heck reaction. Contemp. Org. Synth. 1996, 3, 447–471. [Google Scholar] [CrossRef]
- Dounay, A.B.; Overman, L.E. The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem. Rev. 2003, 103, 2945–2964. [Google Scholar] [CrossRef] [PubMed]
- Link, J.T. The intramolecular Heck reaction. Org. React. 2004, 60, 157–561. [Google Scholar] [CrossRef]
- Race, N.J.; Hazelden, I.R.; Faulkner, A.; Bower, J.F. Recent developments in the use of aza-Heck cyclizations for the synthesis of chiral N-heterocycles. Chem. Sci. 2017, 8, 5248–5260. [Google Scholar] [CrossRef]
- Ghosh, T. Reductive Heck Reaction: An Emerging Alternative in Natural Product Synthesis. ChemistrySelect 2019, 4, 4747–4755. [Google Scholar] [CrossRef]
- Reznikov, A.N.; Ashatkina, M.A.; Klimochkin, Y.N. Recent developments in asymmetric Heck type cyclization reactions for constructions of complex molecules. Org. Biomol. Chem. 2021, 19, 5673–5701. [Google Scholar] [CrossRef]
- Liang, R.-X.; Jia, Y.-X. Aromatic π-Components for Enantioselective Heck Reactions and Heck/Anion-Capture Domino Sequences. Acc. Chem. Res. 2022, 55, 734–745. [Google Scholar] [CrossRef]
- Ronson, T.O.; Taylor, R.J.; Fairlamb, I.J. Palladium-catalysed macrocyclisations in the total synthesis of natural products. Tetrahedron 2015, 7, 989–1009. [Google Scholar] [CrossRef]
- Zhang, W. Heck macrocyclization in natural product total synthesis. Nat. Prod. Rep. 2021, 38, 1109–1135. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.; Das, S.; Saha, S.; Sharma, H.; Goswami, R.K. Intramolecular Heck Reaction in Total Synthesis of Natural Products: An Update. Eur. J. Org. Chem. 2021, 2057–2076. [Google Scholar] [CrossRef]
- Driggers, E.M.; Hale, S.P.; Lee, J.; Terrett, N.K. The exploration of macrocycles for drug discovery—An underexploited structural class. Nat. Rev. Drug Discov. 2008, 7, 608–624. [Google Scholar] [CrossRef] [PubMed]
- Marsault, E.; Peterson, M.L. Macrocycles are great cycles: Applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J. Med. Chem. 2011, 54, 1961–2004. [Google Scholar] [CrossRef] [PubMed]
- Giordanetto, F.; Kihlberg, J. Macrocyclic drugs and clinical candidates: What can medicinal chemists learn from their properties? J. Med. Chem. 2014, 57, 278–295. [Google Scholar] [CrossRef]
- Peterson, M.L. Chapter 11 The Synthesis of Macrocycles for Drug Discovery. In Macrocycles in Drug Discovery; Levin, J.I., Ed.; Royal Society of Chemistry: London, UK, 2015; Volume 40, pp. 398–486. [Google Scholar]
- Ronson, T.O.; Unsworth, W.P.; Fairlamb, I.J. Palladium-Catalyzed Synthesis of Macrocycles. In Practical Medicinal Chemistry with Macrocycles: Design, Synthesis, and Case Studies; Marsault, E., Peterson, M.L., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 281–305. [Google Scholar]
- Toy, P.H.; Lam, Y. (Eds.) Solid-Phase Organic Synthesis: Concepts, Strategies, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Hiroshige, M.; Hauske, J.R.; Zhou, P. Palladium-Mediated Macrocyclization on Solid Support and Its Applications to Combinatorial Synthesis. J. Am. Chem. Soc. 1995, 117, 11590–11591. [Google Scholar] [CrossRef]
- Mazur, S.; Jayalekshmy, P. Chemistry of polymer-bound o-benzyne. Frequency of encounter between substituents on crosslinked polystyrenes. J. Am. Chem. Soc. 1979, 101, 677–683. [Google Scholar] [CrossRef]
- Wang, F.; Li, Y.; Shen, Y.; Wang, A.; Wang, S.; Xie, T. The functions and applications of RGD in tumor therapy and tissue engineering. Int. J. Mol. Sci. 2013, 14, 13447–13462. [Google Scholar] [CrossRef]
- Akaji, K.; Kiso, Y. Macrocyclization on solid support using Heck reaction. Tetrahedron Lett. 1997, 38, 5185–5188. [Google Scholar] [CrossRef]
- Akaji, K.; Teruya, K.; Akaji, M.; Aimoto, S. Synthesis of cyclic RGD derivatives via solid phase macrocyclization using the Heck reaction. Tetrahedron 2001, 57, 2293–2303. [Google Scholar] [CrossRef]
- Ruzha, Y.; Ni, J.; Quan, Z.; Li, H.; Qing, H. Role of Vitronectin and Its Receptors in Neuronal Function and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 12387. [Google Scholar] [CrossRef] [PubMed]
- Byk, G.; Cohen-Ohana, M.; Raichman, D. Fast and versatile microwave-assisted intramolecular Heck reaction in peptide macrocyclization using microwave energy. Biopolymers 2006, 84, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Bartas, M.; Cerven, J.; Guziurova, S.; Slychko, K.; Pecinka, P. Amino acid composition in various types of nucleic acid-binding proteins. Int. J. Mol. Sci. 2021, 22, 922. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.R.; Balraju, V.; Madhavan, G.R.; Banerji, B.; Iqbal, J. Synthesis of small cyclic peptides via intramolecular Heck reactions. Tetrahedron Lett. 2003, 44, 353–356. [Google Scholar] [CrossRef]
