Evaluation of the Different Nutritional and Environmental Parameters on Microbial Pyrene Degradation by Mangrove Culturable Bacteria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Bacterial Strains and Pyrene Degradation
2.2. Effect of Nutrient Supplements on Pyrene Degradation
2.3. Effect of Surfactant on Pyrene Degradation
2.4. Effect of Heavy Metals on Pyrene Degradation
2.5. Effect of Co-Contaminants
2.6. Effect of NPK Fertilizer on Pyrene Degradation
2.7. Effect of Co-Culture on Pyrene Degradation
3. Material and Methods
3.1. Chemical and Media
3.2. Sample Collection, Enrichment and Isolation of Pyrene Degrading Bacteria
3.3. Pyrene Degradation Experiment
3.4. Effect of Nutrient Supplements on Pyrene Degradation
3.5. Effect of Surfactant on Pyrene Degradation
3.6. Effect of Heavy Metals on Pyrene Degradation
3.7. Effect of Co-Contaminants on Pyrene Degradation
3.8. Effect of NPK Fertilizer on Pyrene Degradation
3.9. Effect of Co-Culture on Pyrene Degradation
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naidoo, G.; Naidoo, K. Ultrastructural effects of polycyclic aromatic hydrocarbons in the mangroves Avicennia marina and Rhizophora mucronata. Flora 2017, 235, 1–9. [Google Scholar] [CrossRef]
- Sun, F.-L.; Wang, Y.-S.; Sun, C.-C.; Peng, Y.-L.; Deng, C. Effects of three different PAHs on nitrogen-fixing bacterial diversity in mangrove sediment. Ecotoxicology 2012, 21, 1651–1660. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.; Pryor, R.; Wilking, L. Fate and effects of anthropogenic chemicals in mangrove ecosystems: A review. Environ. Pollut. 2011, 159, 2328–2346. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulou, M.V.; Monteyne, E.; Krikonis, K.; Pavlopoulos, K.; Roose, P.; Dehairs, F. Monitoring polycyclic aromatic hydrocarbons in the Northeast Aegean Sea using Posidonia oceanica seagrass and synthetic passive samplers. Mar. Pollut. Bull. 2014, 87, 338–344. [Google Scholar] [CrossRef]
- Goswami, P.; Ohura, T.; Guruge, K.S.; Yoshioka, M.; Yamanaka, N.; Akiba, M.; Munuswamy, N. Spatio-temporal distribution, source, and genotoxic potential of polycyclic aromatic hydrocarbons in estuarine and riverine sediments from southern India. Ecotoxicol. Environ. Saf. 2016, 130, 113–123. [Google Scholar] [CrossRef]
- Wang, P.; Du, K.Z.; Zhu, Y.X.; Zhang, Y. A novel analytical approach for investigation of anthracene adsorption onto mangrove leaves. Talanta 2008, 76, 1177–1182. [Google Scholar] [CrossRef]
- Lindgren, J.F.; Hassellov, I.M.; Dahllof, I. PAH effects on meio- and microbial benthic communities strongly depend on bioavailability. Aquat. Toxicol. 2014, 146, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Cachot, J.; Geffard, O.; Augagneur, S.; Lacroix, S.; Le Menach, K.; Peluhet, L.; Couteau, J.; Denier, X.; Devier, M.H.; Pottier, D.; et al. Evidence of genotoxicity related to high PAH content of sediments in the upper part of the Seine estuary (Normandy, France). Aquat. Toxicol. 2006, 79, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Bojes, H.K.; Pope, P.G. Characterization of EPA’s 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas. Regul. Toxicol. Pharmacol. 2007, 47, 288–295. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Ohashi, A.; Ozaki, N.; Kindaichi, T. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Sci. Total Environ. 2019, 696, 133971. [Google Scholar] [CrossRef]
- Cao, B.; Nagarajan, K.; Loh, K.C. Biodegradation of aromatic compounds: Current status and opportunities for biomolecular approaches. Appl Microbiol. Biotechnol. 2009, 85, 207–228. [Google Scholar] [CrossRef]
- Haritash, A.K.; Kaushik, C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef]
