Recent Studies on the Application of Microwave-Assisted Method for the Preparation of Heterogeneous Catalysts and Catalytic Hydrogenation Processes
Abstract
:1. Introduction
2. Synthesis of Catalysts Using Microwave Radiation
3. Microwave−Assisted Catalytic Hydrogenation
3.1. Hydrogenation of Aldehydes to Alcohols
3.2. Selective Reduction of Nitrobenzene to Aniline
3.3. Selective Hydrogenation of Levulinic Acid
3.4. Selective Catalytic Transfer Hydrogenation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsuji, M. Microwave−Assisted Synthesis of Metallic Nanomaterials in Liquid Phase. Chem. Select. 2017, 2, 805–819. [Google Scholar] [CrossRef]
- Torres-Moya, I.; Harbuzaru, A.; Donoso, B.; Prieto, P.; Ponce Ortiz, R.; Díaz-Ortiz, Á. Microwave Irradiation as a Powerful Tool for the Preparation of n-Type Benzotriazole Semiconductors with Applications in Organic Field-Effect Transistors. Molecules 2022, 27, 4340. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Q.; Guo, W.; Niu, M.; Tan, L.; Wen, N.; Zhao, L.; Fu, C.; Yu, J.; Ren, X.; et al. Nanoengineered biomimetic Cu-based nanoparticles for multifunational and efficient tumor treatment. Biomaterials 2021, 276, 121016. [Google Scholar] [CrossRef]
- Liang, K.-H.; Som, S.; Gupta, K.K.; Lu, C.-H. Electrochemical characterization of TiNb2O7 as anode material synthesized using microwave-assisted microemulsion route. J. Am. Ceram. Soc. 2022, 105, 7446–7454. [Google Scholar] [CrossRef]
- Henam, S.D.; Ahmad, F.; Shan, M.A.; Parveen, S.; Wani, A.H. Microwave synthesis of nanoparticles and their antifungal activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 213, 337–341. [Google Scholar] [CrossRef]
- Jiang, S.; Daly, H.; Xiang, H.; Yan, Y.; Zhang, H.; Hardacre, C.; Fan, X. Microwave-assisted catalyst-free hydrolysis of fibrous cellulose for deriving sugars and biochemicals. Front. Chem. Sci. Eng. 2019, 13, 718–726. [Google Scholar] [CrossRef]
- Horikoshi, S.; Arai, Y.; Ahmad, I.; DeCamillis, C.; Hicks, K.; Schauer, B.; Serpone, N. Application of Variable Frequency Microwaves in Microwave-Assisted Chemistry: Relevance and Suppression of Arc Discharges on Conductive Catalysts. Catalysts 2020, 10, 777. [Google Scholar] [CrossRef]
- Tompsett, G.A.; Conner, W.C.; Yngvesson, K.S. Microwave Synthesis of Nanoporous Materials. Chem. Phys. Chem. 2006, 7, 296–319. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, Y.; Huang, K. Advances in Microwave-Assisted Production of Reduced Graphene Oxide. Front. Chem. 2019, 7, 355. [Google Scholar] [CrossRef]
- Kostyukhin, E.M.; Kustov, A.L.; Evdokimenko, N.V.; Bazlov, A.I.; Kustov, L.M. Hydrothermal microwave-assisted synthesis of LaFeO3 catalyst for N2O decomposition. J. Am. Ceram. Soc. 2020, 104, 492–503. [Google Scholar] [CrossRef]
- Jin, J.; Wen, Z.; Long, J.; Wang, Y.; Matsuura, T.; Meng, J. One-Pot Diazo Coupling Reaction Under Microwave Irradiation in the Absence of Solvent. Synth. Commun. 2000, 30, 829–834. [Google Scholar] [CrossRef]
- George, N.; Singh, G.; Singh, R.; Singh, G.; Devi, A.; Singh, H.; Kaur, G.; Singh, J. Microwave accelerated green approach for tailored 1,2,3–triazoles via CuAAC. Sustain. Chem. Pharm. 2022, 30, 100824. [Google Scholar] [CrossRef]
