An Unsupervised Classification Algorithm for Heterogeneous Cryo-EM Projection Images Based on Autoencoders
Abstract
:1. Introduction
- We propose an unsupervised classification algorithm for heterogeneous projection images based on autoencoders, which relies only on the information of the heterogeneous projection images themselves and does not require any other prior knowledge such as the projection orientations.
- We implement a multi-layer perceptron-based autoencoder and a residual network-based autoencoder to transform heterogeneous projection images into latent variables, which can automatically extract the category features of heterogeneous projection images.
- Compared to other heterogeneous projection image classification algorithms, the proposed algorithm has a broader application scope, faster computation speed, and stronger robustness.
2. Results and Discussion
2.1. Experimental Setup
2.2. Classification of Discrete Compositional Conformations
2.3. Classification of Conformations of the Bacterial Ribosome
2.4. Heterogeneous Cryo-EM 3D Reconstruction of the Bacterial Ribosome
3. Materials and Methods
3.1. General Framework of Heterogeneous 3D Reconstruction in Cryo-EM
- Step 1: Projection Image Preprocessing. To take advantage of the powerful image feature learning capability of the autoencoder model, the input projection image needs to undergo some preprocessing operations, including image downsampling and increasing the number of channels of the image. Image downsampling, that is, reducing the size of an image, is one of the basic operations in image processing, which can not only reduce the computational load of subsequent image processing algorithms, but also achieve preliminary denoising of images. In the proposed algorithm, the original heterogeneous projection images with a size of are downsampled to a size of . Moreover, increasing the number of channels of an image can effectively enhance its semantic information, which is also a fundamental operation in computer vision applications based on convolutional neural networks. For the AE-MLP model, the projection images still retain a single channel, while for the AE-RES model, the single-channel projection images are converted to three-channel images by twice replications.
- Step 2: Feature Extraction. The autoencoder model consists of an encoder network and a decoder network. The encoder network transforms the pre-processed projection images into latent variables in a latent space, while the decoder network converts these latent variables to generate images of the same size as the input images. A loss function is then computed based on the input and output images of the autoencoder model, and the error backpropagation algorithm is applied to train the autoencoder model to make the input and output of the autoencoder model as similar as possible by adjusting the network weights. After training the autoencoder model, the representation learning of heterogeneous projection images is achieved, and the category features of heterogeneous projection images are embedded into these latent variables of the autoencoder model.
- Step 3: Unsupervised Classification. This is a crucial step to achieve unsupervised classification of heterogeneous projection images, which consists of the following three key steps.
- −
- Step 3.1: Feature Dimensionality Reduction. In order to accommodate the performance of the autoencoder model, the dimensionality of the latent variables is usually greater than 2. Therefore, we use the UMAP dimensionality reduction algorithm [54] to reduce the dimensionality of the obtained latent variables to 2D, which can reduce redundant features and further aggregate the most important features, while providing convenience for visualizing the distribution of heterogeneous projection images in the feature space.
- −
- Step 3.2: Spectral Clustering. The spectral clustering algorithm [57,58] is one of the most commonly used high-performance clustering algorithms in pattern recognition. Therefore, we apply a normalized spectral clustering algorithm [65] to cluster the obtained 2D features. First, the Euclidean distance between these 2D features is computed as a distance matrix D, which is further converted into an adjacency matrix using a k-nearest neighbor (KNN) algorithm [66] and a shared nearest neighbor (SNN) algorithm [67]. Specifically, the matrix , which represents the number of shared nearest neighbors between 2D features of projection images i and j, is calculated as follows:
- −
- Step 3.3: Unsupervised Classification of Heterogeneous Projection Images. The adjacency matrix is used as the input of the normalized spectral clustering algorithm [65] to perform the unsupervised classification of heterogeneous projection images. Finally, the heterogeneous projection images are classified into homogeneous subsets according to the clustering results.
- Step 4: Heterogeneous 3D Reconstruction in Single-Particle Cryo-EM. After classifying the heterogeneous projection images into homogeneous projection image subsets, traditional single-particle 3D reconstruction methods such as RELION [23] and cryoSPARC [24] can be used to separately reconstruct the corresponding initial 3D structure in each classified homogeneous subset.