- Banerji, B.; Chatterjee, S.; Killi, S.K.; Srinivas, D.; Prodhan, C.; Katarkar, A.; Chaudhuri, K. Synthesis and DNA-Binding Studies of A New Cyclic Dimeric Symmetrical Pseudo-Turn Mimetic. Chemistryselect 2018, 3, 2103–2107. [Google Scholar] [CrossRef]
- Neidle, S. DNA minor-groove recognition by small molecules. Nat. Prod. Rep. 2001, 18, 291–309. [Google Scholar] [CrossRef]
- Aeluri, M.; Gaddam, J.; Trinath, D.V.K.S.; Chandrasekar, G.; Kitambi, S.S.; Arya, P. An Intramolecular Heck Approach To Obtain 17-Membered Macrocyclic Diversity and the Identification of an Antiangiogenesis Agent from a Zebrafish Assay. Eur. J. Org. Chem. 2013, 3955–3958. [Google Scholar] [CrossRef]
- McCauley, J.A.; Rudd, M.T. Hepatitis C virus NS3/4a protease inhibitors. Curr. Opin. Pharmacol. 2016, 30, 84–92. [Google Scholar] [CrossRef]
- Gotte, M.; Feld, J.J. Direct-acting antiviral agents for hepatitis C: Structural and mechanistic insights. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 338–351. [Google Scholar] [CrossRef]
- Chen, K.X.; Njoroge, F.G.; Prongay, A.; Pichardo, J.; Madison, V.; Girijavallabhan, V. Synthesis and biological activity of macrocyclic inhibitors of hepatitis C virus (HCV) NS3 protease. Bioorg. Med. Chem. Lett. 2005, 15, 4475–4478. [Google Scholar] [CrossRef]
- Song, Z.J.; Tellers, D.M.; Journet, M.; Kuethe, J.T.; Lieberman, D.; Humphrey, G.; Zhang, F.; Peng, Z.; Waters, M.S.; Zewge, D.; et al. Synthesis of Vaniprevir (MK-7009): Lactamization To Prepare a 20-Membered Macrocycle. J. Org. Chem. 2011, 76, 7804–7815. [Google Scholar] [CrossRef] [PubMed]
- McCauley, J.A.; McIntyre, C.J.; Rudd, M.T.; Nguyen, K.T.; Romano, J.J.; Butcher, J.W.; Gilbert, K.F.; Bush, K.J.; Holloway, M.K.; Swestock, J.; et al. Discovery of Vaniprevir (MK-7009), a Macrocyclic Hepatitis C Virus NS3/4a Protease Inhibitor. J. Med. Chem. 2010, 53, 2443–2463. [Google Scholar] [CrossRef] [PubMed]
- Lau, Y.H.; De Andrade, P.; Wu, Y.; Spring, D.R. Peptide stapling techniques based on different macrocyclisation chemistries. Chem. Soc. Rev. 2015, 44, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Bechtler, C.; Lamers, C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med. Chem. 2021, 12, 1325–1351. [Google Scholar] [CrossRef]
- Bozovicar, K.; Bratkovic, T. Small and Simple, yet Sturdy: Conformationally Constrained Peptides with Remarkable Properties. Int. J. Mol. Sci. 2021, 22, 1611. [Google Scholar] [CrossRef]
- Fumagalli, G.; Carbajo, R.J.; Nissink, J.W.M.; Tart, J.; Dou, R.; Thomas, A.P.; Spring, D.R. Targeting a Novel KRAS Binding Site: Application of One-Component Stapling of Small (5–6-mer) Peptides. J. Med. Chem. 2021, 64, 17287–17303. [Google Scholar] [CrossRef]
- Bierer, B.E.; Somers, P.K.; Wandless, T.J.; Burakoff, S.J.; Schreiber, S.L. Probing immunosuppressant action with a nonnatural immunophilin ligand. Science 1990, 250, 556–559. [Google Scholar] [CrossRef]
- Holt, D.A.; Luengo, J.I.; Yamashita, D.S.; Oh, H.J.; Konialian, A.L.; Yen, H.K.; Rozamus, L.W.; Brandt, M.; Bossard, M.J. Design, synthesis, and kinetic evaluation of high-affinity FKBP ligands and the X-ray crystal structures of their complexes with FKBP12. J. Am. Chem. Soc. 1993, 115, 9925–9938. [Google Scholar] [CrossRef]
- Stocks, M.J.; Harrison, R.P.; Teague, S.J. Macrocyclic ring closures employing the Intramolecular Heck reaction. Tetrahedron Lett. 1995, 36, 6555–6558. [Google Scholar] [CrossRef]
- Gaudin, J.M. Intramolecular Heck reaction with substrates possessing an allylic alcohol moiety. Tetrahedron Lett. 1991, 32, 6113–6116. [Google Scholar] [CrossRef]
- Holla, V.R.; Elamin, Y.Y.; Bailey, A.M.; Johnson, A.M.; Litzenburger, B.C.; Khotskaya, Y.B.; Sanchez, N.S.; Zeng, J.; Abu Shufean, M.; Shaw, K.R.; et al. ALK: A tyrosine kinase target for cancer therapy. Cold Spring Harbor Mol. Case Stud. 2017, 3, a001115. [Google Scholar] [CrossRef] [PubMed]
- Hatcher, J.M.; Gray, N.S. Small molecule inhibitors of ALK. Top. Med. Chem. 2018, 28, 435–467. [Google Scholar]
- Cui, J.J.; Tran-Dubé, M.; Shen, H.; Nambu, M.; Kung, P.-P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; et al. Structure Based Drug Design of Crizotinib (PF-02341066), a Potent and Selective Dual Inhibitor of Mesenchymal–Epithelial Transition Factor (c-MET) Kinase and Anaplastic Lymphoma Kinase (ALK). J. Med. Chem. 2011, 54, 6342–6363. [Google Scholar] [CrossRef] [PubMed]