- Zamri, A.A.; Ong, M.Y.; Nomanbhay, S.; Show, P.L. Microwave plasma technology for sustainable energy production and the electromagnetic interaction within the plasma system: A review. Int. J. Environ. Res. 2021, 197, 111204. [Google Scholar] [CrossRef]
- Kustov, L.M.; Kustov, A.L.; Salmi, T. Microwave-Assisted Conversion of Carbohydrates. Molecules 2022, 27, 1472. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, S.; Wang, Y.-M. Superparamagnetic iron oxide nanoparticulate system: Synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans. 2019, 26, 9490–9515. [Google Scholar] [CrossRef] [PubMed]
- Kustov, L.M.; Kustov, A.L.; Salmi, T. Processing of lignocellulosic polymer wastes using microwave irradiation. Mendeleev Commun. 2022, 32, 1–8. [Google Scholar] [CrossRef]
- Gao, X.; Shu, D.; Li, X.; Li, H. Improved film evaporator for mechanistic understanding of microwave-induced separation process. Front. Chem. Sci. Eng. 2019, 13, 759–771. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Z.; Xiouras, C.; Stefanidis, G.D.; Li, X.; Gao, X. Fundamentals and applications of microwave heating to chemicals separation processes. Renew. Sust. Energ. Rev. 2019, 114, 109316. [Google Scholar] [CrossRef]
- Kostyukhin, E.M.; Kustov, A.L.; Kustov, L.M. One-step hydrothermal microwave-assisted synthesis of LaFeO3 nanoparticles. Ceram. Int. 2019, 45, 14384–14388. [Google Scholar] [CrossRef]
- Vakili, R.; Xu, S.; Al-Janabi, N.; Gorgojo, P.; Holmes, S.M.; Fan, X. Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): Optimization and gas adsorption. Microporous Mesoporous Mater. 2018, 260, 45–53. [Google Scholar] [CrossRef]
- Chia, S.R.; Nomanbhay, S.; Milano, J.; Chew, K.W.; Tan, C.-H.; Khoo, K.S. Microwave-Absorbing Catalysts in Catalytic Reactions of Biofuel Production. Energies 2022, 15, 7984. [Google Scholar] [CrossRef]
- Kostyukhin, E.M. Synthesis of Magnetite Nanoparticles upon Microwave and Convection Heating. Russ. J. Phys. Chem. A 2018, 92, 2399–2402. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Pang, C.; Li, X.; Gao, X. The Advances in the Special Microwave Effects of the Heterogeneous Catalytic Reactions. Front. Chem. 2020, 8, 355. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X. Microwave Chemistry, Recent Advancements and Eco-Friendly Microwave-Assisted Synthesis of Nanoarchitectures and Their Applications: A Review. Mater. Today Nano 2020, 11, 100076. [Google Scholar] [CrossRef]
- Kostyukhin, E.M.; Kustov, L.M. Microwave-assisted synthesis of magnetite nanoparticles possessing superior magnetic properties. Mendeleev Commun. 2018, 28, 559–561. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Ebenso, E.E. Microwave and ultrasound irradiations for the synthesis of environmentally sustainable corrosion inhibitors: An overview. Sustain. Chem. Pharm. 2018, 10, 134–147. [Google Scholar] [CrossRef]
- Budarin, V.L.; Shuttleworth, P.S.; De Bruyn, M.; Farmer, T.J.; Gronnow, M.J.; Pfaltzgraff, L.; Macquarrie, D.J.; Clark, J.H. The potential of microwave technology for the recovery, synthesis and manufacturing of chemicals from bio-wastes. Catal. Today 2015, 239, 80–89. [Google Scholar] [CrossRef]
- El Khaled, D.; Novas, N.; Gazquez, J.A.; Manzano-Agugliaro, F. Microwave dielectric heating: Applications on metals processing. Renew. Sust. Energ. Rev. 2018, 82, 2880–2892. [Google Scholar] [CrossRef]