- Muangchinda, C.; Rungsihiranrut, A.; Prombutara, P.; Soonglerdsongpha, S.; Pinyakong, O. 16S metagenomic analysis reveals adaptability of a mixed-PAH-degrading consortium isolated from crude oil-contaminated seawater to changing environmental conditions. J. Hazard. Mater. 2018, 357, 119–127. [Google Scholar] [CrossRef]
- Cheung, P.-Y.; Kinkle, B.K. Changes in Mycobacterium spp. population structure and pyrene mineralization in polycyclic aromatic hydrocarbon-amended soils. Soil Biol. Biochem. 2005, 37, 1929–1937. [Google Scholar] [CrossRef]
- Zhong, Y.; Luan, T.; Zhou, H.; Lan, C.; Tam, N.F.Y. Metabolite production in degradation of pyrene alone or in a mixture with another polycyclic aromatic hydrocarbon by Mycobacterium sp. Environ. Toxicol. Chem. 2006, 25, 2853–2859. [Google Scholar] [CrossRef]
- Zeng, J.; Lin, X.; Zhang, J.; Li, X. Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium spp. and the degradation in soil. J. Hazard. Mater. 2010, 183, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Peng, J.; Duan, G. Enrichment of functional microbes and genes during pyrene degradation in two different soils. J. Soils Sediments 2015, 16, 417–426. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, K.; Lee, D.H.; Cha, C.J. Comparative genomic analysis of pyrene-degrading Mycobacterium species: Genomic islands and ring-hydroxylating dioxygenases involved in pyrene degradation. J. Microbiol. 2018, 56, 798–804. [Google Scholar] [CrossRef]
- Kim, S.J.; Kweon, O.; Jones, R.C.; Freeman, J.P.; Edmondson, R.D.; Cerniglia, C.E. Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J. Bacteriol. 2007, 189, 464–472. [Google Scholar] [CrossRef]
- Ma, J.; Xu, L.; Jia, L. Characterization of pyrene degradation by Pseudomonas sp. strain Jpyr-1 isolated from active sewage sludge. Bioresour. Technol. 2013, 140, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Khanna, P.; Goyal, D.; Khanna, S. Pyrene Degradation by Bacillus pumilus Isolated from Crude Oil Contaminated Soil. Polycycl. Aromat. Compd. 2011, 31, 1–15. [Google Scholar] [CrossRef]
- Zhong, Y.; Luan, T.; Lin, L.; Liu, H.; Tam, N.F. Production of metabolites in the biodegradation of phenanthrene, fluoranthene and pyrene by the mixed culture of Mycobacterium sp. and Sphingomonas sp. Bioresour. Technol. 2011, 102, 2965–2972. [Google Scholar] [CrossRef] [PubMed]
- Nzila, A.; Ramirez, C.O.; Musa, M.M.; Sankara, S.; Basheer, C.; Li, Q.X. Pyrene biodegradation and proteomic analysis in Achromobacter xylosoxidans PY4 strain. Int. Biodeterior. Biodegrad. 2018, 130, 40–47. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Huang, Y.; Fang, T. Characterization of pyrene degradation by halophilic Thalassospira sp. strain TSL5-1 isolated from the coastal soil of Yellow Sea, China. Int. Biodeterior. Biodegrad. 2016, 107, 62–69. [Google Scholar] [CrossRef]
- Wanapaisan, P.; Laothamteep, N.; Vejarano, F.; Chakraborty, J.; Shintani, M.; Muangchinda, C.; Morita, T.; Suzuki-Minakuchi, C.; Inoue, K.; Nojiri, H.; et al. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. J. Hazard. Mater. 2017, 342, 561–570. [Google Scholar] [CrossRef]
- Patel, A.B.; Mahala, K.; Jain, K.; Madamwar, D. Development of mixed bacterial cultures DAK11 capable for degrading mixture of polycyclic aromatic hydrocarbons (PAHs). Bioresour. Technol. 2018, 253, 288–296. [Google Scholar] [CrossRef]
- Guo, C.L.; Zhou, H.W.; Wong, Y.S.; Tam, N.F.Y. Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential. Mar. Pollut. Bull. 2005, 51, 1054–1061. [Google Scholar] [CrossRef]