3.2. AE-MLP: Autoencoder Model Implemented by Multi-Layer Perceptrons
3.3. AE-RES: Autoencoder Model Implemented by Residual Networks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rout, M.P.; Sali, A. Principles for integrative structural biology studies. Cell 2019, 177, 1384–1403. [Google Scholar] [CrossRef]
- Callaway, E. Revolutionary cryo-EM is taking over structural biology. Nature 2020, 578, 201–202. [Google Scholar] [CrossRef]
- Saibil, H.R. Cryo-EM in molecular and cellular biology. Mol. Cell 2022, 82, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Namba, K.; Makino, F. Recent progress and future perspective of electron cryomicroscopy for structural life sciences. Microscopy 2022, 71, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.J.; Meyerowitz, J.G.; Skiniotis, G. Drug discovery in the era of cryo-electron microscopy. Trends Biochem. Sci. 2022, 47, 124–135. [Google Scholar] [CrossRef]
- Herzik, M.A., Jr. Cryo-electron microscopy reaches atomic resolution. Nature 2020, 587, 39–40. [Google Scholar] [CrossRef]
- Bai, X. Seeing atoms by single-particle cryo-EM. Trends Biochem. Sci. 2021, 46, 253–254. [Google Scholar] [CrossRef]
- Fréchin, L.; Holvec, S.; von Loeffelholz, O.; Hazemann, I.; Klaholz, B.P. High-resolution cryo-EM performance comparison of two latest-generation cryo electron microscopes on the human ribosome. J. Struct. Biol. 2023, 215, 107905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zou, S.; Yin, D.; Zhao, L.; Finley, D.; Wu, Z.; Mao, Y. USP14-regulated allostery of the human proteasome by time-resolved cryo-EM. Nature 2022, 602, 567–574. [Google Scholar] [CrossRef]
- Han, Z.; Yuan, W.; Xiao, H.; Wang, L.; Zhang, J.; Peng, Y.; Cheng, L.; Liu, H.; Huang, L. Structural insights into a spindle-shaped archaeal virus with a sevenfold symmetrical tail. Proc. Natl. Acad. Sci. USA 2022, 119, e2119439119. [Google Scholar] [CrossRef] [PubMed]
- Vilas, J.L.; Carazo, J.M.; Sorzano, C.O.S. Emerging themes in cryoEM single particle analysis image processing. Chem. Rev. 2022, 122, 13915–13951. [Google Scholar] [CrossRef] [PubMed]
- Guaita, M.; Watters, S.C.; Loerch, S. Recent advances and current trends in cryo-electron microscopy. Curr. Opin. Struct. Biol. 2022, 77, 102484. [Google Scholar] [CrossRef] [PubMed]
- Chua, E.Y.; Mendez, J.H.; Rapp, M.; Ilca, S.L.; Tan, Y.Z.; Maruthi, K.; Kuang, H.; Zimanyi, C.M.; Cheng, A.; Eng, E.T.; et al. Better, faster, cheaper: Recent advances in cryo-electron microscopy. Annu. Rev. Biochem. 2022, 91, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, Y.; Lu, Z.; Ran, X.; Liu, J. A weighted voting algorithm for detecting reliable common lines in single particle Cryo-EM. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2019), San Diego, CA, USA, 18–21 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 98–101. [Google Scholar]
- Wang, X.; Lu, Y.; Liu, J. A fast image alignment approach for 2D classification of cryo-EM images using spectral clustering. Curr. Issues Mol. Biol. 2021, 43, 1652–1668. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, J.; Zhu, L.; Zhang, B.; He, J. 3D reconstruction from cryo-EM projection images using two spherical embeddings. Commun. Biol. 2022, 5, 304. [Google Scholar] [CrossRef]
- Poitevin, F.; Kushner, A.; Li, X.; Dao Duc, K. Structural heterogeneities of the ribosome: New frontiers and opportunities for cryo-EM. Molecules 2020, 25, 4262. [Google Scholar] [CrossRef]
- Ganser, L.R.; Kelly, M.L.; Herschlag, D.; Al-Hashimi, H.M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 2019, 20, 474–489. [Google Scholar] [CrossRef]
- Mäeots, M.E.; Enchev, R.I. Structural dynamics: Review of time-resolved cryo-EM. Acta Crystallogr. Sect. D: Struct. Biol. 2022, 78, 927–935. [Google Scholar] [CrossRef]
- DeVore, K.; Chiu, P.L. Probing structural perturbation of biomolecules by extracting cryo-EM data heterogeneity. Biomolecules 2022, 12, 628. [Google Scholar] [CrossRef]