- Haruta, M. When Gold Is Not Noble: Catalysis by Nanoparticles. Chem. Rec. 2003, 3, 75–87. [Google Scholar] [CrossRef]
- Kostyukhin, E.M.; Nissenbaum, V.D.; Abkhalimov, E.V.; Kustov, A.L.; Ershov, B.G.; Kustov, L.M. Microwave-Assisted Synthesis of Water-Dispersible Humate-Coated Magnetite Nanoparticles: Relation of Coating Process Parameters to the Properties of Nanoparticles. Nanomaterials 2020, 10, 1558. [Google Scholar] [CrossRef]
- Zhang, Y. Preparation of heterogeneous catalysts based on CWAO technology. J. Phys. Conf. Ser. 2020, 1549, 032052. [Google Scholar] [CrossRef]
- Schutz, M.B.; Xiao, L.; Lehnen, T.; Fischer, T.; Mathur, S. Microwave-assisted synthesis of nanocrystalline binary and ternary metal oxides. Int. Mater. Rev. 2017, 63, 341–374. [Google Scholar] [CrossRef]
- Khan, H.M.; Iqbal, T.; Mujtaba, M.A.; Soudagar, M.E.M.; Veza, I.; Fattah, I.M.R. Microwave Assisted Biodiesel Production Using Heterogeneous Catalysts. Energies 2021, 14, 8135. [Google Scholar] [CrossRef]
- Hare, D.O. Hydrothermal Method. In Encyclopedia of Materials: Science and Technology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 3989–3992. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, X.; Wen, L.; Liao, S.; Wu, S.; Zeng, Y.; Zhou, R.; Shan, S. Microwave-assisted rapid synthesis of bismuth molybdate with enhanced oxidative desulfurization activity. Fuel 2023, 331, 125900. [Google Scholar] [CrossRef]
- Song, W.; Cai, W.; Hu, S.; Jiang, X.; Lai, W. Synergistic effect between CeO2 and Cu for ethylene carbonate hydrogenation. J. Porous Mater. 2022, 29, 1873–1882. [Google Scholar] [CrossRef]
- Shesterkina, A.; Vikanova, K.; Kostyukhin, E.; Strekalova, A.; Shuvalova, E.; Kapustin, G.; Salmi, T. Microwave Synthesis of Copper Phyllosilicates as Effective Catalysts for Hydrogenation of C≡C Bonds. Molecules 2022, 27, 988. [Google Scholar] [CrossRef]
- Akay, G. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors. Catalysts 2016, 6, 80. [Google Scholar] [CrossRef]
- Akay, G. Plasma Generating—Chemical Looping Catalyst Synthesis by Microwave Plasma Shock for Nitrogen Fixation from Air and Hydrogen Production from Water for Agriculture and Energy Technologies in Global Warming Prevention. Catalysts 2020, 10, 152. [Google Scholar] [CrossRef]
- Akay, G. Sustainable Ammonia and Advanced Symbiotic Fertilizer Production Using Catalytic Multi-Reaction-Zone Reactors with Nonthermal Plasma and Simultaneous Reactive Separation. ACS Sustain. Chem. Eng. 2017, 5, 11588–11606. [Google Scholar] [CrossRef]
- Jing, J.; Li, L.; Chu, W.; Wei, Y.; Jiang, C. Microwave-assisted synthesis of high performance copper-based catalysts for hydrogen production from methanol decomposition. Int. J. Hydrogen Energy 2018, 43, 12059–12068. [Google Scholar] [CrossRef]
- Muller, A.; Bowers, J. Processes for Preparing Hydrocinnamic Acid. WO Patent Application WO-9908989-A1, 20 August 1997. [Google Scholar]
- Galletti AM, R.; Antonetti, C.; Venezia, A.M.; Giambastiani, G. An easy microwave-assisted process for the synthesis of nanostructured palladium catalysts and their use in the selective hydrogenation of cinnamaldehyde. Appl. Catal. A Gen. 2010, 386, 124–131. [Google Scholar] [CrossRef]
