Structure and Functions of HMGB2 Protein
Abstract
:1. Introduction
2. Structural Organization of HMGB2
3. Location in the Genome and Expression Level of HMGB2 at Different Stages of Ontogenesis
Neighbour | Description | Correlation * | Cluster |
---|---|---|---|
ORC1 | Origin recognition complex subunit 1 | 0.9930 | 75 |
HJURP | Holliday junction recognition protein | 0.9842 | 75 |
SPC24 | SPC24 component of NDC80 kinetochore complex | 0.9789 | 75 |
TFDP1 | Transcription factor Dp-1 | 0.9719 | 75 |
ING3 | Inhibitor of growth family member 3 | 0.9684 | 75 |
MCM2 | Minichromosome maintenance complex component 2 | 0.9684 | 75 |
PCLAF | PCNA clamp-associated factor | 0.9667 | 75 |
DNAJC9 | DnaJ heat shock protein family (Hsp40) member C9 | 0.9649 | 67 |
CDCA5 | Cell division cycle-associated protein 5 | 0.9649 | 75 |
ATAD5 | ATPase family AAA domain containing 5 | 0.9614 | 75 |
CDC25A | Cell division cycle 25A | 0.9596 | 75 |
RFWD3 | Ring finger and WD repeat domain 3 | 0.9596 | 75 |
E2F2 | E2F transcription factor 2 | 0.9596 | 75 |
CDT1 | Chromatin licensing and DNA replication factor 1 | 0.9579 | 67 |
CENPN | Centromere protein N | 0.9579 | 75 |
4. Post-Translational Modifications of HMGB2
4.1. Acetylation
4.2. Oxidation
4.3. Phosphorylation
4.4. Methylation
5. Biological Functions of HMGB2 in Cell Nucleus
5.1. Interaction with DNA
5.2. Interaction with Protein Partners
5.3. HMGB2 as an Alarmin
6. Effects of HMGB2 Expression Level on Cell Viability
6.1. Decreased HMGB2 Expression
6.2. Increased HMGB2 Expression
7. Conclusive Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nicolas, R.H.; Goodwin, G.H. Isolation and Analysis. In The HMG Chromosomal Proteins; Johns, E.W., Ed.; Academic Press Inc.: London, UK, 1982; Volume 43–45, pp. 59–60. ISBN 9780323158749. [Google Scholar] [CrossRef]
- Bustin, M.; Reeves, R. High-mobility-group chromosomal proteins: Architectural components that facilitate chromatin function. Prog. Nucleic Acid Res. Mol. Biol. 1996, 54, 35–100. [Google Scholar] [CrossRef] [PubMed]
- Bustin, M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell. Biol. 1999, 19, 5237–5246. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, N.; Singh, I.; Mehta, A.; Braun, T.; Barreto, G. HMGA proteins as modulators of chromatin structure during transcriptional activation. Front. Cell Dev. Biol. 2014, 2, 5. [Google Scholar] [CrossRef] [PubMed]
- Chiefari, E.; Foti, D.P.; Sgarra, R.; Pegoraro, S.; Arcidiacono, B.; Brunetti, F.S.; Greco, M.; Manfioletti, G.; Brunetti, A. Transcriptional Regulation of Glucose Metabolism: The Emerging Role of the HMGA1 Chromatin Factor. Front. Endocrinol. 2018, 9, 357. [Google Scholar] [CrossRef]
- Postnikov, Y.V.; Trieschmann, L.; Rickers, A.; Bustin, M. Homodimers of chromosomal proteins HMG-14 and HMG-17 in nucleosome cores. J. Mol. Biol. 1995, 252, 423–432. [Google Scholar] [CrossRef]
- Murphy, K.J.; Cutter, A.R.; Fang, H.; Postnikov, Y.V.; Bustin, M.; Hayes, J.J. HMGN1 and 2 remodel core and linker histone tail domains within chromatin. Nucleic Acids Res. 2017, 45, 9917–9930. [Google Scholar] [CrossRef]
- Reeves, R. High mobility group (HMG) proteins, modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair 2015, 36, 122–136. [Google Scholar] [CrossRef]
- Broadhurst, R.W.; Hardman, C.H.; Thomas, J.O.; Laue, E.D. Backbone dynamics of the A-domain of HMG1 as studied by 15N NMR spectroscopy. Biochemistry 1995, 34, 16608–16617. [Google Scholar] [CrossRef]
- Hardman, C.H.; Broadhurst, R.W.; Raine, A.R.; Grasser, K.D.; Thomas, J.O.; Laue, E.D. Structure of the A-domain of HMG1 and its interaction with DNA as studied by heteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry 1995, 34, 16596–16607. [Google Scholar] [CrossRef]
- Chikhirzhina, E.V.; Starkova, T.Y.; Beljajev, A.; Polyanichko, A.M.; Tomilin, A.N. Functional diversity of non-histone chromosomal nprotein HmgB1. Int. J. Mol. Sci. 2020, 21, 7948. [Google Scholar] [CrossRef]
- Stros, M.; Launholt, D.; Grasser, K.D. The HMG-box: A versatile protein domain occurring in a wide variety of DNA-binding proteins. Cell. Mol. Life Sci. 2007, 64, 2590–2606. [Google Scholar] [CrossRef]
- Stros, M. HMGB proteins: Interactions with DNA and chromatin. Biochim. Biophys. Acta 2010, 1799, 101–113. [Google Scholar] [CrossRef]
- Thomas, J.O.; Travers, A. HMG1 and 2, and related ‘architectural’ DNA binding proteins. Trends Biochem. Sci. 2001, 26, 167–174. [Google Scholar] [CrossRef]
- Kozlova, A.L.; Valieva, M.E.; Maluchenko, N.V.; Studitsky, V.M. HMGB proteins as DNA chaperones that modulate chromatin activity. Mol. Biol. 2018, 52, 637. [Google Scholar] [CrossRef]
- Mandke, P.; Vasquez, K.M. Interactions of High Mobility Group Box Protein 1 (HMGB1) with Nucleic Acids: Implications in DNA Repair and Immune Responses. DNA Repair 2019, 83, 102701. [Google Scholar] [CrossRef]
- Bonaldi, T.; Talamo, F.; Scaffidi, P.; Ferrera, D.; Porto, A.; Bachi, A.; Rubartelli, A.; Agresti, A.; Bianchi, M.E. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003, 22, 5551–5560. [Google Scholar] [CrossRef]
- Chikhirzhina, E.V.; Polyanichko, A.M.; Starkova, T.Y. Extranuclear functions of nonhistone protein HMGB1. Tsitologiya 2020, 62, 1–10. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, X.; Hong, R.; Wang, J. USP26 deubiquitinates androgen receptor (AR) in the maintenance of sperm maturation and spermatogenesis through the androgen receptor signaling pathway. Adv. Clin. Exp. Med. 2020, 29, 1153–1160. [Google Scholar] [CrossRef]
- Raucci, A.; Di Maggio, S.; Scavello, F.; D’Ambrosio, A.; Bianchi, M.E.; Capogrossi, M.C. The Janus face of HMGB1 in heart disease: A necessary update. Cell. Mol. Life Sci. 2019, 76, 211–229. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, Z.; Barnie, P.A.; Su, Z. Dual faced HMGB1 plays multiple roles in cardiomyocyte senescence and cardiac inflammatory injury. Cytokine Growth Factor Rev. 2019, 47, 74–82. [Google Scholar] [CrossRef]
- Niu, L.; Yang, W.; Duan, L.; Wang, X.; Li, Y.; Xu, C.; Liu, C.; Zhang, Y.; Zhou, W.; Liu, J.; et al. Biological functions and theranostic potential of HMGB family members in human cancers. Ther. Adv. Med. Oncol. 2020, 12, 70850. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhu, M.; Qu, L.; Shao, H.; Zhang, R.; Li, Y. Oncogenic Role of HMGB1 HMGB1 as An Alarming in Robust Prediction of Immunotherapy Response in Colorectal Cancer. Cancers 2022, 14, 4875. [Google Scholar] [CrossRef] [PubMed]
- Kuznik, B.I.; Khavinson, V.K.; Linkova, N.S.; Sall, T.S. Alarmin1 (HMGB1) and Age-Related Pathologies. Epygenetic Regulatory Mechanisms. Usp. Fiziol. Nauk 2017, 48, 40–55. [Google Scholar]
- Brien, M.-E.; Baker, B.; Duval, C.; Gaudreault, V.; Jones, R.L.; Girard, S. Alarmins at the maternal-fetal interface: Involvement of inflammation in placental dysfunction and pregnancy complications. Can. J. Physiol. Pharmacol. 2019, 96, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, E.; Di Gioacchino, M.; Tonacci, A.; Casciaro, M.; Gangemi, S. Alarmins, COVID-19 and comorbidities. Ann. Med. 2021, 53, 777–785. [Google Scholar] [CrossRef]
- Andersson, U.; Ottestad, W.; Tracey, K.J. Extracellular HMGB1: A therapeutic target in severe pulmonary inflammation including COVID-19? Mol. Med. 2020, 26, 42. [Google Scholar] [CrossRef]
- Morris, G.; Bortolasci, C.C.; Puri, B.K.; Olive, L.; Marx, W.; O’Neil, A.; Athan, E.; Carvalho, A.F.; Maes, M.; Walder, K.; et al. The pathophysiology of SARS-CoV-2: A suggested model and therapeutic approach. Life Sci. 2020, 258, 118166. [Google Scholar] [CrossRef]
- Chen, L.; Long, X.; Xu, Q.; Tan, J.; Wang, G.; Cao, Y.; Wei, J.; Luo, H.; Zhu, H.; Huang, L.; et al. Elevated serum levels of S100A8/A9 and HMGB1 at hospital admission are correlated with inferior clinical outcomes in COVID-19 patients. Cell Mol. Immunol. 2020, 17, 992–994. [Google Scholar] [CrossRef]
- Wei, J.; Alfajaro, M.M.; DeWeirdt, P.C.; Hanna, R.E.; Lu-Culligan, W.J.; Cai, W.L.; Strine, M.S.; Zhang, S.-M.; Graziano, V.R.; Schmitz, C.O.; et al. Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell 2021, 184, 76–91. [Google Scholar] [CrossRef]
- Reeck, G.R.; Isackson, P.J.; Teller, D.C. Domain structure in high molecular mass high mobility group nonhistone chomatin proteins. Nature 1982, 300, 675–676. [Google Scholar] [CrossRef]
- Read, C.M.; Cary, P.D.; Crane-Robinson, C.; Driscoll, P.C.; Norman, D.G. Solution structure of a DNA-binding domain from HMG1. Nucl. Acids Res. 1993, 21, 3427–3436. [Google Scholar] [CrossRef]
- Alpha Fold. Available online: https://alphafold.ebi.ac.uk/entry/P30681 (accessed on 15 March 2023).