- Breslin, H.J.; Lane, B.M.; Ott, G.R.; Ghose, A.K.; Angeles, T.S.; Albom, M.S.; Cheng, M.; Wan, W.; Haltiwanger, R.C.; Wells-Knecht, K.J.; et al. Design, Synthesis, and Anaplastic Lymphoma Kinase (ALK) Inhibitory Activity for a Novel Series of 2,4,8,22-Tetraazatetracyclo[14.3.1.13,7.19,13]docosa-1(20),3(22),4,6,9(21),10,12,16,18-nonaene Macrocycles. J. Med. Chem. 2012, 55, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wu, S. Phosphine-Containing Macrocyclic Compound, Its Preparation Method, and Application in Inhibiting ALK Gene Mutation, ALK Gene Rearrangement and/or ALK Gene Amplification. Patent CN113549113A, 26 October 2021. [Google Scholar]
- Lipinski, C.A.; Loftus, J.C. Targeting Pyk2 for therapeutic intervention. Expert Opin. Ther. Tar. 2010, 14, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Hong, J.-H. Activated PyK2 and Its Associated Molecules Transduce Cellular Signaling from the Cancerous Milieu for Cancer Metastasis. Int. J. Mol. Sci. 2022, 23, 15475. [Google Scholar] [CrossRef]
- Chuang, H.-H.; Zhen, Y.-Y.; Tsai, Y.-C.; Chuang, C.-H.; Hsiao, M.; Huang, M.-S.; Yang, C.-J. FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int. J. Mol. Sci. 2022, 23, 1726. [Google Scholar] [CrossRef]
- Roberts, W.G.; Ung, E.; Whalen, P.; Cooper, B.; Hulford, C.; Autry, C.; Richter, D.; Emerson, E.; Lin, J.; Kath, J.; et al. Antitumor Activity and Pharmacology of a Selective Focal Adhesion Kinase Inhibitor, PF-562,271. Cancer Res. 2008, 68, 1935–1944. [Google Scholar] [CrossRef]
- Farand, J.; Mai, N.; Chandrasekhar, J.; Newby, Z.E.; Van Veldhuizen, J.; Loyer-Drew, J.; Venkataramani, C.; Guerrero, J.; Kwok, A.; Li, N.; et al. Selectivity switch between FAK and Pyk2: Macrocyclization of FAK inhibitors improves Pyk2 potency. Bioorg. Med. Chem. Lett. 2016, 26, 5926–5930. [Google Scholar] [CrossRef]
- Johnson, T.W.; Richardson, P.F.; Bailey, S.; Brooun, A.; Burke, B.J.; Collins, M.R.; Cui, J.J.; Deal, J.G.; Deng, Y.-L.; Dinh, D.; et al. Discovery of (10R)-7-Amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a Macrocyclic Inhibitor of Anaplastic Lymphoma Kinase (ALK) and c-ros Oncogene 1 (ROS1) with Preclinical Brain Exposure and Broad-Spectrum Potency against ALK-Resistant Mutations. J. Med. Chem. 2014, 57, 4720–4744. [Google Scholar] [PubMed]
- Freeman-Cook, K.D.; Hoffman, R.L.; Johnson, T.W. Lipophilic efficiency: The most important efficiency metric in medicinal chemistry. Future Med. Chem. 2013, 5, 113–115. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Mills, J.B.; Davidson, R.E.; Mireles, R.J.; Janiszewski, J.S.; Troutman, M.D.; de Morais, S.M. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab. Dispos. 2008, 36, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. Lorlatinib: First Global Approval. Drugs 2019, 79, 93–98. [Google Scholar] [CrossRef]
- Amrhein, J.A.; Knapp, S.; Hanke, T. Synthetic Opportunities and Challenges for Macrocyclic Kinase Inhibitors. J. Med. Chem. 2021, 64, 7991–8009. [Google Scholar] [CrossRef]
- Prashad, M. Palladium-catalyzed heck arylations in the synthesis of active pharmaceutical ingredients. Topics Organomet. Chem. 2004, 6, 181–203. [Google Scholar]
- Comins, D.L.; Baevsky, M.F.; Hong, H. A 10-step, asymmetric synthesis of (S)-camptothecin. J. Am. Chem. Soc. 1992, 114, 10971–10972. [Google Scholar] [CrossRef]
- Heim, A.; Terpin, A.; Steglich, W. Biomimetic Synthesis of Lamellarin G. Trimethyl Ether. Angew. Chem. Int. Ed. 1997, 36, 155–156. [Google Scholar] [CrossRef]
- Yue, W.S.; Li, J.J. A concise synthesis of all four possible benzo [4, 5] furopyridines via palladium-mediated reactions. Org. Lett. 2002, 4, 2201–2203. [Google Scholar] [CrossRef]
- Bringmann, G.; Menche, D.; Kraus, J.; Mühlbacher, J.; Peters, K.; Peters, E.-M.; Brun, R.; Bezabih, M.; Abegaz, B.M. Atropo-enantioselective total synthesis of knipholone and related antiplasmodial phenylanthraquinones. J. Org. Chem. 2002, 67, 5595–5610. [Google Scholar] [CrossRef]
- Singh, S.K.; Ruchelman, A.L.; Li, T.-K.; Liu, A.; Liu, L.F.; LaVoie, E.J. Nitro and Amino Substitution in the D-Ring of 5-(2-Dimethylaminoethyl)-2,3-methylenedioxy-5H-dibenzo [c,h][1,6] naphthyridin-6-ones: Effect on Topoisomerase-I Targeting Activity and Cytotoxicity. J. Med. Chem. 2003, 46, 2254–2257. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, K.; Chattopadhyay, B.; Nath, S. New Heck coupling strategies for the arylation of secondary and tertiary amides via palladium-catalyzed intramolecular cyclization. Tetrahedron Lett. 2008, 49, 1609–1612. [Google Scholar] [CrossRef]