- Nishida, Y.; Sato, K.; Yamamoto, T.; Wu, D.; Kusada, K.; Kobayashi, H.; Matsumura, S.; Kitagawa, H.; Nagaoka, K. Facile Synthesis of Size-controlled Rh Nanoparticles via Microwave-assisted Alcohol Reduction and Their Catalysis of CO Oxidation. Chem. Lett. 2017, 46, 1254–1257. [Google Scholar] [CrossRef]
- Nishida, Y.; Chaudhari, C.; Imatome, H.; Sato, K.; Nagaoka, K. Selective Hydrogenation of Nitriles to Secondary Imines over Rh-PVP Catalyst under Mild Conditions. Chem. Lett. 2017, 47, 938–940. [Google Scholar] [CrossRef]
- Nishida, Y.; Wada, Y.; Chaudhari, C.; Sato, K.; Nagaoka, K. Preparation of Noble-metal Nanoparticles by Microwave-assisted Chemical Reduction and Evaluation as Catalysts for Nitrile Hydrogenation under Ambient Conditions. J. Jpn. Pet. Inst. 2019, 62, 220–227. [Google Scholar] [CrossRef]
- Lingaiah, N.; Sai Prasad, P.; Kanta Rao, P.; Berry, F.; Smart, L. Structure and activity of microwave irradiated silica supported Pd–Fe bimetallic catalysts in the hydrodechlorination of chlorobenzene. Catal. Commun. 2002, 3, 391–397. [Google Scholar] [CrossRef]
- Suryawanshi, Y.R.; Chakraborty, M.; Jauhari, S.; Mukhopadhyay, S.; Shenoy, K.T. Hydrogenation of Dibenzo-18-Crown-6 Ether Using γ-Al2O3 Supported Ru-Pd and Ru-Ni Bimetallic Nanoalloy Catalysts. Int. J. Chem. React. Eng. 2019, 17. [Google Scholar] [CrossRef]
- Li, C.; Ni, X.; Di, X.; Liang, C. Aqueous phase hydrogenation of levulinic acid to γ-valerolactone on supported Ru catalysts prepared by microwave-assisted thermolytic method. J. Fuel Chem. Technol. 2018, 46, 161–170. [Google Scholar] [CrossRef]
- Nongwe, I.; Ravat, V.; Meijboom, R.; Coville, N.J. Pt supported nitrogen doped hollow carbon spheres for the catalysed reduction of cinnamaldehyde. Appl. Catal. A Gen. 2016, 517, 30–38. [Google Scholar] [CrossRef]
- Iqbal, Z.; Sadiq, M.; Sadiq, S.; Saeed, K. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over palladium/zirconia in microwave protocol. Catal. Today 2021, 397–399, 389–396. [Google Scholar] [CrossRef]
- Iqbal, Z.; Sadiq, S.; Sadiq, M.; Khan, I.; Saeed, K. Effect of Microwave Irradiation on the Catalytic Activity of Tetragonal Zirconia: Selective Hydrogenation of Aldehyde. Arab. J. Sci. Eng. 2021, 47, 5841–5848. [Google Scholar] [CrossRef]
- Ronda-Leal, M.; Osman, S.M.; Jang, H.W.; Shokouhimehr, M.; Romero, A.A.; Luque, R. Selective hydrogenation of furfural using TiO2-Fe2O3/C from Ti-Fe-MOFs as sacrificial template: Microwave vs Continuous flow experiments. Fuel 2023, 333, 126221. [Google Scholar] [CrossRef]
- Wang, X.; Rinaldi, R. Exploiting H-transfer reactions with RANEY® Ni for upgrade of phenolic and aromatic biorefinery feeds under unusual, low-severity conditions. Energy Environ. Sci. 2012, 5, 8244. [Google Scholar] [CrossRef]
- Wolfson, A.; Dlugy, C.; Shotland, Y.; Tavor, D. Glycerol as solvent and hydrogen donor in transfer hydrogenation–dehydrogenation reactions. Tetrahedron Lett. 2009, 50, 5951–5953. [Google Scholar] [CrossRef]
- Moran, M.J.; Martina, K.; Stefanidis, G.D.; Jordens, J.; Gerven, T.V.; Goovaerts, V.; Manzoli, M.; Groffils, C.; Cravotto, G. Glycerol: An Optimal Hydrogen Source for Microwave-Promoted Cu-Catalyzed Transfer Hydrogenation of Nitrobenzene to Aniline. Front. Chem. 2020, 8, 34. [Google Scholar] [CrossRef]