- Chikhirzhina, E.V.; Starkova, T.Y.; Polyanichko, A.M. The Structural Organization of the HMGB1 Nuclear Protein and Its Effect on the Formation of Ordered Supramolecular Complexes. Biophysics 2021, 66, 373–378. [Google Scholar] [CrossRef]
- Cato, L.; Stott, K.; Watson, M.; Thomas, J.O. The interaction of HMGB1 and linker histones occurs through their acidic and basic tails. J. Mol. Biol. 2008, 384, 1262–1272. [Google Scholar] [CrossRef]
- Stott, K.; Watson, M.; Howe, F.S.; Grossmann, J.G.; Thomas, J.O. Tail-mediated collapse of HMGB1 is dynamic and occurs via dierential binding of the acidic tail to the A and B domains. J. Mol. Biol. 2010, 403, 706–722. [Google Scholar] [CrossRef]
- Chikhirzhina, E.; Polyanichko, A.; Leonenko, Z.; Wieser, H.; Vorob’ev, V. C-terminal domain of nonhistone protein HMGB1 as a modulator of HMGB1-DNA structural interactions. Spectroscopy 2010, 24, 361–366. [Google Scholar] [CrossRef]
- Polyanichko, A.M.; Leonenko, Z.V.; Cramb, D.; Wieser, H.; Vorob’ev, V.I.; Chikhirzhina, E.V. Visualization of DNA complexes with HMGB1 and its C-truncated form HMGB1(A+B). Biophysics 2008, 53, 202–206. [Google Scholar] [CrossRef]
- Polyanichko, A.; Chikhirzhina, E. Interaction between DNA and chromosomal proteins HMGB1 and H1 studied by IR/VCD spectroscopy. J. Mol. Struct. 2013, 1044, 167–172. [Google Scholar] [CrossRef]
- Chikhirzhina, E.V.; Polyanichko, A.M.; Kostyleva, E.I.; Vorob’ev, V.I. The structure of the complexes of DNA with chromosomal protein HMGB1 and histone H1 in the presence of manganese ions. I. Circular dicroism spectroscopy. Mol. Biol. 2011, 45, 318–326. [Google Scholar] [CrossRef]
- Polyanichko, A.; Chikhirzhina, E. Interaction between nonhistone protein HMGB1 and linker histone H1 facilitates the formation of structurally ordered DNA-protein complexes. Spectroscopy 2012, 27, 393–398. [Google Scholar] [CrossRef]
- Stros, M.; Polanska, E.; Kucirek, M.; Pospisilova, S. Histone H1 differentially inhibits DNA bending by reduced and oxidized HMGB1 protein. PLoS ONE 2015, 10, e0138774. [Google Scholar] [CrossRef]
- Polanska, E.; Pospisilova, S.; Stros, M. Binding of histone H1 to DNA is differentially modulated by redox state of HMGB1. PLoS ONE 2014, 9, e89070. [Google Scholar] [CrossRef]
- Kohlstaedt, L.A.; Sung, E.C.; Fujishige, A.; Cole, R.D. Non-histone chromosomal protein HMG1 modulates the histone H1-induced condensation of DNA. J. Biol. Chem. 1987, 262, 524–526. [Google Scholar] [CrossRef] [PubMed]
- Kohlstaedt, L.A.; Cole, R.D. Specific interaction between H1 histone and high mobility protein HMG1. Biochemistry 1994, 3, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Zwilling, S.; Konig, H.; Wirth, T. High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J. 1995, 14, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.A.; Rudnicki, M.A. Oct4 Interaction with Hmgb2 Regulates Akt Signaling and Pluripotency. Stem Cells 2013, 31, 1107–1120. [Google Scholar] [CrossRef]
- Butteroni, C.; De Felici, M.; Schöler, H.R.; Pesce, M. Phage Display Screening Reveals an Association Between Germline-specific Transcription Factor Oct-4 and Multiple Cellular Proteins. J. Mol. Biol. 2000, 304, 529–540. [Google Scholar] [CrossRef]
- McKinney, K.; Prives, C. Efficient specific DNA binding by p53 requires bothits central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol. Cell Biol. 2002, 22, 6797–6808. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, Y.; Gao, S. High-mobility group box 2 promoted proliferation of cervical cancer cells by activating AKT signaling pathway. J. Cell Biochem. 2019, 120, 17345–17353. [Google Scholar] [CrossRef]
- Rowell, P.; Simpson, K.L.; Stott, K.; Watson, M.; Thomas, J.O. HMGB1-facilitated p53 DNA binding occurs via HMG-Box/p53 transactivation domain interaction, regulated by the acidic tail. Structure 2012, 20, 2014–2024. [Google Scholar] [CrossRef]
- Zetterstrom, C.K.; Bergman, T.; Rynnel-Dagoo, B.; Erlandsson, H.H.; Soder, O.; Andersson, U.; Boman, H.G. High mobility group box chromosomal protein 1 (HMGB1) is an antibacterial factor produced by the human adenoid. Pediatr. Res. 2002, 52, 148–154. [Google Scholar] [CrossRef]
- Gong, W.; Li, Y.; Chao, F.; Huang, G.; He, F. Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1. J. Biomed. Sci. 2009, 16, 83. [Google Scholar] [CrossRef]
- Watson, M.; Stott, K.; Thomas, J.O. Mapping Intramolecular Interaction Tail-truncation Approach. J. Mol. Biol. 2007, 374, 1286–1297. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2021, 50, D439–D444. [Google Scholar] [CrossRef]
- Alpha Fold. Available online: https://alphafold.ebi.ac.uk/entry/P10103 (accessed on 15 March 2023).
- The Human Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000164104-HMGB2/tissue (accessed on 10 April 2023).
