Pathogenic Variants of SLC22A12 (URAT1) and SLC2A9 (GLUT9) in Spanish Patients with Renal Hypouricemia: Founder Effect of SLC2A9 Variant c.374C>T; p.(T125M)
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of Patients
2.2. Genetic Variants Identified in Patients with RHUC
2.3. Haplotype Construction of Patients with Recurrent SLC2A9 Variant c.374C>T
3. Discussion
4. Patients and Methods
4.1. Patients
4.2. Mutation Analysis
4.3. In Silico Analysis of Variants
4.4. Protein Modeling
4.5. Haplotype Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halperin Kuhns, V.L.; Woodward, O.M. Urate Transport in Health and Disease. Best Pract. Res. Clin. Rheumatol. 2021, 35, 101717. [Google Scholar] [CrossRef] [PubMed]
- Bobulescu, I.A.; Moe, O.W. Renal Transport of Uric Acid: Evolving Concepts and Uncertainties. Adv. Chronic Kidney Dis. 2012, 19, 358–371. [Google Scholar] [CrossRef]
- Hakoda, M.; Ichida, K. Genetic Basis of the Epidemiological Features and Clinical Significance of Renal Hypouricemia. Biomedicines 2022, 10, 1696. [Google Scholar] [CrossRef] [PubMed]
- Ichida, K.; Hosoyamada, M.; Hisatome, I.; Enomoto, A.; Hikita, M.; Endou, H.; Hosoya, T. Clinical and Molecular Analysis of Patients with Renal Hypouricemia in Japan-Influence of URAT1 Gene on Urinary Urate Excretion. J. Am. Soc. Nephrol. 2004, 15, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Cheong, H.I.; Kang, J.H.; Lee, J.H.; Ha, I.S.; Kim, S.; Komoda, F.; Sekine, T.; Igarashi, T.; Choi, Y. Mutational Analysis of Idiopathic Renal Hypouricemia in Korea. Pediatr. Nephrol. 2005, 20, 886–890. [Google Scholar] [CrossRef]
- Dinour, D.; Gray, N.K.; Campbell, S.; Shu, X.; Sawyer, L.; Richardson, W.; Rechavi, G.; Amariglio, N.; Ganon, L.; Sela, B.-A.; et al. Homozygous SLC2A9 Mutations Cause Severe Renal Hypouricemia. J. Am. Soc. Nephrol. 2010, 21, 64–72. [Google Scholar] [CrossRef]
- Stiburkova, B.; Taylor, J.; Marinaki, A.M.; Sebesta, I. Acute Kidney Injury in Two Children Caused by Renal Hypouricaemia Type 2. Pediatr. Nephrol. 2012, 27, 1411–1415. [Google Scholar] [CrossRef]
- Shen, H.; Feng, C.; Jin, X.; Mao, J.; Fu, H.; Gu, W.; Liu, A.; Shu, Q.; Du, L. Recurrent Exercise-Induced Acute Kidney Injury by Idiopathic Renal Hypouricemia with a Novel Mutation in the SLC2A9 Gene and Literature Review. BMC Pediatr. 2014, 14, 73. [Google Scholar] [CrossRef]
- Claverie-Martin, F.; Trujillo-Suarez, J.; Gonzalez-Acosta, H.; Aparicio, C.; Justa Roldan, M.L.; Stiburkova, B.; Ichida, K.; Martín-Gomez, M.A.; Herrero Goñi, M.; Carrasco Hidalgo-Barquero, M.; et al. URAT1 and GLUT9 Mutations in Spanish Patients with Renal Hypouricemia. Clin. Chim. Acta 2018, 481, 83–89. [Google Scholar] [CrossRef]
- Nakayama, A.; Matsuo, H.; Ohtahara, A.; Ogino, K.; Hakoda, M.; Hamada, T.; Hosoyamada, M.; Yamaguchi, S.; Hisatome, I.; Ichida, K.; et al. Clinical Practice Guideline for Renal Hypouricemia (1st Edition). Hum. Cell 2019, 32, 83–87. [Google Scholar] [CrossRef]