- Cappoen, D.; Jacobs, J.; Tuyen, N.V.; Claessens, S.; Diels, G.; Anthonissen, R.; Einarsdottir, T.; Fauville, M.; Verschaeve, L.; Huygen, K.; et al. Straightforward palladium-mediated synthesis and biological evaluation of benzo[j]phenanthridine-7,12-diones as anti-tuberculosis agents. Eur. J. Med. Chem. 2012, 48, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Ng, K.; Panesar, H.; Moon, S.-J.; Paredes, M.; Ishida, K.; Hertweck, C.; Minehan, T.G. Total Synthesis of the Antitumor Natural Product Polycarcin V and Evaluation of Its DNA Binding Profile. Org. Lett. 2014, 16, 2962–2965. [Google Scholar] [CrossRef] [PubMed]
- Raju, P.; Saravanan, V.; Pavunkumar, V.; Mohanakrishnan, A.K. Pd(0)-Catalyzed Intramolecular Heck reaction of 2/3-Aryl(amino)methyl-3/2-bromoindoles: Syntheses of 3,4-Benzo[c]-β-carbolines, Benzo[4,5]isothiazolo[2,3-a]indole 5,5-Dioxides, and 1,2-Benzo[a]-γ-carbolines. J. Org. Chem. 2021, 86, 1925–1937. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.-B.; Zhang, H.-Y.; Ma, Y.; Zhao, J.; Han, Y.-P.; Zhang, Y.; Liang, Y.-M. Palladium-Catalyzed Intramolecular Heck Dearomative Alkenylation of Indoles with N-Tosylhydrazones. J. Org. Chem. 2022, 87, 10917–10927. [Google Scholar] [CrossRef]
- Shi, W.; Yang, X.; Li, X.; Meng, L.; Zhang, D.; Zhu, Z.; Xiao, X.; Zhao, D. Syntheses of Anthracene-Centered Large PAH Diimides and Conjugated Polymers. Chem. Eur. J. 2022, 28, e202104598. [Google Scholar] [CrossRef]
- Collier, T.L.; Normandin, M.D.; Stephenson, N.A.; Livni, E.; Liang, S.H.; Wooten, D.W.; Esfahani, S.A.; Stabin, M.G.; Mahmood, U.; Chen, J.; et al. Synthesis and preliminary PET imaging of 11C and 18F isotopologues of the ROS1/ALK inhibitor lorlatinib. Nat. Commun. 2017, 8, 15761. [Google Scholar] [CrossRef]
- Klaus, S.; Neumann, H.; Zapf, A.; Strübing, D.; Hübner, S.; Almena, J.; Riermeier, T.; Groß, P.; Sarich, M.; Krahnert, W.-R.; et al. A General and Efficient Method for the Formylation of Aryl and Heteroaryl Bromides. Angew. Chem. Int. Ed. 2006, 45, 154–158. [Google Scholar] [CrossRef]
- Li, B.; Barnhart, R.W.; Hoffman, J.E.; Nematalla, A.; Raggon, J.; Richardson, P.; Sach, N.; Weaver, J. Exploratory Process Development of Lorlatinib. Org. Process. Res. Dev. 2018, 22, 1289–1293. [Google Scholar] [CrossRef]
- Dugger, R.; Li, B.; Richardson, P. Discovery and Development of Lorlatinib: A Macrocyclic Inhibitor of EML4-ALK for the Treatment of NSCLC. In Complete Accounts of Integrated Drug Discovery and Development: Recent Examples from the Pharmaceutical Industry Volume 2; American Chemical Society: Washington, DC, USA, 2019; Volume 1332, pp. 27–59. [Google Scholar]
- Li, J.; Jeong, S.; Esser, L.; Harran, P.G. Total synthesis of nominal Diazonamides—Part 1: Convergent preparation of the structure proposed for (−)-Diazonamide A. Angew. Chem. Int. Ed. 2001, 40, 4765–4769. [Google Scholar] [CrossRef]
- Symkenberg, G.; Kalesse, M. Structure Elucidation and Total Synthesis of Kulkenon. Angew. Chem. Int. Ed. 2014, 53, 1795–1798. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.M.; Yamini, V.; Singarapu, K.K.; Ghosh, S. Synthesis of Proposed Aglycone of Mandelalide A. Org. Lett. 2014, 16, 2658–2660. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.N.; Kanakaraju, M.; Kunwar, A.C.; Ghosh, S. Total Synthesis of the Proposed Structure of Maltepolide C. Org. Lett. 2016, 18, 4092–4095. [Google Scholar] [CrossRef]
- Geng, X.; Miller, M.L.; Lin, S.; Ojima, I. Synthesis of Novel C2−C3‘N-Linked Macrocyclic Taxoids by Means of Highly Regioselective Heck Macrocyclization. Org. Lett. 2003, 5, 3733–3736. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.H.; Imanishi, M.; Kurogi, T.; Wan, X.; Ishmael, J.E.; McPhail, K.L.; Smith, A.B. Synthetic Access to the Mandelalide Family of Macrolides: Development of an Anion Relay Chemistry Strategy. J. Org. Chem. 2018, 83, 4287–4306. [Google Scholar] [CrossRef]
- Jachak, G.R.; Athawale, P.R.; Choudhury, R.; Kashinath, K.; Reddy, D.S. Access to a Stereoisomer Library of Solomonamide Macrocycles. Chem. Asian J. 2019, 14, 4572–4576. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, X.; Yang, C.H.; Tian, Y.; Chen, X.; Lian, L.; Pan, W.; Su, X.; Zhang, W.; Chen, Y. Total Synthesis of Nannocystin A. Org. Lett. 2016, 18, 5768–5770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W. From Target-Oriented to Motif-Oriented: A Case Study on Nannocystin Total Synthesis. Molecules 2020, 25, 5327. [Google Scholar] [CrossRef]
