Genome-Wide Characteristics of GH9B Family Members in Melon and Their Expression Profiles under Exogenous Hormone and Far-Red Light Treatment during the Grafting Healing Process
Abstract
:1. Introduction
2. Results
2.1. Identification of Members of the CmGH9B Gene Family Members
2.2. Phylogenetic Analysis, Classification, and Conserved Domain Analysis of CmGH9Bs
2.3. Motif and Exon–Intron Structure Analysis of CmGH9Bs
2.4. Distribution of CmGH9Bs in Chromosomes
2.5. Cis-Acting Element Analysis of CmGH9Bs Promoters
2.6. Expression Patterns of the 18 CmGH9Bs in the Scion Stem during the Graft Healing Process
2.7. Effects of Exogenous Hormones on the Expression Pattern of 18 CmGH9Bs
2.8. Effects of Exogenous Hormones and Far-Red Light Treatment on CmGH9B14 Expression during the Grafting Healing Process
3. Discussion
3.1. Evolutionary Relationships and Characteristics of CmGH9Bs Family Members
3.2. CmGH9B14 Expression Profiles during the Graft Healing Process
4. Materials and Methods
4.1. Identification and Sequence Analysis of CmGH9Bs Family in Melon
4.2. Phylogenetic Analysis
4.3. Chromosomal Mapping and Exon–Intron Distribution
4.4. Cis-Element Analysis of CmGH9Bs
4.5. Plant Growth Conditions and Treatments
4.6. Expression Analysis of CmGH9Bs
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.M.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Thies, J.A. Grafting for managing vegetable crop pests. Pest Manag. Sci. 2021, 77, 4825–4835. [Google Scholar] [CrossRef]
- Nisini, P.T.; Colla, G.; Granati, E.; Temperini, O.; Crino, P.; Saccardo, F. Rootstock resistance to fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars. Sci. Hortic. 2002, 93, 281–288. [Google Scholar] [CrossRef]
- Zhao, G.; Lian, Q.; Zhang, Z.; Fu, Q.; He, Y.; Ma, S.; Ruggieri, V.; Monforte, A.J.; Wang, P.; Julca, I. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat. Genet. 2019, 51, 1607–1615. [Google Scholar] [CrossRef]
- Yang, J.; Deng, G.; Lian, J.; Garraway, J.; Niu, Y.; Hu, Z.; Yu, J.; Zhang, M. The chromosome-scale genome of melon dissects genetic architecture of important agronomic traits. Iscience 2020, 23, 101422. [Google Scholar] [CrossRef]
- Luo, D.; Pan, X.; Zhang, W.; Bi, S.; Wu, J. Effect of glucose oxidase treatment on the aroma qualities and release of cooked off-odor components from heat-treated Hami melon juice. Food Chem. 2022, 371, 131166. [Google Scholar] [CrossRef] [PubMed]
- Mesejo, C.; Rosito, S.; Reig, C.; Martínez-Fuentes, A.; Agustí, M. Synthetic auxin 3, 5, 6-TPA provokes citrus clementina (Hort. ex Tan) fruitlet abscission by reducing photosynthate availability. J. Plant Growth Regul. 2012, 31, 186–194. [Google Scholar] [CrossRef]
- He, J.; Zhou, J.; Wan, H.; Zhuang, X.; Li, H.; Qin, S.; Lyu, D. Rootstock–scion interaction affects cadmium accumulation and tolerance of malus. Front. Plant Sci. 2020, 11, 1264. [Google Scholar] [CrossRef]
- Bantis, F.; Koukounaras, A.; Siomos, A.S.; Fotelli, M.N.; Kintzonidis, D. Bichromatic red and blue LEDs during healing enhance the vegetative growth and quality of grafted watermelon seedlings. Sci. Hortic. 2020, 261, 109000. [Google Scholar] [CrossRef]
- Notaguchi, M.; Kurotani, K.-i.; Sato, Y.; Tabata, R.; Kawakatsu, Y.; Okayasu, K.; Sawai, Y.; Okada, R.; Asahina, M.; Ichihashi, Y. Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases. Science 2020, 369, 698–702. [Google Scholar] [CrossRef]