- De Martinis, M.; Ginaldi, L.; Sirufo, M.M.; Pioggia, G.; Calapai, G.; Gangemi, S.; Mannucci, C. Alarmins in Osteoporosis, RAGE, IL-1, and IL-33 Pathways: A Literature Review. Medicina 2020, 56, 138. [Google Scholar] [CrossRef]
- Sugita, N.; Choijookhuu, N.; Yano, K.; Lee, D.; Ikenoue, M.; Fidya, T.N.; Chosa, E.; Hishikawa, Y. Depletion of high-mobility group box 2 causes seminiferous tubule atrophy via aberrant expression of androgen and estrogen receptors in mouse testis. Biol. Reprod. 2021, 105, 1510–1520. [Google Scholar] [CrossRef]
- Yamaguma, Y.; Sugita, N.; Choijookhuu, N.; Yano, K.; Lee, D.; Ikenoue, M.; Fidya; Shirouzu, S.; Ishizuka, T.; Tanaka, M.; et al. Crucial role of high-mobility group box 2 in mouse ovarian follicular development through estrogen receptor beta. Histochem. Cell Biol. 2022, 157, 359–369. [Google Scholar] [CrossRef]
- Zhou, X.; Li, M.; Huang, H.; Chen, K.; Yuan, Z.; Zhang, Y.; Nie, Y.; Chen, H.; Zhang, X.; Chen, L.; et al. HmgB2 regulates satellite-cell-mediated skeletal muscle regeneration through IGF2BP2. J. Cell Sci. 2016, 129, 4305–4316. [Google Scholar] [CrossRef]
- Müller, S.; Ronfani, L.; Bianchi, M.E. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J. Intern. Med. 2004, 255, 332–343. [Google Scholar] [CrossRef]
- Calogero, S.; Grassi, F.; Aguzzi, A.; Voigtländer, T.; Ferrier, P.; Ferrari, S.; Bianchi, M.E. The lack of chromosomal protein HMG1 does not disrupt cell growth, but causes lethal hypoglycaemia in newborn mice. Nat. Genet. 1999, 22, 276–280. [Google Scholar] [CrossRef]
- Ronfani, L.; Ferraguti, M.; Croci, L.; Ovitt, C.E.; Schöler, H.R.; Consalez, G.G.; Bianchi, M.E. Reduced fertility and spermatogenesis defects in mice lacking chromosomal protein Hmgb2. Development 2001, 128, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhu, J.; Lei, L.; Chen, C.; Liu, X.; Wang, Y.; Hong, X.; Yu, L.; Xu, H.; Zhu, X. The Seasonal and Stage-Specific Expression Patterns of HMGB2 Suggest Its Key Role in Spermatogenesis in the Chinese Soft-Shelled Turtle (Pelodiscus sinensis). Biochem. Genet. 2022, 60, 2489–2502. [Google Scholar] [CrossRef] [PubMed]
- Shirouzu, S.; Sugita, N.; Choijookhuu, N.; Yamaguma, Y.; Takeguchi, K.; Ishizuka, T.; Tanaka, M.; Fidya, F.; Kai, K.; Chosa, E.; et al. Pivotal role of High-Mobility Group Box 2 in ovarian folliculogenesis and fertility. J. Ovarian Res. 2022, 15, 133. [Google Scholar] [CrossRef] [PubMed]
- Bosseboeuf, A.; Gautier, A.; Auvray, P.; Mazan, S.; Sourdaine, P. Characterization of spermatogonial markers in the mature testis of the dogfish (Scyliorhinus canicula L.). Reproduction 2014, 147, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, N.; Caramés, B.; Kawakami, Y.; Amendt, B.A.; Komiya, S.; Lotz, M. Chromatin protein HMGB2 regulates articular cartilage surface maintenance via beta-catenin pathway. Proc. Natl. Acad. Sci. USA 2009, 106, 16817–16822. [Google Scholar] [CrossRef]
- Zirkel, A.; Nikolic, M.; Sofiadis, K.; Mallm, J.-P.; Brackley, C.A.; Gothe, H.; Drechsel, O.; Becker, C.; Altmüller, J.; Josipovic, N.; et al. HMGB2 Loss upon Senescence Entry Disrupts Genomic Organization and Induces CTCF Clustering across Cell Types. Mol. Cell 2018, 70, 730–744. [Google Scholar] [CrossRef]
- Fu, D.; Li, J.; Wei, J.; Zhang, Z.; Luo, Y.; Tan, H.; Ren, C. HMGB2 is associated with malignancy and regulates Warburg effect by targeting LDHB and FBP1 in breast cancer. Cell Commun. Signal. 2018, 16, 8. [Google Scholar] [CrossRef]
- Franklin, S.; Chen, H.; Mitchell-Jordan, S.; Ren, S.; Wang, Y.; Vondriska, T.M. Quantitative analysis of the chromatin proteome in disease reveals remodeling principles and identifies high mobility group protein B2 as a regulator of hypertrophic growth. Mol. Cell Proteom. 2012, 11, M111.014258. [Google Scholar] [CrossRef]
- UniProt. Available online: https://www.uniprot.org/uniprot/P26583 (accessed on 15 March 2023).
- Ohndorf, U.-M.; Rould, M.A.; He, Q.; Pabo, C.O.; Lippard, S.J. Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 1999, 399, 708–712. [Google Scholar] [CrossRef]
- Barreiro-Alonso, A.; Lamas-Maceiras, M.; Rodríguez-Belmonte, E.; Vizoso-Vázquez, Á.; Quindós, M.; Cerdán, M.E. High mobility group B proteins, their partners, and other redox sensors in ovarian and prostate cancer. Oxid. Med. Cell. Longev. 2016, 2016, 5845061. [Google Scholar] [CrossRef]
- Hoppe, G.; Talcott, K.E.; Bhattacharya, S.K.; Crabb, J.W.; Sears, J.E. Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1. Exp. Cell Res. 2006, 312, 3526–3538. [Google Scholar] [CrossRef]
- Starkova, T.Y.; Polyanichko, A.M.; Artamonova, T.O.; Tsimokha, A.S.; Tomilin, A.N.; Chikhirzhina, E.V. Structural Characteristics of High-Mobility Group Proteins HMGB1 and HMGB2 and Their Interaction with DNA. Int. J. Mol. Sci. 2023, 24, 3577. [Google Scholar] [CrossRef]
- Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325, 834–840. [Google Scholar] [CrossRef]
- Venereau, E.; Casalgrandi, M.; Schiraldi, M.; Antoine, D.J.; Cattaneo, A.; De Marchis, F.; Liu, J.; Antonelli, A.; Preti, A.; Raeli, L.; et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J. Exp. Med. 2012, 209, 1519–1528. [Google Scholar] [CrossRef]
- Johnstone, T.C.; Wilson, J.J.; Lippard, S.J. Monofunctional and higher-valent platinum anticancer agents. Inorg. Chem. 2013, 52, 12234–12249. [Google Scholar] [CrossRef]
- Kwak, M.S.; Rhee, W.J.; Lee, Y.J.; Kim, H.S.; Kim, Y.H.; Kwon, M.K.; Shin, J.-S. Reactive oxygen species induce Cys106-mediated anti-386 parallel HMGB1 dimerization that protects against DNA damage. Redox Biol. 2021, 40, 101858. [Google Scholar] [CrossRef]
- Wang, J.; Tochio, N.; Takeuchi, A.; Uewaki, J.; Kobayashi, N.; Tate, S. Redox-sensitive structural change in the A-domain of HMGB1 and its implication for the binding to cisplatin modified DNA. Biochem. Biophys. Res. Commun. 2013, 441, 701–706. [Google Scholar] [CrossRef]
- Oh, Y.J.; Youn, J.H.; Ji, Y.; Lee, S.E.; Lim, K.J.; Choi, J.E.; Shin, J.-S. HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium-dependent mechanism. J. Immunol. 2009, 182, 5800–5809. [Google Scholar] [CrossRef]
- Kurita, J.; Shimahara, H.; Yoshida, M.; Tate, S. Solution Structure of the N-Terminal Domain of the HMGB2; World Wide Protein Data Bank: Piscataway, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Kurita, J.; Shimahara, H.; Yoshida, M.; Tate, S. Solution Structure of the C-Terminal Domain of the HMGB2; World Wide Protein Data Bank: Piscataway, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Hamada, H.; Bustin, M. Hierarchy of binding sites for chromosomal proteins HMG 1 and 2 in supercoiled deoxyribonucleic acid. Biochemistry 1985, 24, 1428–1433. [Google Scholar] [CrossRef]
- Waga, S.; Mizuno, S.; Yoshida, M. Nonhistone protein HMG1 removes the transcriptional block caused by left-handed Z-form segment in a supeicoiled DNA. Biochem. Biophys. Res. Common. 1988, 153, 334–339. [Google Scholar] [CrossRef]