- Park, S.W.; Park, S.T.; Lee, J.E.; Kim, Y.M. Pseudonocardia carboxydivorans sp. nov., a carbon monoxide-oxidizing actinomycete, and an emended description of the genus Pseudonocardia. Int. J. Syst. Evol. Microbiol. 2008, 58 Pt 11, 2475–2478. [Google Scholar] [CrossRef]
- Chen, S.C.; Duan, G.L.; Ding, K.; Huang, F.Y.; Zhu, Y.G. DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil. FEMS Microbiol. Ecol. 2018, 94, fiy026. [Google Scholar] [CrossRef]
- Cui, Z.; Xu, G.; Gao, W.; Li, Q.; Yang, B.; Yang, G.; Zheng, L. Isolation and characterization of Cycloclasticus strains from Yellow Sea sediments and biodegradation of pyrene and fluoranthene by their syntrophic association with Marinobacter strains. Int. Biodeterior. Biodegrad. 2014, 91, 45–51. [Google Scholar] [CrossRef]
- McGowan, L.; Herbert, R.; Muyzer, G. A comparative study of hydrocarbon degradation by Marinobacter sp., Rhodococcus sp. and Corynebacterium sp. isolated from different mat systems. Ophelia 2004, 58, 271–281. [Google Scholar] [CrossRef]
- Jia, X.; He, Y.; Huang, L.; Jiang, D.; Lu, W. n-Hexadecane and pyrene biodegradation and metabolization by Rhodococcus sp. T1 isolated from oil contaminated soil. Chin. J. Chem. Eng. 2018, 27, 411–417. [Google Scholar] [CrossRef]
- Walter, U.; Beyer, M.; Klein, J.; Rehm, H.J. Degradation of pyrene by Rhodococcus sp. UW1. Appl. Microbiol. Biotechnol. 1991, 36, 671–676. [Google Scholar] [CrossRef]
- Subashchandrabose, S.R.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Biodegradation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: Overexpression of amidohydrolase induced by pyrene and BaP. Sci. Total Environ. 2019, 651 Pt 1, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Manickam, N.; Pareek, S.; Kaur, I.; Singh, N.K.; Mayilraj, S. Nitratireductor lucknowense sp. nov., a novel bacterium isolated from a pesticide contaminated soil. Antonie Leeuwenhoek 2012, 101, 125–131. [Google Scholar] [CrossRef]
- Wong, J.W.C.; Lai, K.M.; Wan, C.K.; Ma, K.K.; Fang, M. Isolation and optimization of pah-degradative bacteria fromcontaminated soil for pahs bioremediation. Water Air Soil Pollut. 2002, 139, 1–13. [Google Scholar] [CrossRef]
- Ravanipour, M.; Kalantary, R.R.; Mohseni-Bandpi, A.; Esrafili, A.; Farzadkia, M.; Hashemi-Najafabadi, S. Experimental design approach to the optimization of PAHs bioremediation from artificially contaminated soil: Application of variables screening development. J. Environ. Health Sci. Eng. 2015, 13, 22. [Google Scholar] [CrossRef]
- Patel, V.; Cheturvedula, S.; Madamwar, D. Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India. J. Hazard. Mater. 2012, 201–202, 43–51. [Google Scholar] [CrossRef]
- Arulazhagan, P.; Vasudevan, N.; Yeom, I.T. Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment. Int. J. Environ. Sci. Technol. 2010, 7, 639–652. [Google Scholar] [CrossRef]
- Makkar, R.S.; Rockne, k.J. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem. 2003, 22, 2280–2292. [Google Scholar] [CrossRef]
- Deary, M.E.; Ekumankama, C.C.; Cummings, S.P. Effect of lead, cadmium, and mercury co-contaminants on biodegradation in PAH-polluted soils. Land Degrad. Dev. 2018, 29, 1583–1594. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Wei, H.; Wu, Z.; Zhao, Q.; Jiang, X. Enhanced biodegradation of poorly available polycyclic aromatic hydrocarbons by easily available one. Int. Biodeterior. Biodegrad. 2013, 84, 72–78. [Google Scholar] [CrossRef]
- Durant, N.; Bouwer, E. Cometabolic and Inhibitory Interactions during Anaerobic Biodegradation of Alkylbenzene Mixture; Sixth International In Situ and On Site Bioremediation Symposium; Battelle Press: Columbus, Ohio, 2001; pp. 19–26. [Google Scholar]