- Rackemann, D.W.; Doherty, W.O. The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod. Biorefining 2011, 5, 198–214. [Google Scholar] [CrossRef]
- Taran, O.P.; Sychev, V.V.; Kuznetsov, B.N. γ-Valerolactone as a promising solvent and basic chemical product. Catalytic synthesis from components of vegetable biomass. Catal. Prom. 2021, 1, 97–116. [Google Scholar] [CrossRef]
- Bucciol, F.; Tabasso, S.; Grillo, G.; Menegazzo, F.; Signoretto, M.; Manzoli, M.; Cravotto, G. Boosting levulinic acid hydrogenation to value-added 1,4-pentanediol using microwave-assisted gold catalysis. J. Catal. 2019, 380, 267–277. [Google Scholar] [CrossRef]
- Lazaro, N.; Ronda-Leal, M.; Pineda, A.; Osman, S.M.; Shokouhimehr, M.; Jang, H.W.; Luque, R. One-pot multi-step synthesis of gamma-valerolactone from furfuryl alcohol: Microwave vs continuous flow reaction studies. Fuel 2023, 334, 126439. [Google Scholar] [CrossRef]
- Wei, G.; Liu, Z.; Zhang, L.; Li, Z. Catalytic upgrading of Jatropha oil biodiesel by partial hydrogenation using Raney-Ni as catalyst under microwave heating. Energy Convers. Manag. 2018, 163, 208–218. [Google Scholar] [CrossRef]
- Lu, C.; Gao, L.; Zhang, L.; Liu, K.; Hou, Y.; He, T.; Zhou, Y.; Wei, G. Selective catalytic transfer hydrogenation of polyunsaturated fatty acid methyl esters using Pd/organobentonite as catalyst under microwave heating. Chem. Eng. Process. 2022, 182, 109206. [Google Scholar] [CrossRef]
Sample | Cu (wt%) a | Ni (wt%) | Zn (wt%) | Cu Crystallite Size (nm) b | SBET (m2g−1) | V (cm3g−1) | DBJH (nm) |
γ-Al2O3 | - | - | - | - | 164.1 | 0.3842 | 9.37 |
MW-Cu/Ni-80 | 47.92 | 0.21 | 6.23 | 22 | 71.9 | 0.1670 | 9.29 |
MW-Cu/Ni-85 | 35.33 | 1.61 | 31.83 | 16 | 56.7 | 0.1689 | 11.92 |
MW-Cu/Ni-90 | 28.03 | 3.00 | 35.30 | 14 | 57.9 | 0.1770 | 12.22 |
MW-Cu/Ni-95 | 27.32 | 3.40 | 42.60 | 10 | 79.8 | 0.2522 | 12.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strekalova, A.A.; Shesterkina, A.A.; Kustov, A.L.; Kustov, L.M. Recent Studies on the Application of Microwave-Assisted Method for the Preparation of Heterogeneous Catalysts and Catalytic Hydrogenation Processes. Int. J. Mol. Sci. 2023, 24, 8272. https://doi.org/10.3390/ijms24098272
Strekalova AA, Shesterkina AA, Kustov AL, Kustov LM. Recent Studies on the Application of Microwave-Assisted Method for the Preparation of Heterogeneous Catalysts and Catalytic Hydrogenation Processes. International Journal of Molecular Sciences. 2023; 24(9):8272. https://doi.org/10.3390/ijms24098272
Chicago/Turabian StyleStrekalova, Anna A., Anastasiya A. Shesterkina, Alexander L. Kustov, and Leonid M. Kustov. 2023. "Recent Studies on the Application of Microwave-Assisted Method for the Preparation of Heterogeneous Catalysts and Catalytic Hydrogenation Processes" International Journal of Molecular Sciences 24, no. 9: 8272. https://doi.org/10.3390/ijms24098272
APA StyleStrekalova, A. A., Shesterkina, A. A., Kustov, A. L., & Kustov, L. M. (2023). Recent Studies on the Application of Microwave-Assisted Method for the Preparation of Heterogeneous Catalysts and Catalytic Hydrogenation Processes. International Journal of Molecular Sciences, 24(9), 8272. https://doi.org/10.3390/ijms24098272