- Tian, Y.; Ding, Y.; Xu, X.; Bai, Y.; Tang, Y.; Hao, X.; Zhang, W.; Chen, Y. Total synthesis and biological evaluation of nannocystin analogues modified at the polyketide phenyl moiety. Tetrahedron Lett. 2018, 59, 3206–3209. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, X.; Ding, Y.; Hao, X.; Bai, Y.; Tang, Y.; Zhang, X.; Li, Q.; Yang, Z.; Zhang, W.; et al. Synthesis and biological evaluation of nannocystin analogues toward understanding the binding role of the (2R,3S)-Epoxide in nannocystin A. Eur. J. Med. Chem. 2018, 150, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wang, J.; Liu, W.; Yuan, X.; Tang, Y.; Li, J.; Chen, Y.; Zhang, W. Stereodivergent total synthesis of Br-nannocystins underpinning the polyketide (10R,11S) configuration as a key determinant of potency. J. Mol. Struct. 2019, 1181, 568–578. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, X.; Ji, J.; Zhang, S.-L.; He, Y. Novel nannocystin A analogues as anticancer therapeutics: Synthesis, biological evaluations and structure-activity relationship studies. Eur. J. Med. Chem. 2019, 170, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.; Karageorgis, G. Natural product-informed exploration of chemical space to enable bioactive molecular discovery. RSC Med. Chem. 2021, 12, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tian, Y.; Yuan, X.; Xie, F.; Yu, S.; Cai, J.; Sun, B.; Shan, C.; Zhang, W. Site-directed Late-Stage Diversification of Macrocyclic Nannocystins Facilitating Anticancer SAR and Mode of Action Studies. RSC Med. Chem. 2023, 14, 299–312. [Google Scholar] [CrossRef]
- Krastel, P.; Roggo, S.; Schirle, M.; Ross, N.T.; Perruccio, F.; Aspesi, P., Jr.; Aust, T.; Buntin, K.; Estoppey, D.; Liechty, B.; et al. Nannocystin A: An Elongation Factor 1 Inhibitor from Myxobacteria with Differential Anti-Cancer Properties. Angew. Chem. Int. Ed. 2015, 54, 10149–10154. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, J.; Yu, S.; Sun, B.; Zhang, W. Anticancer Small-Molecule Agents Targeting Eukaryotic Elongation Factor 1A: State of the Art. Int. J. Mol. Sci. 2023, 24, 5184. [Google Scholar] [CrossRef]
- Sung, D.-B.; Lee, J.S. Natural-product-based fluorescent probes: Recent advances and applications. RSC Med. Chem. 2023, 14, 412–432. [Google Scholar] [CrossRef]
- Gemmer, M.; Chaillet, M.L.; van Loenhout, J.; Cuevas Arenas, R.; Vismpas, D.; Gröllers-Mulderij, M.; Koh, F.A.; Albanese, P.; Scheltema, R.A.; Howes, S.C.; et al. Visualization of translation and protein biogenesis at the ER membrane. Nature 2023, 614, 160–167. [Google Scholar] [CrossRef]
- Ma, S.; Negishi, E.-I. Palladium-Catalyzed Cyclization of ω-Haloallenes. A New General Route to Common, Medium, and Large Ring Compounds via Cyclic Carbopalladation. J. Am. Chem. Soc. 1995, 117, 6345–6357. [Google Scholar] [CrossRef]
- Ma, S.; Negishi, E.-I. Facile Formation of Seven- and Eight-Membered Cycloalkenes via Catalytic and Cyclic Carbopalladation of Allenes. J. Org. Chem. 1994, 59, 4730–4732. [Google Scholar] [CrossRef]
- Jeffery, T. On the Efficiency of Tetraalkylammonium Salts in Heck Type Reactions. Tetrahedron 1996, 52, 10113–10130. [Google Scholar] [CrossRef]
- Zimmer, R.; Dinesh, C.U.; Nandanan, E.; Khan, F.A. Palladium-Catalyzed Reactions of Allenes. Chem. Rev. 2000, 100, 3067–3125. [Google Scholar] [CrossRef] [PubMed]
- Ma, S. Some typical advances in the synthetic applications of allenes. Chem. Rev. 2005, 105, 2829–2872. [Google Scholar] [CrossRef]
- Yu, S.; Ma, S. Allenes in Catalytic Asymmetric Synthesis and Natural Product Syntheses. Angew. Chem. Int. Ed. 2012, 51, 3074–3112. [Google Scholar] [CrossRef]
- Mascarenas, J.L.; Varela, I.; Lopez, F. Allenes and Derivatives in Gold(I)- and Platinum(II)-Catalyzed Formal Cycloadditions. Acc. Chem. Res. 2019, 52, 465–479. [Google Scholar] [CrossRef]
- Blieck, R.; Taillefer, M.; Monnier, F. Metal-catalyzed Intermolecular Hydrofunctionalization of Allenes: Easy Access to Allylic Structures via the Selective Formation of C-N, C-C and C-O Bonds. Chem. Rev. 2020, 120, 13545–13598. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, X.; Fu, C.; Ma, S. Palladium(0)-Catalyzed Regioselective Synthesis of Macrocycles from Allenes with a Nucleophilic Functionality and Organic Iodides. Adv. Synth. Catal. 2013, 355, 3295–3303. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, Q.; Yu, Y.; Fu, C.; Ma, S. Highly Regio- and Stereoselective Synthesis of Nine- to Twelve-Membered Cyclic Compounds by a Pd0-Catalyzed Cyclization Reaction between Allenes with a Nucleophilic Functionality and Organic Halides. Chem. Eur. J. 2009, 15, 7283–7286. [Google Scholar] [CrossRef]