- Patel, A.B.; Singh, S.; Patel, A.; Jain, K.; Amin, S.; Madamwar, D. Synergistic biodegradation of phenanthrene and fluoranthene by mixed bacterial cultures. Bioresour. Technol. 2019, 284, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, C.J.S.; Souza, J.R.B.; Carvalho, G.C.; Quintella, C.M.; Roque, M.R.A. Analysis of petroleum biodegradation by a bacterial consortium isolated from worms of the polychaeta class (Annelida): Implications for NPK fertilizer supplementation. J. Environ. Manag. 2019, 246, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Teng, Y.; Luo, Y.; Tu, C.; Li, S.; Li, Z.; Christie, P. Effects of alfalfa and organic fertilizer on benzo[a]pyrene dissipation in an aged contaminated soil. Environ. Sci. Pollut. Res. Int. 2012, 19, 1605–1611. [Google Scholar] [CrossRef]
- Ghazali, F.M.; Rahman, R.N.Z.A.; Salleh, A.B.; Basri, M. Biodegradation of hydrocarbons in soil by microbial consortium. Int. Biodeterior. Biodegrad. 2004, 54, 61–67. [Google Scholar] [CrossRef]
- Vandermeer, K.D.; Daugulis, A.J. Enhanced degradation of a mixture of polycyclic aromatic hydrocarbons by a defined microbial consortium in a two-phase partitioning bioreactor. Biodegradation 2007, 18, 211–221. [Google Scholar] [CrossRef]
- Zhou, H.W.; Guo, C.L.; Wong, Y.S.; Tam, N.F.Y. Geneticdiversityof dioxygenasegenes in polycyclic aromatic hydrocarbon-degrading bacteria isolated from mangrove sediments. FEMS Microbiol. Lett. 2006, 262, 148–157. [Google Scholar] [CrossRef]
- Wan Nawawi, W.M.; Jamal, P.; Alam, M.Z. Utilization of sludge palm oil as a novel substrate for biosurfactant production. Bioresour. Technol. 2010, 101, 9241–9247. [Google Scholar] [CrossRef]
Strains | Identical Strains | % Similarity of 16S rRNA | Identical RHD Gene | % Similarity RHD Gene | Bio-Surfactant Production |
---|---|---|---|---|---|
Sp8 | Nitratireductor aquimarinus | 99.00% | Mycobacterium sp. py143 NidA | 99% | ++ |
Sp13 | Marinobacter gudaonensis | 99.23% | Mycobacterium sp. py143 NidA | 99% | ++ |
Sp23 | Pseudonocardia carboxydivorans | 99.72% | Mycobacterium sp. PO2 genes | 96% | +++ |
Sp24 | Mycolicibacterium setense | 99.00% | Mycobacterium sp. py143 NidA | 99% | + |
Bp1 | Rhodococcus electrodiphilus | 99.13% | Rhodococcus sp. JDC-11 Phthalate dioxygenase large subunit (phtAa) gene | 99% | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.; Ling, J.; Yin, J.; Chen, L.; Yang, Q.; Zhou, W.; Zhang, Y.; Huang, X.; Khan, I.; Dong, J. Evaluation of the Different Nutritional and Environmental Parameters on Microbial Pyrene Degradation by Mangrove Culturable Bacteria. Int. J. Mol. Sci. 2023, 24, 8282. https://doi.org/10.3390/ijms24098282
Ahmad M, Ling J, Yin J, Chen L, Yang Q, Zhou W, Zhang Y, Huang X, Khan I, Dong J. Evaluation of the Different Nutritional and Environmental Parameters on Microbial Pyrene Degradation by Mangrove Culturable Bacteria. International Journal of Molecular Sciences. 2023; 24(9):8282. https://doi.org/10.3390/ijms24098282
Chicago/Turabian StyleAhmad, Manzoor, Juan Ling, Jianping Yin, Luxiang Chen, Qingsong Yang, Weiguo Zhou, Yuhang Zhang, Xiaofang Huang, Imran Khan, and Junde Dong. 2023. "Evaluation of the Different Nutritional and Environmental Parameters on Microbial Pyrene Degradation by Mangrove Culturable Bacteria" International Journal of Molecular Sciences 24, no. 9: 8282. https://doi.org/10.3390/ijms24098282
APA StyleAhmad, M., Ling, J., Yin, J., Chen, L., Yang, Q., Zhou, W., Zhang, Y., Huang, X., Khan, I., & Dong, J. (2023). Evaluation of the Different Nutritional and Environmental Parameters on Microbial Pyrene Degradation by Mangrove Culturable Bacteria. International Journal of Molecular Sciences, 24(9), 8282. https://doi.org/10.3390/ijms24098282