- Waga, S.; Mizuno, S.; Yoshida, M. Chromosomal protein HMG1 removes the transcriptional block caused by the cruciform in supercoiled DNA. J. Biol. Chem. 1990, 265, 19424–19428. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Saito, K.; Tanabe, T.; Yamamoto, A.; Ando, Y.; Akamura, Y.; Shirakawa, H.; Yoshida, M. Differences in DNA recognition and conformational change activity between boxes A and B in HMG2 protein. Biochemistry 1999, 38, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.E.; Beltrame, M.; Paonesa, G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science 1989, 243, 1056–1059. [Google Scholar] [CrossRef] [PubMed]
- Peaison, C.E.; Ruiz, N.I.T.; Puce, U.B.; Zannis-Hadlopoulos, M. Cruciform DNA binding protein in HeLa cell extracts. Biochemistry 1994, 33, 14185–14196. [Google Scholar] [CrossRef]
- Murphy, F.V.I.; Sweet, R.M.; Churchill, M.E. The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequence specific DNA recognition. EMBO J. 1999, 18, 6610–6618. [Google Scholar] [CrossRef]
- Bianchi, M.E.; Beltrame, M. Flexing DNA: HMG-box proteins and their partners. Am. J. Hum. Genet. 1998, 63, 1573–1577. [Google Scholar] [CrossRef]
- McCauley, M.J.; Zimmerman, J.; Maher, L.J., 3rd; Williams, M.C. HMGB binding to DNA: Single and double box motifs. J. Mol. Biol. 2007, 374, 993–1004. [Google Scholar] [CrossRef]
- Reeves, R. Nuclear functions of the HMG proteins. Biochim. Biophys. Acta 2010, 1799, 3–14. [Google Scholar] [CrossRef]
- He, Q.; Ohndorf, U.M.; Lippatd, S. Intercalating residues determine the mode of HMG1 domains A and B binding to cisplatin modified DNA. Biochemistry 2000, 39, 14426–14435. [Google Scholar] [CrossRef]
- Van Beijnum, J.R.; Eijgelaar, W.J.; Griffioen, A.W. Towards high-throughput functional target discovery in angiogenesis research. Trends Mol. Med. 2006, 12, 44–52. [Google Scholar] [CrossRef]
- Syed, N.; Chavan, S.; Sahasrabuddhe, N.A.; Renuse, S.; Sathe, G.; Nanjappa, V.; Radhakrishnan, A.; Raja, R.; Pinto, S.M.; Srinivasan, A.; et al. Silencing of high-mobility group box 2 (HMGB2) modulates cisplatin and 5-fuorouracil sensitivity in head and neck squamous cell carcinoma. Proteomics 2015, 15, 383–393. [Google Scholar] [CrossRef]
- Chikhirzhina, E.V.; Starkova, T.Y.; Kostyleva, E.I.; Polyanichko, A.M. The influence of cisplatin on the interaction of DNA with nuclear proteins HMGB1 and HMGB2. Tsitologiya 2018, 60, 923–926. [Google Scholar] [CrossRef]
- Chao, J.C.; Wan, X.S.; Engelsberg, B.N.; Rothblum, L.I.; Billings, P.C. Intracellular distribution of HMG1, HMG2 and UBF change following treatment with cisplatin. Biochim. Biophys. Acta 1996, 1307, 213–219. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, P.; Fukumoto, T.; Nacarelli, T.; Fatkhutdinov, N.; Wu, S.; Lin, J.; Aird, K.M.; Tang, H.-Y.; Liu, Q.; et al. Topoisomerase 1 cleavage complex enables pattern recognition and inflammation during senescence. Nat. Commun. 2020, 11, 908. [Google Scholar] [CrossRef]
- Castello, A.; Fischer, B.; Frese, C.K.; Horos, R.; Alleaume, A.-M.; Foehr, S.; Curk, T.; Krijgsveld, J.; Hentze, M.W. Comprehensive Identification of RNA-Binding Domains in Human Cells. Mol. Cell 2016, 63, 696–710. [Google Scholar] [CrossRef]
- He, C.; Sidoli, S.; Warneford-Thomson, R.; Tatomer, D.C.; Wilusz, J.E.; Garcia, B.A.; Bonasio, R. High-Resolution Mapping of RNA-Binding Regions in the Nuclear Proteome of Embryonic Stem Cells. Mol. Cell 2016, 64, 416–430. [Google Scholar] [CrossRef]
- Voong, C.K.; Goodrich, J.A.; Kugel, J.F. Interactions of HMGB Proteins with the Genome and the Impact on Disease. Biomolecules 2021, 11, 1451. [Google Scholar] [CrossRef]
- Han, Q.; Xu, L.; Lin, W.; Yao, X.; Jiang, M.; Zhou, R.; Sun, X.; Zhao, L. Long noncoding RNA CRCMSL suppresses tumor invasive and metastasis in colorectal carcinoma through nucleocytoplasmic shuttling of HMGB2. Oncogene 2019, 38, 3019–3032. [Google Scholar] [CrossRef]
- Mitsouras, K.; Wong, B.; Arayata, C.; Johnson, R.C.; Carey, M. The DNA architectural protein HMGB1 displays two distinct modes of action that promote enhancesome assembly. Mol. Cell. Biol. 2002, 22, 4390–4401. [Google Scholar] [CrossRef]
- Hayes, A.J.; Dowthwaite, G.P.; Webster, S.V.; Archer, C.W. The distribution of Notch receptors and their ligands during articular cartilage development. J. Anat. 2003, 202, 495–502. [Google Scholar] [CrossRef]
- Taniguchi, N.; Caramés, B.; Ronfani, L.; Ulmer, U.; Komiya, S.; Bianchi, M.E.; Lotz, M. Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proc. Natl. Acad. Sci. USA 2009, 106, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, N.; Caramés, B.; Hsu, E.; Cherqui, S.; Kawakami, Y.; Lotz, M. Expression patterns and function of chromatin protein HMGB2 during mesenchymal stem cell differentiation. J. Biol. Chem. 2011, 286, 41489–41498. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Beresford, P.J.; Zhang, D.; Lieberman, J. HMG2 interacts with the nucleosome assembly protein SET and is a target of the cytotoxic T-lymphocyte protease granzyme A. Mol. Cell. Biol. 2002, 22, 2810–2820. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, V.; Page, C.L.; Guyot, M.-C.; Lussier, C.; Tonin, P.N.; Provencher, D.M.; Mes-Masson, A.M. SET complex in serous epithelial ovarian cancer. Int. J. Cancer 2006, 119, 2119–2126. [Google Scholar] [CrossRef]
- Antonyan, L.; Ernst, C. Putative Roles of SETBP1 Dosage on the SET Oncogene to Affect Brain Development. Front. Neurosci. 2022, 16, 813430. [Google Scholar] [CrossRef]
- Krynetski, E.Y.; Krynetskaia, N.F.; Bianchi, M.E.; Evans, W.E. A nuclear protein complex containing high mobilitygroup proteins B1 and B2, heat shock cognate protein 70, ERp60, andglyceraldehyde-3-phosphate dehydrogenase is involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analogues. Cancer Res. 2003, 63, 100–106. [Google Scholar]
- Bernardini, M.; Lee, C.-H.; Beheshti, B.; Prasad, M.; Albert, M.; Marrano, P.; Begley, H.; Shaw, P.; Covens, A.; Murphy, J.; et al. High-resolution mapping of genomic imbalance and identification of gene expression profiles associated with differential chemotherapy response in serous epithelial ovarian cancer. Neoplasia 2005, 7, 603–613. [Google Scholar] [CrossRef]
- Yamoah, K.; Brebene, A.; Baliram, R.; Inagaki, K.; Dolios, G.; Arabi, A.; Majeed, R.; Amano, H.; Wang, R.; Yanagisawa, R.E. Abe High-mobility group box proteins modulate tumor necrosis factor-alpha expression in osteoclastogenesis via a novel deoxyribonucleic acid sequence. Mol. Endocrinol. 2008, 22, 1141–1153. [Google Scholar] [CrossRef]
- Agrawal, A.; Schatz, D.G. RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 1997, 89, 43–53. [Google Scholar] [CrossRef]
- Van Gent, D.C.; Hiom, K.; Paull, T.T.; Gellert, M. Stimulation of V(D)J cleavage by high mobility group proteins. EMBO J. 1997, 16, 2665–2670. [Google Scholar] [CrossRef]
- Kwon, J.; Imbalzano, A.N.; Matthews, A.; Oettinger, M.A. Accessibility of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. Mol. Cell 1998, 2, 829–839. [Google Scholar] [CrossRef]
- Aidinis, V.; Bonaldi, T.; Beltrame, M.; Santagata, S.; Bianchi, M.E.; Spanopoulou, E. The RAG1 homeodomain recruits HMG1 and HMG2 to facilitate Recombination Signal Sequence binding and to enhance the intrinsic DNA-bending activity of RAG1-RAG2. Mol. Cell. Biol. 1999, 19, 6532–6542. [Google Scholar] [CrossRef]
- Stros, M.; Ozaki, T.; Bacikova, A.; Kageyama, H.; Nakagawara, A. HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter. J. Biol. Chem. 2002, 277, 7157–7164. [Google Scholar] [CrossRef]