- Weber, C.; Opatz, T. Bisbenzylisoquinoline alkaloids. Alkaloids 2019, 81, 1–114. [Google Scholar]
- Batenburg-Nguyen, U.; Ung, A.T.; Pyne, S.G. The synthesis of carbon linked bis-benzylisoquinolines using Mizoroki-Heck and Sonagashira coupling reactions. Tetrahedron 2009, 65, 318–327. [Google Scholar] [CrossRef]
- Fodale, V.; Santamaria, L.B. Laudanosine, an atracurium and cisatracurium metabolite. Eur. J. Anaesthesiol. 2002, 19, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Dyker, G. Heck-type reactions with a migrating double bond. In Handbook of C-H Transformations; Dyker, G., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; Volume 2, pp. 427–430, 490–491. [Google Scholar]
- Dyker, G.; Grundt, P. Annulated ring-system by domino-Heck-aldol-condensation and domino-Heck-Michael-addition processes. Tetrahedron Lett. 1996, 37, 619–622. [Google Scholar] [CrossRef]
- Dyker, G.; Grundt, P.; Markwitz, H.; Henkel, G. Heck Reaction and Robinson-Type Annulation: A Versatile Combination. J. Org. Chem. 1998, 63, 6043–6047. [Google Scholar] [CrossRef]
- Dyker, G.; Grundt, P. Synthesis of Functionalized 4a-Methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrenes. Helv. Chim. Acta 1999, 82, 588–596. [Google Scholar] [CrossRef]
- Dyker, G.; Thöne, A. Palladium catalyzed coupling reactions of diiodoarenes with allylic and homoallylic alcohols. J. Prakt. Chem. 1999, 341, 138–141. [Google Scholar] [CrossRef]
- Dyker, G.; Markwitz, H.; Henkel, G. A putatively unfeasible Heck reaction—From cyclopentenones to annulated ring systems. Eur. J. Org. Chem. 2001, 2415–2423. [Google Scholar] [CrossRef]
- Dyker, G.; Grundt, P. Construction of the Steroid Framework via a Functionalized Macrocyclic Compound. Eur. J. Org. Chem. 1999, 323–327. [Google Scholar] [CrossRef]
- Dyker, G.; Kadzimirsz, D.; Henkel, G. Macrocycles from simple building blocks by a multifold Heck-type coupling reaction. Tetrahedron Lett. 2003, 44, 7905–7907. [Google Scholar] [CrossRef]
- Harrowven, D.C.; Woodcock, T.; Howes, P.D. A tandem Heck reaction leading to a 26-membered carbocycle. Tetrahedron Lett. 2002, 43, 9327–9329. [Google Scholar] [CrossRef]
- Dansou, B.; Pichon, C.; Dhal, R.; Brown, E.; Mille, S. Isolation of macrocyclic metacyclophanes from the attempted synthesis of [7.0]metacyclophanes of the myricanone series by Thorpe-Ziegler intramolecular cyclization of diaryls substituted by ω-cyanoalkyl chains. Eur. J. Org. Chem. 2000, 1527–1533. [Google Scholar]
- Masse, P.; Choppin, S.; Chiummiento, L.; Hanquet, G.; Colobert, F. Unintended Formation of a 26-Membered Cycle in the Course of a Novel Approach to Myricanol, a Strained [7,0]-Metacyclophane. Synlett 2020, 31, 559–564. [Google Scholar] [CrossRef]
- Liu, X.-X.; Pilarinou, E.; McLaughlin, J.L. Pondaplin: A novel cyclic prenylated phenylpropanoid from Annona glabra. Tetrahedron Lett. 1999, 40, 399–402. [Google Scholar] [CrossRef]
- Leonard, M.S.; Carroll, P.J.; Joullié, M.M. Synthesis of a Pondaplin Dimer and Trimer. Aromatic Interactions in Novel Macrocycles. J. Org. Chem. 2004, 69, 2526–2531. [Google Scholar] [CrossRef] [PubMed]
- de Meijere, A.; Kurahashi, T. 11.09 Sequential Formation of More than One C–C and Other Bonds by Multiple Heck-type Reactions. In Comprehensive Organometallic Chemistry III; Michael, D., Mingos, P., Crabtree, R.H., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2007; Volume 11, pp. 311–334. [Google Scholar]
- Gibson, S.E.; Jones, J.O.; Kalindjian, S.B.; Knight, J.D.; Steed, J.W.; Tozer, M.J. Synthesis and structural analysis of dehydrophenylalanine cyclophanes. Chem. Commun. 2002, 1938–1939. [Google Scholar] [CrossRef]
- Gibson, S.E.; Jones, J.O.; Kalindjian, S.B.; Knight, J.D.; Mainolfi, N.; Rudd, M.; Steed, J.W.; Tozer, M.J.; Wright, P.T. Synthesis of meta- and paracyclophanes containing unsaturated amino acid residues. Tetrahedron 2004, 60, 6945–6958. [Google Scholar] [CrossRef]
- Gibson, S.E.; Mainolfi, N.; Barret Kalindjian, S.; Wright, P.T. A versatile approach to chiral macrocycles. Chem. Commun. 2003, 1568–1569. [Google Scholar] [CrossRef]
- Gibson, S.E.; Mainolfi, N.; Kalindjian, S.B.; Wright, P.T.; White, A.J.P. A New Class of Non-Racemic Chiral Macrocycles: A Conformational and Synthetic Study. Chem. Eur. J. 2005, 11, 69–80. [Google Scholar] [CrossRef]
- Gibson, S.E.; Lecci, C.; White, A.J.P. Application of the Heck reaction in the synthesis of macrocycles derived from amino alcohols. Synlett 2006, 2929–2934. [Google Scholar] [CrossRef]