- Bendory, T.; Bartesaghi, A.; Singer, A. Single-particle cryo-electron microscopy: Mathematical theory, computational challenges, and opportunities. IEEE Signal Process. Mag. 2020, 37, 58–76. [Google Scholar] [CrossRef]
- Singer, A.; Sigworth, F.J. Computational methods for single-particle electron cryomicroscopy. Annu. Rev. Biomed. Data Sci. 2020, 3, 163–190. [Google Scholar] [CrossRef] [PubMed]
- Kimanius, D.; Dong, L.; Sharov, G.; Nakane, T.; Scheres, S.H. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J. 2021, 478, 4169–4185. [Google Scholar] [CrossRef] [PubMed]
- Punjani, A.; Rubinstein, J.L.; Fleet, D.J.; Brubaker, M.A. CryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 2017, 14, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cantara, W.; Jeon, Y.; Musier-Forsyth, K.; Grigorieff, N.; Lyumkis, D. Analysis of discrete local variability and structural covariance in macromolecular assemblies using Cryo-EM and focused classification. Ultramicroscopy 2019, 203, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Moebel, E.; Kervrann, C. Towards unsupervised classification of macromolecular complexes in cryo electron tomography: Challenges and opportunities. Comput. Methods Programs Biomed. 2022, 225, 107017. [Google Scholar] [CrossRef]
- Jonić, S. Cryo-electron microscopy analysis of structurally heterogeneous macromolecular complexes. Comput. Struct. Biotechnol. J. 2016, 14, 385–390. [Google Scholar] [CrossRef]
- Jonić, S. Computational methods for analyzing conformational variability of macromolecular complexes from cryo-electron microscopy images. Curr. Opin. Struct. Biol. 2017, 43, 114–121. [Google Scholar] [CrossRef]
- Serna, M. Hands on methods for high resolution cryo-electron microscopy structures of heterogeneous macromolecular complexes. Front. Mol. Biosci. 2019, 6, 33. [Google Scholar] [CrossRef]
- Gao, H.; Valle, M.; Ehrenberg, M.; Frank, J. Dynamics of EF-G interaction with the ribosome explored by classification of a heterogeneous cryo-EM dataset. J. Struct. Biol. 2004, 147, 283–290. [Google Scholar] [CrossRef]
- Lukoyanova, N.; Kondos, S.C.; Farabella, I.; Law, R.H.P.; Reboul, C.F.; Caradoc-Davies, T.T.; Spicer, B.A.; Kleifeld, O.; Traore, D.A.; Ekkel, S.M.; et al. Conformational changes during pore formation by the perforin-related protein pleurotolysin. PLoS Biol. 2015, 13, e1002049. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y. Heterogeneous cryo-EM projection image classification based on common lines. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2021), Houston, TX, USA, 9–12 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 163–166. [Google Scholar]
- Wang, X.; Lu, Y.; Lin, X. Heterogeneous cryo-EM projection image classification using a two-stage spectral clustering based on novel distance measures. Briefings Bioinform. 2022, 23, bbac032. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ma, Y.B.; Congdon, C.; Brett, B.; Chen, S.; Xu, Y.; Ouyang, Q.; Mao, Y. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning. PLoS ONE 2017, 12, e0182130. [Google Scholar] [CrossRef] [PubMed]
- Pothula, K.R.; Smyrnova, D.; Schröder, G.F. Clustering cryo-EM images of helical protein polymers for helical reconstructions. Ultramicroscopy 2019, 203, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, E.J.; Zhou, Y.; Horton, A.P.; Mallam, A.L.; Taylor, D.W.; Marcotte, E.M. Separating distinct structures of multiple macromolecular assemblies from cryo-EM projections. J. Struct. Biol. 2020, 209, 107416. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Blanco, J.; Kaur, S.; Strauss, M.; Vargas, J. Hierarchical autoclassification of cryo-EM samples and macromolecular energy landscape determination. Comput. Methods Programs Biomed. 2022, 216, 106673. [Google Scholar] [CrossRef]
- Sorzano, C.O.S.; Semchonok, D.; Lin, S.C.; Lo, Y.C.; Vilas, J.L.; Jiménez-Moreno, A.; Gragera, M.; Vacca, S.; Maluenda, D.; Martínez, M.; et al. Algorithmic robustness to preferred orientations in single particle analysis by cryoEM. J. Struct. Biol. 2021, 213, 107695. [Google Scholar] [CrossRef]