- Lee, D.W.; Moon, I.S.; Kang, J.S.; Choe, H.J.; Choi, J.Y.; Je, Y.H.; Lee, S.H.; Han, H.R.; Lim, K.J.; Koh, Y.H. Identification of Novel Endo-β-1, 4-glucanase Isoforms from Bursaphelenchus Species (Nemtoda: Aphelenchoididae). J. Asia-Pac. Entomol. 2007, 10, 171–175. [Google Scholar] [CrossRef]
- Davison, A.; Blaxter, M. Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol. Biol. Evol. 2005, 22, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991, 280, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Brummell, D.A.; Hall, B.D.; Bennett, A.B. Antisense suppression of tomato endo-1,4-β-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol. Biol. 1999, 40, 615–622. [Google Scholar] [CrossRef]
- Huang, J.; Xia, T.; Li, G.; Li, X.; Li, Y.; Wang, Y.; Wang, Y.; Chen, Y.; Xie, G.; Bai, F.-W. Overproduction of native endo-β-1, 4-glucanases leads to largely enhanced biomass saccharification and bioethanol production by specific modification of cellulose features in transgenic rice. Biotechnol. Biofuels 2019, 12, 11. [Google Scholar] [CrossRef]
- Glass, M.; Barkwill, S.; Unda, F.; Mansfield, S.D. Endo-β-1, 4-glucanases impact plant cell wall development by influencing cellulose crystallization. J. Integr. Plant Biol. 2015, 57, 396–410. [Google Scholar] [CrossRef]
- Kurotani, K.-I.; Huang, C.; Okayasu, K.; Suzuki, T.; Ichihashi, Y.; Shirasu, K.; Higashiyama, T.; Niwa, M.; Notaguchi, M. Discovery of the interfamily grafting capacity of Petunia, a floricultural species. Hortic. Res. 2022, 9, uhab056. [Google Scholar] [CrossRef]
- Johnson George, K.; Rosana Babu, O.; Vijesh Kumar, I.; Santhosh Eapen, J.; Anandaraj, M. Interplay of genes in plant–pathogen interactions: In planta expression and docking studies of a beta 1, 3 glucanase gene from Piper colubrinum and a glucanase inhibitor gene from Phytophthora capsici. Physiol. Mol. Biol. Plants 2016, 22, 567–573. [Google Scholar] [CrossRef]
- Woo, M.O.; Beard, H.; MacDonald, M.H.; Brewer, E.P.; Youssef, R.M.; Kim, H.; Matthews, B.F. Manipulation of two α-endo-β-1, 4-glucanase genes, AtCel 6 and GmCel 7, reduces susceptibility to H eterodera glycines in soybean roots. Mol. Plant Pathol. 2014, 15, 927–939. [Google Scholar] [CrossRef]
- Goellner, M.; Wang, X.; Davis, E.L. Endo-β-1,4-glucanase expression in compatible plant–nematode interactions. Plant Cell 2001, 13, 2241–2255. [Google Scholar]
- Brummell, D.A.; Lashbrook, C.C.; Bennett, A.B. Plant endo-1,4-β-D-Glucanases: Structure, Properties, and Physiological Function; ACS Publications: Washington, DC, USA, 1994. [Google Scholar]
- Wood, P.J.; Jørgensen, K.G. Assay of (1-3)(1-4)-β-d-glucanase using the insoluble complex between cereal (1→ 3)(1→ 4)-β-d-glucan and Congo Red. J. Cereal Sci. 1988, 7, 295–308. [Google Scholar] [CrossRef]
- Lynd, L.R.; Van Zyl, W.H.; McBride, J.E.; Laser, M. Consolidated bioprocessing of cellulosic biomass: An update. Curr. Opin. Biotechnol. 2005, 16, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, B.R.; Bennett, A.B.; Del Campillo, E.; Catalá, C.; Hayashi, T.; Henrissat, B.; Hofte, H.; McQueen-Mason, S.J.; Patterson, S.E.; Shoseyov, O. Structural Organization and a Standardized Nomenclature for Plant Endo-1,4-β-Glucanases (Cellulases) of Glycosyl hHydrolaseFamily 9. Plant Physiol. 2007, 144, 1693–1696. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, D.; McCollum, J. Cellulase in tomato fruits. Nature 1964, 203, 525–526. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.K.; Bennett, A.B. Cooperative disassembly of the cellulose–xyloglucan network of plant cell walls: Parallels between cell expansion and fruit ripening. Trends Plant Sci. 1999, 4, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Trainotti, L.; Spolaore, S.; Pavanello, A.; Baldan, B.; Casadoro, G. A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Mol. Biol. 1999, 40, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Cutillas-Iturralde, A.; Zarra, I.; Fry, S.C.; Lorences, E.P. Implication of persimmon fruit hemicellulose metabolism in the softening process. Importance of xyloglucan endotransglycosylase. Physiol. Plant. 1994, 91, 169–176. [Google Scholar] [CrossRef]