- Suzaki, Y.; Shimada, K.; Chihara, E.; Saito, T.; Tsuchido, Y.; Osakada, K. [3]Rotaxane-Based Dinuclear Palladium Catalysts for Ring-closure Mizoroki-Heck Reaction. Org. Lett. 2011, 13, 3774–3777. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, Y.; Hu, R.; Li, T.; Bai, W.-J.; Yang, Y. Enantioselective Total Syntheses of Lyconadins A-E through a Palladium-Catalyzed Heck-Type Reaction. Angew. Chem. Int. Ed. 2020, 59, 2860–2866. [Google Scholar] [CrossRef]
- Chong, C.; Zhang, Q.; Ke, J.; Zhang, H.; Yang, X.; Wang, B.; Ding, W.; Lu, Z. Total Synthesis of Anti-Cancer Meroterpenoids Dysideanone B and Dysiherbol A and Structural Reassignment of Dysiherbol A. Angew. Chem. Int. Ed. 2021, 60, 13807–13813. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.; Wang, X.; Tian, H.; Gui, J. Asymmetric Total Synthesis of Clionastatins A and B. J. Am. Chem. Soc. 2021, 143, 13016–13021. [Google Scholar] [CrossRef] [PubMed]
- Bucknam, A.R.; Micalizio, G.C. Asymmetric De Novo Synthesis of a Cucurbitane Triterpenoid: Total Synthesis of Octanorcucurbitacin B. J. Am. Chem. Soc. 2022, 144, 8493–8497. [Google Scholar] [CrossRef] [PubMed]
- Kucera, R.; Ellis, S.R.; Yamazaki, K.; Hayward Cooke, J.; Chekshin, N.; Christensen, K.E.; Hamlin, T.A.; Dixon, D.J. Enantioselective Total Synthesis of (-)-Himalensine A via a Palladium and 4-Hydroxyproline Co-catalyzed Desymmetrization of Vinyl-bromide-tethered Cyclohexanones. J. Am. Chem. Soc. 2023, 145, 5422–5430. [Google Scholar] [CrossRef]
- Kim, D.E.; Zhu, Y.; Harada, S.; Aguilar, I.; Cuomo, A.E.; Wang, M.; Newhouse, T.R. Total Synthesis of (+)-Shearilicine. J. Am. Chem. Soc. 2023, 145, 4394–4399. [Google Scholar] [CrossRef]
- Sims, H.S.; Dai, M. Palladium-Catalyzed Carbonylations: Application in Complex Natural Product Total Synthesis and Recent Developments. J. Org. Chem. 2023, 88, 4925–4941. [Google Scholar] [CrossRef]
- Bai, Y.; Shen, X.; Li, Y.; Dai, M. Total Synthesis of (−)-Spinosyn A via Carbonylative Macrolactonization. J. Am. Chem. Soc. 2016, 138, 10838–10841. [Google Scholar] [CrossRef]
- Xu, L.; Wang, C.; Gao, Z.; Zhao, Y.-M. Total Synthesis of (±)-Cephanolides B and C via a Palladium-Catalyzed Cascade Cyclization and Late-Stage sp3 C-H Bond Oxidation. J. Am. Chem. Soc. 2018, 140, 5653–5658. [Google Scholar] [CrossRef]
- Han, A.; Tao, Y.; Reisman, S.E. A 16-step synthesis of the isoryanodane diterpene (+)-perseanol. Nature 2019, 573, 563–567. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, T.; Tian, M.; Jiang, Y.; Yang, J.; Lei, S.; Wang, Q.; Zhang, C.; Qiu, H.; He, L.; et al. Asymmetric Total Syntheses of Schizozygane Alkaloids. J. Am. Chem. Soc. 2021, 143, 19975–19982. [Google Scholar] [CrossRef]
- Marx, L.; Lamberty, D.; Choppin, S.; Colobert, F.; Speicher, A. Atroposelective Synthesis of Isoriccardin C through a C-H Activated Heck Type Macrocyclization. Eur. J. Org. Chem. 2021, 2021, 1351–1354. [Google Scholar] [CrossRef]
- Fritz, L.; Wienhold, S.; Hackl, S.; Bach, T. Total Synthesis of Pulvomycin D. Chem. Eur. J. 2023, 28, e202104064. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.V.V.; Choudhury, U.M.; Sarma, A.V.S.; Mohapatra, D.K. Asymmetric Total Synthesis of (2E)-Macrolactin 3. Synlett 2023, 34, 67–72. [Google Scholar]
- Ziegler, F.E.; Chakraborty, U.R.; Weisenfeld, R.B. A palladium-catalyzed carbon-carbon bond formation of conjugated dienones. A macrocyclic dienone lactone model for the carbomycins. Tetrahedron 1981, 37, 4035–4040. [Google Scholar] [CrossRef]
- Jeong, S.; Chen, X.; Harran, P.G. Macrocyclic Triarylethylenes via Heck Endocyclization: A System Relevant to Diazonamide Synthesis. J. Org. Chem. 1998, 63, 8640–8641. [Google Scholar] [CrossRef]
- Chen, X.; Esser, L.; Harran, P.G. Stereocontrol in Pinacol Ring-Contraction of Cyclopeptidyl Glycols: The Diazonamide C10 Problem. Angew. Chem. Int. Ed. 2000, 112, 937–940. [Google Scholar] [CrossRef]
- Collins, S.; Bartlett, S.; Nie, F.; Sore, H.F.; Spring, D.R. Diversity-Oriented Synthesis of Macrocycle Libraries for Drug Discovery and Chemical Biology. Synthesis 2016, 48, 1457–1473. [Google Scholar]
- Ermert, P. Design, properties and recent application of macrocycles in medicinal chemistry. Chimia 2017, 71, 678–702. [Google Scholar] [CrossRef]
- Vinogradov, A.A.; Yin, Y.; Suga, H. Macrocyclic peptides as drug candidates: Recent progress and remaining challenges. J. Am. Chem. Soc. 2019, 141, 4167–4181. [Google Scholar] [CrossRef]