- Jayaraman, L.; Moorthy, N.C.; Murthy, K.G.; Manley, J.L.; Bustin, M.; Prives, C. High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev. 1998, 12, 462–472. [Google Scholar] [CrossRef]
- Van Beijnum, J.R.; Nowak-Sliwinska, P.; van den Boezem, E.; Hautvast, P.; Buurman, W.A.; Griffioen, A.W. Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene 2013, 32, 363–374. [Google Scholar] [CrossRef]
- Kim, H.-K.; Kang, M.A.; Kim, M.-S.; Shin, Y.-J.; Chi, S.-G.; Jeong, J.-H. Transcriptional repression of high-mobility group box 2 by p21 in radiation-induced senescence. Mol. Cells 2018, 41, 362–372. [Google Scholar] [CrossRef]
- Bianco, C.; Mohr, I. Ribosome biogenesis restricts innate immune responses to virus infection and DNA. Elife 2019, 8, e49551. [Google Scholar] [CrossRef]
- Li, W.; Wang, Q.; Feng, Q.; Wang, F.; Yan, Q.; Gao, S.-J.; Lu, C. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB12 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNAOIP5-AS1/miR-218-5p network. PLoS Pathog. 2019, 15, e1007578. [Google Scholar] [CrossRef]
- Völp, K.; Brezniceanu, M.-L.; Bösser, S.; Brabletz, T.; Kirchner, T.; Göttel, D.; Joos, S.; Zörnig, M. Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c-IAP2 protein in human colon carcinomas. Gut 2006, 55, 234–242. [Google Scholar] [CrossRef]
- Cámara-Quílez, M.; Barreiro-Alonso, A.; Rodríguez-Belmonte, E.; Quindós-Varela, M.; Cerdán, M.E.; Lamas-Maceiras, M. Differential Characteristics of HMGB2 Versus HMGB1 and their Perspectives in Ovary and Prostate Cancer. Curr. Med. Chem. 2020, 27, 3271–3289. [Google Scholar] [CrossRef]
- Monte, E.; Rosa-Garrido, M.; Karbassi, E.; Chen, H.; Lopez, R.; Rau, C.D.; Wang, J.; Nelson, S.F.; Wu, Y.; Stefani, E.; et al. Reciprocal Regulation of the Cardiac Epigenome by Chromatin Structural Proteins Hmgb and Ctcf: IMPLICATIONS FOR TRANSCRIPTIONAL REGULATION. J. Biol. Chem. 2016, 291, 15428–15446. [Google Scholar] [CrossRef] [PubMed]
- Cámara-Quílez, M.; Barreiro-Alonso, A.; Vizoso-Vázquez, Á.; Rodríguez-Belmonte, E.; Quindós-Varela, M.; Lamas-Maceiras, M.; Cerdán, M.E. The HMGB1-2 Ovarian Cancer Interactome. The Role of HMGB Proteins and Their Interacting Partners MIEN1 and NOP53 in Ovary Cancer and Drug-Response. Cancers 2020, 12, 2435. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Wasson, L.M.; Rauniyar, N.; Prokai, L.; Borejdo, J.; Vishwanatha, J.K. Novel Gene C17orf37 in 17q12 Amplicon Promotes Migration and Invasion of Prostate Cancer Cells. Oncogene 2009, 28, 2860–2872. [Google Scholar] [CrossRef] [PubMed]
- Pallier, C.; Scaffidi, P.; Chopineau-Proust, S.; Agresti, A.; Nordmann, P.; Bianchi, M.E.; Marechal, V. Association of chromatin proteins high mobility group box (HMGB) 1 and HMGB2 with mitotic chromosomes. Mol. Biol. Cell 2003, 14, 3414–3426. [Google Scholar] [CrossRef] [PubMed]
- Barreiro-Alonso, A.; Cámara-Quílez, M.; Salamini-Montemurri, M.; Lamas-Maceiras, M.; Vizoso-Vázquez, Á.; Rodríguez-Belmonte, E.; Quindós-Varela, M.; Martínez-Iglesias, O.; Figueroa, A.; Cerdán, M.-E. Characterization of HMGB1/2 interactome in prostate cancer by yeast two hybrid approach: Potential pathobiological implications. Cancers 2019, 11, 1729. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Fang, R.-H.; Wu, J.; Si, Y.; Jia, S.-Q.; Li, Q.; Bai, J.-Z.; She, X.-N.; Wang, J.-Q. MicroRNA-329 upregulation impairs the HMGB2/β-catenin pathway and regulates cell biological behaviors in melanoma. J. Cell Physiol. 2019, 234, 23518–23527. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Zhao, X.; Xie, H.; Zhang, C.; Sun, X.; Zhang, J. HMGB2 causes photoreceptor death via down-regulating Nrf2/HO-1 and up-regulating NF-κB/NLRP3 signaling pathways in light-induced retinal degeneration model. Free. Radic. Biol. Med. 2022, 181, 14–28. [Google Scholar] [CrossRef]
- Lee, D.; Taniguchi, N.; Sato, K.; Choijookhuu, N.; Hishikawa, Y.; Kataoka, H.; Morinaga, H.; Lotz, M.; Chosa, E. HMGB2 is a novel adipogenic factor that regulates ectopic fat infiltration in skeletal muscles. Sci. Rep. 2018, 8, 9601. [Google Scholar] [CrossRef]
- Ginaldi, L.; De Martinis, M.; Saitta, S.; Sirufo, M.M.; Mannucci, C.; Casciaro, M.; Ciccarelli, F.; Gangemi, S. Interleukin-33 serum levels in postmenopausal women with osteoporosis. Sci. Rep. 2019, 9, 3786. [Google Scholar] [CrossRef]
- Boonyaaratanakornkit, V.; Melvin, V.; Prendergast, P.; Altmann, M.; Ronfani, L.; Bianchi, E.M.; Tarasaviciene, A.; Nordeen, S.K.; Allegretto, E.A.; Edwards, D.P. High mobility group chromatin proteins -1 and -2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol. Cell. Biol. 1998, 18, 4471–4487. [Google Scholar] [CrossRef]
- Kumar, A.; Dumasia, K.; Deshpande, S.; Raut, S.; Balasinor, N.H. Delineating the regulation of estrogen and androgen receptor expression by sex steroids during rat spermatogenesis. J. Steroid Biochem. Mol. Biol. 2018, 182, 127–136. [Google Scholar] [CrossRef]
- Cooke, P.S.; Walker, W.H. Nonclassical androgen and estrogen signaling is essential for normal spermatogenesis. Semin. Cell Dev. Biol. 2021, 121, 71–81. [Google Scholar] [CrossRef]
- Srinivasan, M.; Banerjee, S.; Palmer, A.; Zheng, G.; Chen, A.; Bosland, M.C.; Kajdacsy-Balla, A.; Kalyanasundaram, R.; Munirathinam, G. HMGB1 in hormone-related cancer: A potential therapeutic target. Horm. Cancer 2014, 5, 127–139. [Google Scholar] [CrossRef]
- Redmond, A.M.; Byrne, C.; Bane, F.T.; Brown, G.D.; Tibbitts, P.; O’Brien, K.; Hill, A.D.K.; Carroll, J.S.; Young, L.S. Genomic interaction between ER and HMGB2 identifies DDX18 as a novel driver of endocrine resistance in breast cancer cells. Oncogene 2015, 34, 3871–3880. [Google Scholar] [CrossRef]
- Wu, Z.B.; Cai, L.; Lin, S.J.; Xiong, Z.K.; Lu, J.L.; Mao, Y.; Yao, Y.; Zhou, L.F. High-mobility group box 2 is associated with prognosis of glioblastoma by promoting cell viability, invasion, and chemotherapeutic resistance. Neuro Oncol. 2013, 15, 1264–1275. [Google Scholar] [CrossRef]
- Grasser, K.D.; Teo, S.H.; Lee, K.B.; Broadhurst, R.W.; Rees, C.; Hardman, C.H.; Thomas, J.O. DNA-binding proper ties of the tandem HMG boxes of high-mobility-group protein 1 (HMG1). Eur. J. Biochem. 1998, 253, 787–795. [Google Scholar] [CrossRef]
- Yamamoto, A.; Ando, Y.; Yoshioka, K.; Saito, K.; Tanabe, T.; Shirakawa, H.; Yoshida, M. Difference in affinity for DNA between HMG proteins 1 and 2 determined by surface plasmon resonance measurements. J. Biochem. 1997, 122, 586–594. [Google Scholar] [CrossRef]
- Park, S.; Lippard, S.J. Binding interaction of HMGB4 with cisplatin-modified DNA. Biochemistry 2012, 51, 6728–6737. [Google Scholar] [CrossRef]
- Pil, P.M.; Chins, C.S.; Lippard, S.J. High-mobility group 1 protein mediates DNA pending a, determined by ring, closures. Proc. Natl. Acad. Sci. USA 1993, 90, 9465–9469. [Google Scholar] [CrossRef]
- Lee, K.B.; Thomas, J.O. The effect of the acidic tail on the DNA binding properties of the HMG1/2 class of proteins insight from tail switching and tail removal. J. Mol. Biol. 2000, 304, 135–149. [Google Scholar] [CrossRef]