- Sorzano, C.O.S.; Jiménez-Moreno, A.; Maluenda, D.; Martinez, M.; Ramirez-Aportela, E.; Krieger, J.; Melero, R.; Cuervo, A.; Conesa, J.; Filipovic, J.; et al. On bias, variance, overfitting, gold standard and consensus in single-particle analysis by cryo-electron microscopy. Acta Crystallogr. Sect. D: Struct. Biol. 2022, 78, 410–423. [Google Scholar] [CrossRef]
- Si, D.; Nakamura, A.; Tang, R.; Guan, H.; Hou, J.; Firozi, A.; Cao, R.; Hippe, K.; Zhao, M. Artificial intelligence advances for de novo molecular structure modeling in cryo-electron microscopy. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1542. [Google Scholar] [CrossRef]
- Wu, J.; Yan, Y.; Zhang, D.; Liu, B.; Zheng, Q.; Xie, X.; Liu, S.Q.; Ge, S.X.; Hou, Z.G.; Xia, N.S. Machine learning for structure determination in single-particle cryo-electron microscopy: A systematic review. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 452–472. [Google Scholar] [CrossRef]
- Greener, J.G.; Kandathil, S.M.; Moffat, L.; Jones, D.T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2022, 23, 40–55. [Google Scholar] [CrossRef]
- Treder, K.P.; Huang, C.; Kim, J.S.; Kirkland, A.I. Applications of deep learning in electron microscopy. Microscopy 2022, 71, 100–115. [Google Scholar] [CrossRef] [PubMed]
- Donnat, C.; Levy, A.; Poitevin, F.; Zhong, E.D.; Miolane, N. Deep generative modeling for volume reconstruction in cryo-electron microscopy. J. Struct. Biol. 2022, 214, 107920. [Google Scholar] [CrossRef] [PubMed]
- Zhong, E.D.; Bepler, T.; Berger, B.; Davis, J.H. CryoDRGN: Reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 2021, 18, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Zhong, E.D.; Lerer, A.; Davis, J.H.; Berger, B. CryoDRGN2: Ab initio neural reconstruction of 3D protein structures from real cryo-EM images. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV 2021), Montreal, QC, Canada, 10–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4066–4075. [Google Scholar]
- Kinman, L.F.; Powell, B.M.; Zhong, E.D.; Berger, B.; Davis, J.H. Uncovering structural ensembles from single-particle cryo-EM data using cryoDRGN. Nat. Protoc. 2022, 18, 319–339. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Ludtke, S.J. Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM. Nat. Methods 2021, 18, 930–936. [Google Scholar] [CrossRef]
- Grant, T. Neural networks learn the motions of molecular machines. Nat. Methods 2021, 18, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zeng, X.; Xu, M.; Zhang, F. FSCC: Few-shot learning for macromolecule classification based on contrastive learning and distribution calibration in cryo-electron tomography. Front. Mol. Biosci. 2022, 9, 931949. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y.; Li, J.; Zhang, Z. Unsupervised heterogeneous cryo-EM projection image classification using autoencoder. In Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2022), Las Vegas, NV, USA, 6–8 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 3520–3527. [Google Scholar]
- Ozyildirim, B.M.; Avci, M. One pass learning for generalized classifier neural network. Neural Netw. 2016, 73, 70–76. [Google Scholar] [CrossRef]
- Hou, C.; Zhou, Z. One-pass learning with incremental and decremental features. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2776–2792. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Becht, E.; McInnes, L.; Healy, J.; Dutertre, C.A.; Kwok, I.W.; Ng, L.G.; Ginhoux, F.; Newell, E.W. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 2019, 37, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Dorrity, M.W.; Saunders, L.M.; Queitsch, C.; Fields, S.; Trapnell, C. Dimensionality reduction by UMAP to visualize physical and genetic interactions. Nat. Commun. 2020, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395–416. [Google Scholar] [CrossRef]
- Ran, X.; Xi, Y.; Lu, Y.; Wang, X.; Lu, Z. Comprehensive survey on hierarchical clustering algorithms and the recent developments. Artif. Intell. Rev.