- Lashbrook, C.C.; Gonzalez-Bosch, C.; Bennett, A.B. Two divergent endo-beta-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers. Plant Cell 1994, 6, 1485–1493. [Google Scholar] [CrossRef]
- Aymé, L.; Hébert, A.; Henrissat, B.; Lombard, V.; Franche, N.; Perret, S.; Jourdier, E.; Heiss-Blanquet, S. Characterization of three bacterial glycoside hydrolase family 9 endoglucanases with different modular architectures isolated from a compost metagenome. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2021, 1865, 129848. [Google Scholar] [CrossRef]
- Lopez-Casado, G.; Urbanowicz, B.R.; Damasceno, C.M.; Rose, J.K. Plant glycosyl hydrolases and biofuels: A natural marriage. Curr. Opin. Plant Biol. 2008, 11, 329–337. [Google Scholar] [CrossRef]
- Robert, S.; Bichet, A.; Grandjean, O.; Kierzkowski, D.; Satiat-Jeunemaître, B.; Pelletier, S.; Hauser, M.-T.; Höfte, H.; Vernhettes, S. An Arabidopsis endo-1, 4-β-D-glucanase involved in cellulose synthesis undergoes regulated intracellular cycling. Plant Cell 2005, 17, 3378–3389. [Google Scholar] [CrossRef] [PubMed]
- Ahmadizadeh, M.; Rezaee, S.; Heidari, P. Genome-wide characterization and expression analysis of fatty acid desaturase gene family in Camelina sativa. Gene Rep. 2020, 21, 100894. [Google Scholar] [CrossRef]
- Yaghobi, M.; Heidari, P. Genome-Wide Analysis of Aquaporin Gene Family in Triticum turgidum and Its Expression Profile in Response to Salt Stress. Genes 2023, 14, 202. [Google Scholar] [CrossRef] [PubMed]
- Hashemipetroudi, S.H.; Arab, M.; Heidari, P.; Kuhlmann, M. Genome-wide analysis of the laccase (LAC) gene family in Aeluropus littoralis: A focus on identification, evolution and expression patterns in response to abiotic stresses and ABA treatment. Front. Plant Sci. 2023, 14, 1112354. [Google Scholar] [CrossRef] [PubMed]
- Grumet, R.; McCreight, J.; McGregor, C.; Weng, Y.; Mazourek, M.; Reitsma, K.; Labate, J.; Davis, A.; Fei, Z. Genetic Resources and Vulnerabilities of Major Cucurbit Crops. Genes 2021, 12, 1222. [Google Scholar] [CrossRef] [PubMed]
- Cancé, C.; Martin-Arevalillo, R.; Boubekeur, K.; Dumas, R. Auxin response factors are keys to the many auxin doors. New Phytol. 2022, 235, 402–419. [Google Scholar] [CrossRef]
- Bailey, T.L.; Elkan, C. The value of prior knowledge in discovering motifs with MEME. Ismb 1995, 3, 21–29. [Google Scholar]
- Liu, M.; Ma, Z.; Wang, A.; Zheng, T.; Huang, L.; Sun, W.; Zhang, Y.; Jin, W.; Zhan, J.; Cai, Y. Genome-wide investigation of the auxin response factor gene family in Tartary buckwheat (Fagopyrum tataricum). Int. J. Mol. Sci. 2018, 19, 3526. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Davis, A.R.; Perkins-Veazie, P.; Sakata, Y.; López-Galarza, S.; Maroto, J.V.; Lee, S.G.; Huh, Y.C.; Sun, Z.; Miguel, A.; King, X.X.; et al. Cucurbit grafting. Crit. Rev. Plant Sci. 2008, 27, 50–74. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, X.; Brecht, J.K.; Sims, C.A.; Sanchez, T.; Dufault, N.S. Fruit quality of seedless watermelon grafted onto squash rootstocks under different production systems. J. Sci. Food Agric. 2017, 97, 4704–4711. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Gene ID | Instability Index | Number of Amino Acids | Molecular Weight/Da | PI | Molecular Formula | Subcellular Localization |