- Lnenicek-Allen, M.; Read, C.M.; Crane-Robinson, C. The DNA bend angle and binding affinity of an HMG box increased by the presence of short terminal arms. Nucleic Acids Res. 1996, 24, 1047–1051. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, M.; Hillisch, A.; Payet, D.; Buttinelli, M.; Travers, A.; Diekmann, S. DNA bending induced by high mobility group proteins studied by fluorescence resonance energy transfer. Biochemistry 1999, 38, 12150–12158. [Google Scholar] [CrossRef] [PubMed]
- Klass, J.; Murphy, F.I.; Fouts, S.; Serenil, M.; Changela, A.; Siple, J.; Churchill, M.E. The role of intercalating residues in chromosomal high-mobility-group protein DNA binding, bending and specificity. Nucleic Acids Res. 2003, 31, 2852–2864. [Google Scholar] [CrossRef] [PubMed]
- McCauley, M.; Hardwidge, P.R.; Maher, L.J., 3rd; Williams, M.C. Dual Binding Modes for an HMG Domain from Human HMGB2 on DNA. Biophys. J. 2005, 89, 353–364. [Google Scholar] [CrossRef]
- Teves, S.S.; An, L.; Hansen, A.S.; Xie, L.; Darzacq, X.; Tjian, R. A dynamic mode of mitotic bookmarking by transcription factors. eLife 2016, 5, e22280. [Google Scholar] [CrossRef]
- Stott, K.; Tang, G.S.; Lee, K.B.; Thomas, J.O. Structure of a Complex of Tandem HMG Boxes and DNA. J. Mol. Biol. 2006, 360, 90–104. [Google Scholar] [CrossRef]
- Bodnar, J.W. A domain model for eukaryotic DNA organization: A molecular basis for cell differentiation and chromosome evolution. J. Theor. Biol. 1988, 132, 479–507. [Google Scholar] [CrossRef]
- Goldman, M.A. The chromatin domain as a unit of gene regulation. Bioessays 1988, 9, 50–55. [Google Scholar] [CrossRef]
- Nikolaev, L.G.; Akopov, S.B.; Didych, D.A.; Sverdlov, E.D. Vertebrate Protein CTCF and its Multiple Roles in a Large-Scale Regulation of Genome Activity. Curr. Genom. 2009, 10, 294–302. [Google Scholar] [CrossRef]
- Phillips, J.E.; Corces, V.G. CTCF: Master weaver of the genome. Cell 2009, 137, 1194–1211. [Google Scholar] [CrossRef]
- Davalos, A.R.; Kawahara, M.; Malhotra, G.K.; Schaum, N.; Huang, J.; Ved, U.; Beausejour, C.M.; Coppe, J.P.; Rodier, F.; Campisi, J. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell Biol. 2013, 201, 613–629. [Google Scholar] [CrossRef]
- Lee, H.; Song, J.-J. The crystal structure of Capicua HMG-box domain complexed with the ETV5-DNA and its implications for Capicua-mediated cancers. FEBS J. 2019, 286, 4951–4963. [Google Scholar] [CrossRef]
- Available online: https://string-db.org/cgi/network?taskId=beC7Pt9PHA1H&sessionId=bcGYVezbXH0S (accessed on 15 June 2022).
- Rodríguez-Merchán, E.C. Molecular Mechanisms of Cartilage Repair and Their Possible Clinical Uses: A Review of Recent Developments. Int. J. Mol. Sci. 2022, 23, 14272. [Google Scholar] [CrossRef]
- Koyama, E.; Shibukawa, Y.; Nagayama, M.; Sugito, H.; Young, B.; Yuasa, T.; Okabe, T.; Ochiai, T.; Kamiya, N.; Rountree, R.B.; et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev. Biol. 2008, 316, 62–73. [Google Scholar] [CrossRef]
- Ross, D.A.; Kadesch, T. The notch intracellular domain can function as a coactivator for LEF-1. Mol. Cell Biol. 2001, 1, 7537–7544. [Google Scholar] [CrossRef]
- Zappavigna, V.; Falciola, L.; Helmer-Citterich, M.; Mavilio, F.; Bianchi, M.E. HMG1 cooperates with HOX proteins in DNA binding and transcriptional activation. EMBO J. 1996, 15, 4981–4991. [Google Scholar] [CrossRef]
- Mansisidor, A.R.; Risca, V.I. Chromatin accessibility: Methods, mechanisms, and biological insights. Nucleus 2022, 13, 236–276. [Google Scholar] [CrossRef]
- Kaneshiro, K.R.; Egelhofer, T.A.; Rechtsteiner, A.; Strome, S. Sperm-inherited H3K27me3 epialleles are transmitted transgenerationally in cis. Proc. Natl. Acad. Sci. USA 2022, 119, e2209471119. [Google Scholar] [CrossRef]
- Chikhirzhina, E.; Chikhirzhina, G.; Polyanichko, A. Chromatin structure: The role of “linker” Proteins. Biomed. Spectr. Imaging 2014, 3, 345–358. [Google Scholar] [CrossRef]
- Chikhirzhina, E.; Starkova, T.; Polyanichko, A. The Role of Linker Histones in Chromatin Structural Organization. 17. H1 Family Histones. Biophysics 2018, 63, 858–865. [Google Scholar] [CrossRef]
- Chikhirzhina, E.; Starkova, T.; Polyanichko, A. The Role of Linker Histones in Chromatin Structural Organization. 2. The interactions with DNA and nuclear proteins. Biophysics 2020, 65, 202–212. [Google Scholar] [CrossRef]
- Leopoldino, A.M.; Squarize, C.H.; Garcia, C.B.; Almeida, L.O.; Pestana, C.R.; Polizello, A.C.; Uyemura, S.A.; Tajara, E.H.; Gutkind, J.S.; Curti, C. Accumulation of the SET protein in HEK293T cells and mild oxidative stress: Cell survival or death signaling. Mol. Cell Biochem. 2012, 363, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Thanos, D.; Du, W.; Maniatis, T. The high mobility group protein HMG I(Y) is an essential structural component of a virus-inducible enhancer complex. Cold Spring Harbor Symp. Quant. Biol. 1993, 58, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Fonin, A.V.; Stepanenko, O.V.; Turoverov, K.K.; Vorob’ev, V.I. Interaction between non-histone chromatin protein HMGB1 and linker histone H1. Tsitologiia 2010, 52, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.R.; Sarpong, Y.C.; Peterson, R.C.; Scovell, W.M. Nucleosome dynamics: HMGB1 relaxes canonical nucleosome structure to facilitate estrogen receptor binding. Nucl. Acids Res. 2012, 40, 10161–10171. [Google Scholar] [CrossRef]
- Taniguchi, N.; Kawakami, Y.; Maruyama, I.; Lotz, M. HMGB proteins and arthritis. Hum. Cell 2018, 31, 1–9. [Google Scholar] [CrossRef]
- Kwon, J.-H.; Kim, J.; Park, J.Y.; Hong, S.M.; Park, C.W.; Hong, S.J.; Park, S.Y.; Choi, Y.J.; Do, I.-G.; Joh, J.W.; et al. Overexpression of High-Mobility Group Box 2 Is Associated with Tumor Aggressiveness and Prognosis of Hepatocellular Carcinoma. Clin. Cancer Res. 2010, 16, 5511–5521. [Google Scholar] [CrossRef]
- Cui, G.; Cai, F.; Ding, Z.; Gao, L. HMGB2 promotes the malignancy of human gastric cancer and indicates poor survival outcome. Hum. Pathol. 2019, 84, 133–141. [Google Scholar] [CrossRef]
- Bagherpoor, A.J.; Kučírek, M.; Fedr, R.; Sani, S.A.; Štros, M. Nonhistone Proteins HMGB1 and HMGB2 Differentially Modulate the Response of Human Embryonic Stem Cells and the Progenitor Cells to the Anticancer Drug Etoposide. Biomolecules 2020, 10, 1450. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Z.; Wu, J.; Wu, R.; Keshipeddy, S.K.; Wright, D.; Wang, L. High-mobility-group protein 2 regulated by microRNA-127 and small heterodimer partner modulates pluripotency of mouse embryonic stem cells and liver tumor initiating cells. Hepatol. Commun. 2017, 1, 816–830. [Google Scholar] [CrossRef]
- Morinaga, H.; Muta, Y.; Tanaka, T.; Tanabe, M.; Hamaguchi, Y.; Yanase, T. High-mobility group box 2 protein is essential for the early phase of adipogenesis. Biochem. Biophys. Res. Commun. 2021, 557, 97–103. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Chen, H.; Zhang, X.; Liu, X.; He, Z.; Cong, P.; Chen, Y.; Mo, D. Comparative transcriptome analysis reveals a more complicated adipogenic process in intramuscular stem cells than that of subcutaneous vascular stem cells. J. Agric. Food Chem. 2019, 67, 4700–4708. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, J.; Liang, F.; Zhu, Q.; Cai, S.; Tong, X.; He, Z.; Liu, X.; Chen, Y.; Mo, D. HMGB12 orchestrates mitotic clonal expansion by binding to the promoter of C/EBPβ to facilitate adipogenesis. Cell Death Dis. 2021, 12, 666. [Google Scholar] [CrossRef]