- Vonesch, C.; Wang, L.; Shkolnisky, Y.; Singer, A. Fast wavelet-based single-particle reconstruction in cryo-EM. In Proceedings of the 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2011), Chicago, IL, USA, 30 March–2 April 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1950–1953. [Google Scholar]
- van Heel, M.; Schatz, M. Fourier shell correlation threshold criteria. J. Struct. Biol. 2005, 151, 250–262. [Google Scholar] [CrossRef]
- Goddard, T.D.; Huang, C.C.; Meng, E.C.; Pettersen, E.F.; Couch, G.S.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 2018, 27, 14–25. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef]
- Ramrath, D.J.; Niemann, M.; Leibundgut, M.; Bieri, P.; Prange, C.; Horn, E.K.; Leitner, A.; Boehringer, D.; Schneider, A.; Ban, N. Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science 2018, 362, eaau7735. [Google Scholar] [CrossRef]
- Davis, J.H.; Tan, Y.Z.; Carragher, B.; Potter, C.S.; Lyumkis, D.; Williamson, J.R. Modular assembly of the bacterial large ribosomal subunit. Cell 2016, 167, 1610–1622.e15. [Google Scholar] [CrossRef]
- Ng, A.Y.; Jordan, M.I.; Weiss, Y. On spectral clustering: Analysis and an algorithm. In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2002), Vancouver, BC, Canada, 9–14 December 2002; MIT Press: Cambridge, MA, USA, 2002; pp. 849–856. [Google Scholar]
- Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A brief review of nearest neighbor algorithm for learning and classification. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS 2019), Madurai, India, 15–17 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1255–1260. [Google Scholar]
- Ye, X.; Sakurai, T. Spectral clustering using robust similarity measure based on closeness of shared nearest neighbors. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN 2015), Killarney, Ireland, 12–17 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–8. [Google Scholar]
- Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef]
Parameters | AE-MLP | AE-RES |
---|---|---|
Dimensionality of Latent Variables | 8 | 4096 |
Maximum Learning Epoch | 500 | 1 |
Batch Size | 32 | 32 |
Optimizer | SGD | SGD |
Learning Rate | 0.001 | 0.001 |
Methods | EMD-0230 | EMD-0230 | EMD-0230 | Mean |
---|---|---|---|---|
AE-MLP | 100.00% | 100.00% | 100.00% | 100.00% |
AE-RES | 100.00% | 100.00% | 100.00% | 100.00% |
Original Images | 93.40% | 100.00% | 94.60% | 96.00% |
Methods | EMD-8440 | EMD-8441 | EMD-8445 | EMD-8450 | Mean |
---|---|---|---|---|---|
AE-MLP | 75.00% | 60.40% | 34.80% | 60.20% | 57.60% |
AE-RES | 98.00% | 53.20% | 37.40% | 80.40% | 67.25% |
Original Images | 30.80% | 26.00% | 21.80% | 29.00% | 26.90% |
Methods | EMD-8440 | EMD-8441 | EMD-8445 | EMD-8450 |
---|---|---|---|---|
Ground Truth | 500 | 500 | 500 | 500 |
AE-MLP | 478 | 676 | 401 | 445 |
AE-RES | 569 | 499 | 462 | 470 |
Original Images | 580 | 507 | 406 | 507 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Lu, Y.; Lin, X.; Li, J.; Zhang, Z. An Unsupervised Classification Algorithm for Heterogeneous Cryo-EM Projection Images Based on Autoencoders. Int. J. Mol. Sci. 2023, 24, 8380. https://doi.org/10.3390/ijms24098380
Wang X, Lu Y, Lin X, Li J, Zhang Z. An Unsupervised Classification Algorithm for Heterogeneous Cryo-EM Projection Images Based on Autoencoders. International Journal of Molecular Sciences. 2023; 24(9):8380. https://doi.org/10.3390/ijms24098380
Chicago/Turabian StyleWang, Xiangwen, Yonggang Lu, Xianghong Lin, Jianwei Li, and Zequn Zhang. 2023. "An Unsupervised Classification Algorithm for Heterogeneous Cryo-EM Projection Images Based on Autoencoders" International Journal of Molecular Sciences 24, no. 9: 8380. https://doi.org/10.3390/ijms24098380
APA StyleWang, X., Lu, Y., Lin, X., Li, J., & Zhang, Z. (2023). An Unsupervised Classification Algorithm for Heterogeneous Cryo-EM Projection Images Based on Autoencoders. International Journal of Molecular Sciences, 24(9), 8380. https://doi.org/10.3390/ijms24098380