---|---|---|---|---|---|---|---|
CmGH9B1 | LOC103489387 | 35.96 | 172 | 19,277.59 | 5.69 | C869H1308N224O264S5 | Cell membrane. |
CmGH9B2 | LOC103503885 | 34.84 | 525 | 57,454.67 | 5.45 | C2576H3922N666O787S20 | Cell membrane. Cell wall. |
CmGH9B3 | LOC103504547 | 46.42 | 280 | 31,269.31 | 7.05 | C1401H2142N396O405S8 | Cell membrane. Cell wall. |
CmGH9B4 | LOC103482534 | 38.98 | 430 | 47,711.83 | 8.50 | C2161H3226N558O632S18 | Cell membrane. |
CmGH9B5 | LOC103483071 | 39.40 | 488 | 54,715.70 | 8.41 | C2461H3722N652O729S19 | Cell membrane. Cell wall. |
CmGH9B6 | LOC103482819 | 38.84 | 567 | 63,475.65 | 8.75 | C2860H4296N766O831S24 | Cell membrane. |
CmGH9B7 | LOC103485910 | 32.02 | 628 | 69,807.10 | 9.37 | C3134H4772N862O905S25 | Cell membrane. |
CmGH9B8 | LOC103488526 | 47.37 | 526 | 58,743.14 | 8.45 | C2662H4068N692O765S23 | Cell membrane. |
CmGH9B9 | LOC103490702 | 41.16 | 490 | 53,778.91 | 5.36 | C2413H3637N629O746S12 | Cell wall. |
CmGH9B10 | LOC103491348 | 36.62 | 539 | 60,871.31 | 5.99 | C2731H4109N735O812S20 | Cell membrane. Cell wall. |
CmGH9B11 | LOC103492793 | 36.29 | 498 | 55,259.00 | 9.41 | C2486H3812N680O710S21 | Cell membrane. Cell wall. |
CmGH9B12 | LOC103493091 | 34.25 | 722 | 79,876.41 | 8.76 | C3638H5482N948O1048S19 | Cell membrane. |
CmGH9B13 | LOC103494756 | 34.42 | 507 | 55,924.32 | 8.65 | C2508H3851N675O743S18 | Cell membrane. Cell wall. |
CmGH9B14 | LOC103498660 | 35.08 | 494 | 54,386.60 | 8.98 | C2446H3731N659O715S18 | Cell wall. |
CmGH9B15 | LOC103499085 | 33.61 | 492 | 53,244.92 | 6.63 | C2389H3627N643O711S16 | Cell membrane. Cell wall. |
CmGH9B16 | LOC103499723 | 43.28 | 496 | 54,589.99 | 4.95 | C2448H3679N647O744S16 | Cell membrane. |
CmGH9B17 | LOC103499972 | 29.31 | 619 | 68,146.67 | 5.99 | C3089H4650N808O910S15 | Cell membrane. |
CmGH9B18 | LOC103493279 | 32.16 | 622 | 69,028.14 | 8.93 | C3121H4722N844O895S20 | Cell membrane. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Guo, J.; Wu, F.; Yu, H.; Min, J.; Zhao, Y.; Xu, C. Genome-Wide Characteristics of GH9B Family Members in Melon and Their Expression Profiles under Exogenous Hormone and Far-Red Light Treatment during the Grafting Healing Process. Int. J. Mol. Sci. 2023, 24, 8258. https://doi.org/10.3390/ijms24098258
Zhu Y, Guo J, Wu F, Yu H, Min J, Zhao Y, Xu C. Genome-Wide Characteristics of GH9B Family Members in Melon and Their Expression Profiles under Exogenous Hormone and Far-Red Light Treatment during the Grafting Healing Process. International Journal of Molecular Sciences. 2023; 24(9):8258. https://doi.org/10.3390/ijms24098258
Chicago/Turabian StyleZhu, Yulei, Jieying Guo, Fang Wu, Hanqi Yu, Jiahuan Min, Yingtong Zhao, and Chuanqiang Xu. 2023. "Genome-Wide Characteristics of GH9B Family Members in Melon and Their Expression Profiles under Exogenous Hormone and Far-Red Light Treatment during the Grafting Healing Process" International Journal of Molecular Sciences 24, no. 9: 8258. https://doi.org/10.3390/ijms24098258
APA StyleZhu, Y., Guo, J., Wu, F., Yu, H., Min, J., Zhao, Y., & Xu, C. (2023). Genome-Wide Characteristics of GH9B Family Members in Melon and Their Expression Profiles under Exogenous Hormone and Far-Red Light Treatment during the Grafting Healing Process. International Journal of Molecular Sciences, 24(9), 8258. https://doi.org/10.3390/ijms24098258