- Shiojima, I.; Walsh, K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes. Dev. 2006, 20, 3347–3365. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kim, S.J.; Yatani, A.; Huang, Y.; Castelli, G.; Vatner, D.E.; Liu, J.; Zhang, Q.; Diaz, G.; Zieba, R.; et al. Mechanism of enhanced cardiac function in mice with hypertrophy induced by overexpressed Akt. J. Biol. Chem. 2003, 278, 47622–47628. [Google Scholar] [CrossRef]
- Sato, M.; Miyata, K.; Tian, Z.; Kadomatsu, T.; Ujihara, Y.; Morinaga, J.; Horiguchi, H.; Endo, M.; Zhao, J.; Zhu, S.; et al. Loss of Endogenous HMGB2 Promotes Cardiac Dysfunction and Pressure Overload-Induced Heart Failure in Mice. Circ. J. 2019, 83, 368–378. [Google Scholar] [CrossRef]
- Huss, J.M.; Kelly, D.P. Mitochondrial energy metabolism in heart failure: A question of balance. J. Clin. Investg. 2005, 115, 547–555. [Google Scholar] [CrossRef]
- Kaarniranta, K.; Koskela, A.; Felszeghy, S.; Kivinen, N.; Salminen, A.; Kauppinen, A. Fatty acids and oxidized lipoproteins contribute to autophagy and innate immunity responses upon the degeneration of retinal pigment epithelium and development of age-related macular degeneration. Biochimie 2019, 159, 49–54. [Google Scholar] [CrossRef]
- Aird, K.M.; Iwasaki, O.; Kossenkov, A.V.; Tanizawa, H.; Fatkhutdinov, N.; Bitler, B.G.; Le, L.; Alicea, G.; Yang, T.L.; Johnson, F.B.; et al. HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J. Cell Biol. 2016, 215, 325–334. [Google Scholar] [CrossRef]
- Biniossek, M.L.; Lechel, A.; Rudolph, K.L.; Martens, U.M.; Zimmermann, S. Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. J. Proteom. 2013, 91, 515–535. [Google Scholar] [CrossRef]
- Kimura, A.; Matsuda, T.; Sakai, A.; Murao, N.; Nakashima, K. HMGB2 expression is associated with transition from a quiescent to an activated state of adult neural stem cells. Dev. Dyn. 2018, 247, 229–238. [Google Scholar] [CrossRef]
- Zhang, C.; Fondufe-Mittendorf, Y.N.; Wang, C.; Chen, J.; Cheng, Q.; Zhou, D.; Zheng, Y.; Geigerand, H.; Liang, Y. Latexin regulation by HMGB2 is required for hematopoietic stem cell maintenance. Hematopoiesis 2020, 105, 573–584. [Google Scholar] [CrossRef]
- Fang, Y.; Liang, F.; Yuan, R.; Zhu, Q.; Cai, S.; Che, K.; Zhang, J.; Luo, X.; Chen, Y.; Mo, D. High mobility group box 2 regulates skeletal muscle development through ribosomal protein S6 kinase 1. FASEB J. 2020, 34, 12367–12378. [Google Scholar] [CrossRef]
- Shin, Y.-J.; Kim, M.-S.; Kim, M.-S.; Lee, J.; Kang, M.; Jeong, J.-H. High-mobility group box 2 (HMGB2) modulates radioresponse and is downregulated by p53 in colorectal cancer cell. Cancer Biol. Ther. 2013, 14, 213–221. [Google Scholar] [CrossRef]
- Yamazaki, F.; Nagatsuka, Y.; Shirakawa, H.; Yoshida, M. Repression of cell cycle progression by antisense HMG2 RNA. Biochem. Biophys. Res. Commun. 1995, 210, 1045–1051. [Google Scholar] [CrossRef]
- Ly, D.H.; Lockhart, D.J.; Lerner, R.A.; Schultz, P.G. Mitotic misregulation and human aging. Science 2000, 287, 2486–2492. [Google Scholar] [CrossRef]
- Shi, H.; Xu, H.; Chai, C.; Qin, Z.; Zhou, W. Integrated bioinformatics analysis of potential biomarkers for pancreatic cancer. J. Clin. Lab. Anal. 2022, 36, e24381. [Google Scholar] [CrossRef]
- Yano, K.; Choijookhuu, N.; Ikenoue, M.; Fidya; Fukaya, T.; Sato, K.; Lee, D.; Taniguchi, N.; Chosa, E.; Nanashima, A.; et al. Spatiotemporal expression of HMGB2 regulates cell proliferation and hepatocyte size during liver regeneration. Sci. Rep. 2022, 12, 11962. [Google Scholar] [CrossRef]
- Han, X.; Zhong, S.; Zhang, P.; Liu, Y.; Shi, S.; Wu, C.; Gao, S. Identifcation of diferentially expressed proteins and clinicopathological signifcance of HMGB2 in cervical cancer. Clin. Proteom. 2021, 18, 2. [Google Scholar] [CrossRef]
- Yang, S.; Ye, Z.; Wang, Z.; Wang, L. High mobility group box 2 modulates the progression of osteosarcoma and is related with poor prognosis. Ann. Transl. Med. 2020, 8, 1082. [Google Scholar] [CrossRef]
- Cai, X.; Ding, H.; Liu, Y.; Pan, G.; Li, Q.; Yang, Z.; Liu, W. Expression of HMGB2 indicates worse survival of patients and is required for the maintenance of Warburg effect in pancreatic cancer. Acta Biochim. Biophys. Sin. 2017, 49, 119–127. [Google Scholar] [CrossRef]
- Liu, W.; Jing Cheng, J. LINC00974 sponges miR-33a to facilitate cell proliferation, invasion, and EMT of ovarian cancer through HMGB2 upregulation. Genet. Mol. Biol. 2022, 45, e20210224. [Google Scholar] [CrossRef]
- Lou, N.; Zhu, T.; Qin, D.; Tian, J.; Liu, J. High-mobility group box 2 reflects exacerbated disease characteristics and poor prognosis in non-small cell lung cancer patients. Ir. J. Med. Sci. 2022, 191, 155–162. [Google Scholar] [CrossRef]
- Li, S.D.; Yang, J.M.; Xia, Y.; Fan, Q.X.; Yang, K.-P. Long Noncoding RNA NEAT1 Promotes Proliferation and Invasion via Targeting miR-181a-5p in Non-Small Cell Lung Cancer. Oncol. Res. 2018, 26, 289–296. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, X.; He, Y.; Ge, H. Systematic analysis of expression profiles of HMGB family members for prognostic application in non-small cell lung cancer. Front. Mol. Biosci. 2022, 9, 844618. [Google Scholar] [CrossRef]
- Qiu, X.; Liu, W.; Zheng, Y.; Zeng, K.; Wang, H.; Sun, H.; Dai, J. Identification of HMGB2 associated with proliferation, invasion and prognosis in lung adenocarcinoma via weighted gene co-expression network analysis. BMC Pulm. Med. 2022, 22, 310. [Google Scholar] [CrossRef]
- Lee, D.; Kwon, J.-H.; Kim, E.H.; Kim, E.-S.; Choi, K.Y. HMGB2 stabilizes p53 by interfering with E6/E6AP-mediated p53 degradation in human papillomavirus-positive HeLa cells. Cancer Lett. 2010, 292, 125–132. [Google Scholar] [CrossRef]
- An, Y.; Zhang, Z.; Shang, Y.; Jiang, X.; Dong, J.; Yu, P.; Nie, Y.; Zhao, Q. miR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death Dis. 2015, 6, e1766. [Google Scholar] [CrossRef]
Partners | Functions | |
---|---|---|
Nucleic Acids | ||
DNA | In the nucleus, HMGB2 acts as a DNA chaperone; it interacts within the DNA minor groove and bends DNA towards the major one. It shows high affinity and selectivity when binding to supercoiled plasmid DNA [86,87,88,89] (PDB code 2GZK, Figure 6A). Recognizes and preferentially binds to DNA regions with various structural damage: cruciform structures, B-Z cross structures, DNA minicircles, etc. [87,90,91]. Interacts with DNA regions modified by antitumor drugs, including cis-platinum (PDB code 1ckt, Figure 6B). When cell undergoes the aging process, HMGB2 causes the formation of “loops” along chromosomes via the same mechanism as that of the transcription factor CTCF (CCCTC binding factor). | Modulates DNA-dependent processes [8,13,92,93,94,95]. |
Binds to platinum adducts in genomic DNA and activate the repair system under the action of cisplatin [96,97,98,99,100] | ||
Changes in the structural organization of the genome [70,101]. | ||
RNA | HMGB boxes were detected in proteomic screens aimed at the comprehensive identification of RNA-binding domains in human cells [13,75]. | Plays an important regulatory role in the cell [102,103,104,105]. |
Transcription factors | ||