- Cummings, M.D.; Sekharan, S. Structure-based macrocycle design in small-molecule drug discovery and simple metrics to identify opportunities for macrocyclization of small-molecule ligands. J. Med. Chem. 2019, 62, 6843–6853. [Google Scholar] [CrossRef]
- Mortensen, K.T.; Osberger, T.J.; King, T.A.; Sore, H.F.; Spring, D.R. Strategies for the Diversity-Oriented Synthesis of Macrocycles. Chem. Rev. 2019, 119, 10288–10317. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, M.; Begnini, F.; Poongavanam, V.; Doak, B.C.; Kihlberg, J. Drug Syntheses Beyond the Rule of 5. Chem. Eur. J. 2020, 26, 49–88. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Fang, R.; Rao, Q. An Insight into the Medicinal Chemistry Perspective of Macrocyclic Derivatives with Antitumor Activity: A Systematic Review. Molecules 2022, 27, 2837. [Google Scholar] [CrossRef] [PubMed]
- Garcia Jimenez, D.; Poongavanam, V.; Kihlberg, J. Macrocycles in Drug Discovery-Learning from the Past for the Future. J. Med. Chem. 2023, 66, 5377–5396. [Google Scholar] [CrossRef]
- Collins, J.C.; James, K. Emac–a comparative index for the assessment of macrocyclization efficiency. MedChemComm 2012, 3, 1489–1495. [Google Scholar] [CrossRef]
- Li, P.; Li, J.; Arikan, F.; Ahlbrecht, W.; Dieckmann, M.; Menche, D. Total Synthesis of Etnangien. J. Am. Chem. Soc. 2009, 131, 11678–11679. [Google Scholar] [CrossRef]
- Paul, D.; Das, S.; Goswami, R.K. Total Synthesis of Pestalotioprolide G and Putative Structure of Pestalotioprolide H. J. Org. Chem. 2017, 82, 7437–7445. [Google Scholar] [CrossRef]
- Das, S.; Paul, D.; Goswami, R.K. Stereoselective Total Synthesis of Bioactive Marine Natural Product Biselyngbyolide B. Org. Lett. 2016, 18, 1908–1911. [Google Scholar] [CrossRef] [PubMed]
- Jägel, J.; Maier, M.E. Formal Total Synthesis of Palmerolide A. Synthesis 2009, 2881–2892. [Google Scholar]
Compound | IC50 (μM) | Compound | IC50 (μM) |
---|---|---|---|
19a | 1.2 | 21a | 2.3 |
19b | 0.084 | 21b | 0.066 |
19c | 0.12 | 21c | 0.11 |
Compound a | M | R1 | R2 | ALK IC50 (nM) | Selectivity b |
---|---|---|---|---|---|
35a | (Z)-(CH=CH) | H | H | 392 ± 149 | 4 |
35b | (Z)-(CH=CH) | H | OMe | 259 ± 74 | >11 |
35c | (Z)-(CH=CH) | OMe | N(Me)SO2Me | 7.0 ± 0.8 | >140 |
36a | CH2CH2 | H | H | 92 ± 10 | 2.8 |
36b | CH2CH2 | H | OMe | 3.1 ± 0.7 | 67 |
36c | CH2CH2 | OMe | N(Me)SO2Me | 0.51 ± 0.02 | 173 |
Compound | R1 | R2 | X | Y | Pyk2 IC50 (nM) | FAK IC50 (nM) |
---|---|---|---|---|---|---|
37a | H | H | N | CH | 122 | 0.51 |
38a | H | H | N | CH | 2.60 | 10.2 |
39a | H | H | N | CH | 0.67 | 1.26 |
37b | H | morpholine | N | CH | 19.5 | 0.51 |
38b | H | morpholine | N | CH | 0.84 | 4.34 |
39b | H | morpholine | N | CH | 1.31 | 3.21 |
37c | Me | morpholine | CH | N | 6625 | 7496 |
38c | Me | morpholine | CH | N | 2.70 | 14.0 |
Compound | ALK Cell IC50 (nM) | ALK-L1196M Cell IC50 (nM) | log D | LipE | MDR BA/AB Ratio |
---|---|---|---|---|---|
crizotinib | 80 | 843 | 2.0 | 4.1 | 44.5 |
lorlatinib (40) | 1.3 | 21 | 2.3 | 5.4 | 1.5 |
Classification | Typical Reaction Condition | Examples | Yield (%) | Ref. |
---|---|---|---|---|
Phosphine-assisted | Pd(OAc)2, P(o-Tol)3, iPr2NEt, MeCN, heating |
| 39 | [28] |
| 55–60 | [31] | ||
Pd(OAc)2, P(o-Tol)3, NEt3, MeCN, microwave heating |
| 32–94 | [48] | |
| 39 | [49] | ||
Pd(OAc)2, cataCXium A or tBu2PnBu·HBF4, KOAc, t-AmOH, heating |
| 8–36 | [55,75] | |
| 65–70 | [75] | ||
Phosphine-free | Pd(OAc)2, nBu4NCl, K2CO3, DMF, heating |
| 47 | [154] |
| 23 | [155] | ||
| 58 | [156] | ||
Pd(OAc)2, Cs2CO3, NEt3, DMF, r.t. |
| 81 | [157] | |
| 70–80 | [78,81] | ||
| 55–70 | [83,85,86,87,88,90] | ||
| 71 | [141] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Sun, B.; Yu, S.; Zhang, H.; Zhang, W. Heck Macrocyclization in Forging Non-Natural Large Rings including Macrocyclic Drugs. Int. J. Mol. Sci. 2023, 24, 8252. https://doi.org/10.3390/ijms24098252
Cai J, Sun B, Yu S, Zhang H, Zhang W. Heck Macrocyclization in Forging Non-Natural Large Rings including Macrocyclic Drugs. International Journal of Molecular Sciences. 2023; 24(9):8252. https://doi.org/10.3390/ijms24098252
Chicago/Turabian StyleCai, Jiayou, Bin Sun, Siqi Yu, Han Zhang, and Weicheng Zhang. 2023. "Heck Macrocyclization in Forging Non-Natural Large Rings including Macrocyclic Drugs" International Journal of Molecular Sciences 24, no. 9: 8252. https://doi.org/10.3390/ijms24098252
APA StyleCai, J., Sun, B., Yu, S., Zhang, H., & Zhang, W. (2023). Heck Macrocyclization in Forging Non-Natural Large Rings including Macrocyclic Drugs. International Journal of Molecular Sciences, 24(9), 8252. https://doi.org/10.3390/ijms24098252