HMGB2 facilitates binding of transcription factors with DNA. | Formation of transient protein/protein contacts between transcription factors and the HMGB2 protein [42,46,47,48,106]. | |
Oct2, Oct1 and Oct6 | The formation of contacts between the HMGB domain of the protein and the POUh subdomain of Oct2 transcription factors. The interaction of HMGB2 with Oct1 and Oct6 was also demonstrated [46]. | An increase in DNA sequence-specific recognition by Oct2 proteins in vitro and an increase in its transcriptional activity in vivo [46]. |
Oct4 | It was shown that post-translational modifications of Oct4 directly affect the binding of the protein to HMGB2. | The existence of the Oct4-Akt-HMGB2 regulatory loop [47,48]. |
Lef1 | Notch1 is expressed during embryonic development of articular cartilage in a spatio-temporal pattern similar to that of HMGB2 [107], indicating the involvement of Notch in the formation of the Lef1-HMGB2 complex. The formation of a complex containing HMGB2, β-catenin, lymphoid enhancer-binding factor 1 (Lef1), and, probably, other components [69,108,109]. HMGB2 interacts with RUNX2 and Lef1 at the proximal Runx2 promoter containing the TCF/LEF motif. | An increase of the expression of genes containing Lef1 binding sites [69,107,108,109]. |
HMGB2 can bind to Lef1, as well as to RUNX2, repressing the activity of the Runx2 promoter [109] | ||
Other protein complexes | ||
Complex SET | HMGB2 is one of the components of the SET complex, which is associated with the endoplasmic reticulum. In addition to HMGB2, this complex includes three DNA nucleases (NME1, TREX1, and APEX1), two chromatin modifiers (SET and ANP32A) and the tumor suppressor protein pp32. It has been established that HMGB2 interacts directly with the SET protein. | This complex is involved in the processes of apoptosis and DNA repair, as well as in the response of cells to oxidative stress. HMGB2 can promote SET-associated nucleosome assembly [110,111,112] |
Nuclear complex | It has been shown in vivo that HMGB2 forms a multiprotein complex with HSC70, GRP58, and GAPD. | Influence on resistance to chemotherapeutic drugs in cancer patients, in particular, in ovarian cancer [75,113,114,115]. Altering DNA conformation. |
The nuclear complex of HMGB1, HMGB2, HSC70, GRP58, and GAPD alters DNA conformation [75,113,114,115]. | ||
HMGB1 | Interacts with its paralog, the non-histone protein HMGB1 [75]. | Functions are unknown. |
RAG1/2 recombinase | Interaction with RAG1/2 (PDB code 5ZDZ, Figure 8). | Enhancement of transcriptional and recombination activities of partner proteins during transient transfection into mammalian cells [75,116,117,118,119]. |
TNF and RANKL(TNFSF11) | HMGB2 and HMGB1 are required for the formation of osteoclasts. Interaction with the RANKL protein stimulates the HMGB1 and HMGB2 proteins to bind to the RANKL-sensitive sequence and enhances TNF transcription. | HMGB1/2 and TNF play a critical role in the regulation of osteoclastogenesis and bone remodeling [59,110,111,115]. |
p53, p73 and p21 | HMGB2 activates p53 or enhances Wnt/β-catenin signaling. HMGB2 may be involved in the regulation of p53 and MMP-2/TIMP2, leading to resistance to TMZ chemotherapy (PDB code 2LY4 Figure 9). | Promotes the binding of these proteins to DNA [49,51,120,121,122,123,124,125]. |
AKT signaling pathway | HMGB2 activates the AKT signaling pathway. | Proliferation of cervical carcinoma [50,126]. |
HP1α | HMGB2 binds to the promoter region of the SASP gene. | Preventing recruitment of the HP1α protein [123,127]. |
MIEN1 and NOP53 | The interaction of HMGB2 with proteins responsible for the survival of patients with ovarian cancer was shown on the SKOV-3 and PEO1 cell lines. | Suppression of HMGB2 leads to an increased sensitivity to anticancer drugs [70,104,128,129]. HMGB2 is regulator of cell migration and invasion and apoptosis [130]. |
CTCF proteins | Influence on expression of genes found in topologically associated domains (TADs). | HMGB2 modulate the global chromatin structure and and prevent clustering of CTCF proteins [70,131]. |
TBP | Interaction with TATA-binding protein. | Enhances the ability of this protein to interact with DNA [131]. |
Hox, Rep78 and Rep68 of adeno-associated virus | HMGB2 interacts with these proteins. | The increase in the binding of these proteins to DNA facilitates the formation of nucleoprotein complexes [131,132]. |
β-catenin | β-catenin and HMGB2 are characterized by colocalization and a similar change in expression levels. | The influence on embryonic development in all areas of the articular cartilage [133]. |
EBNA1 | EBNA1 (encoded by Epstein–Barr virus) binds to cellular chromatin during interphase and mitosis and interacts with HMGB2. | Influence on chromatin during interphase and mitosis [131]. |
NLRP3 | Interacts with a cytosolic protein NLRP3 that is involved in caspase activation. | Induces the production of illexi-pallierNF-kB dependent manner [134]. |
PDGFRα | Interaction with PDGFRα (platelet growth factor A receptor). | Overexpression of HMGB2 promotes adipogenesis and conversion of fat to skeletal muscle [135]. |
IGF2BP2 | The interaction of HMGB2 with IGF2BP2. | Plays an important role in skeletal muscle regeneration [62]. |
Alarmin | ||
RAGE | HMGB2 belongs to alarmins that recognize different types of receptors, including the glycosylation end products receptor [59]. | Recentl studies considered a role of this receptor in osteoporosis [59]. |
HMGB domain proteins bind with RAGE during intracellular signal transmission. HMGB1 and HMGB2 act on the RAGE receptor in osteoclast progenitors (multinuclear cells that degrade collagen and bone minerals) [59,136]. | HMGB/RAGE complex modulates cytokine expression and affects osteoclastogenesis in pathological conditions [59,136]. | |
Hormone receptors | ||
Steroid hormone receptors | HMGB2 can interact with estrogen, androgen and glucocorticoid and enhance their in vitro binding and transcriptional activity in mammalian cells [19,137,138,139]. | Plays an important role in the development of cancerous tumors, and steroid hormone signaling is important for normal spermatogenesis [19,137,138,139,140,141]. |
Extracellular HMGB2 can bind to these receptors and has an affinity for target receptors [142]. | Ability of HMGB2 to induce inflammation is relatively lower compared to that of HMGB1 [142]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starkova, T.; Polyanichko, A.; Tomilin, A.N.; Chikhirzhina, E. Structure and Functions of HMGB2 Protein. Int. J. Mol. Sci. 2023, 24, 8334. https://doi.org/10.3390/ijms24098334
Starkova T, Polyanichko A, Tomilin AN, Chikhirzhina E. Structure and Functions of HMGB2 Protein. International Journal of Molecular Sciences. 2023; 24(9):8334. https://doi.org/10.3390/ijms24098334
Chicago/Turabian StyleStarkova, Tatiana, Alexander Polyanichko, Alexey N. Tomilin, and Elena Chikhirzhina. 2023. "Structure and Functions of HMGB2 Protein" International Journal of Molecular Sciences 24, no. 9: 8334. https://doi.org/10.3390/ijms24098334
APA StyleStarkova, T., Polyanichko, A., Tomilin, A. N., & Chikhirzhina, E. (2023). Structure and Functions of HMGB2 Protein. International Journal of Molecular Sciences, 24(9), 8334. https://doi.org/10.3390/ijms24098334