- Enomoto, A.; Kimura, H.; Chairoungdua, A.; Shigeta, Y.; Jutabha, P.; Ho Cha, S.; Hosoyamada, M.; Takeda, M.; Sekine, T.; Igarashi, T.; et al. Molecular Identification of a Renal Urate–Anion Exchanger That Regulates Blood Urate Levels. Nature 2002, 417, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Anzai, N.; Ichida, K.; Jutabha, P.; Kimura, T.; Babu, E.; Jin, C.J.; Srivastava, S.; Kitamura, K.; Hisatome, I.; Endou, H.; et al. Plasma Urate Level Is Directly Regulated by a Voltage-Driven Urate Efflux Transporter URATv1 (SLC2A9) in Humans. J. Biol. Chem. 2008, 283, 26834–26838. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, M.J.; Munroe, P.B.; O’Neill, D.; Witkowska, K.; Charchar, F.J.; Doblado, M.; Evans, S.; Eyheramendy, S.; Onipinla, A.; Howard, P.; et al. SLC2A9 Is a High-Capacity Urate Transporter in Humans. PLoS Med. 2008, 5, e197. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, H.; Chiba, T.; Nagamori, S.; Nakayama, A.; Domoto, H.; Phetdee, K.; Wiriyasermkul, P.; Kikuchi, Y.; Oda, T.; Nishiyama, J.; et al. Mutations in Glucose Transporter 9 Gene SLC2A9 Cause Renal Hypouricemia. Am. J. Hum. Genet. 2008, 83, 744–751. [Google Scholar] [CrossRef]
- Witkowska, K.; Smith, K.M.; Yao, S.Y.M.; Ng, A.M.L.; O’Neill, D.; Karpinski, E.; Young, J.D.; Cheeseman, C.I. Human SLC2A9a and SLC2A9b Isoforms Mediate Electrogenic Transport of Urate with Different Characteristics in the Presence of Hexoses. Am. J. Physiol. Renal Physiol. 2012, 303, F527–F539. [Google Scholar] [CrossRef]
- Vitart, V.; Rudan, I.; Hayward, C.; Gray, N.K.; Floyd, J.; Palmer, C.N.A.; Knott, S.A.; Kolcic, I.; Polasek, O.; Graessler, J.; et al. SLC2A9 Is a Newly Identified Urate Transporter Influencing Serum Urate Concentration, Urate Excretion and Gout. Nat. Genet. 2008, 40, 437–442. [Google Scholar] [CrossRef]
- Phay, J.E.; Hussain, H.B.; Moley, J.F. Cloning and Expression Analysis of a Novel Member of the Facilitative Glucose Transporter Family, SLC2A9 (GLUT9). Genomics 2000, 66, 217–220. [Google Scholar] [CrossRef]
- Clémençon, B.; Lüscher, B.P.; Fine, M.; Baumann, M.U.; Surbek, D.V.; Bonny, O.; Hediger, M.A. Expression, Purification, and Structural Insights for the Human Uric Acid Transporter, GLUT9, Using the Xenopus Laevis Oocytes System. PLoS ONE 2014, 9, e108852. [Google Scholar] [CrossRef]
- Augustin, R.; Carayannopoulos, M.O.; Dowd, L.O.; Phay, J.E.; Moley, J.F.; Moley, K.H. Identification and Characterization of Human Glucose Transporter-like Protein-9 (GLUT9). J. Biol. Chem. 2004, 279, 16229–16236. [Google Scholar] [CrossRef]
- Kimura, T.; Takahashi, M.; Yan, K.; Sakurai, H. Expression of SLC2A9 Isoforms in the Kidney and Their Localization in Polarized Epithelial Cells. PLoS ONE 2014, 9, e84996. [Google Scholar] [CrossRef]
- Iwai, N.; Mino, Y.; Hosoyamada, M.; Tago, N.; Kokubo, Y.; Endou, H. A High Prevalence of Renal Hypouricemia Caused by Inactive SLC22A12 in Japanese. Kidney Int. 2004, 66, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Stiburkova, B.; Sebesta, I.; Ichida, K.; Nakamura, M.; Hulkova, H.; Krylov, V.; Kryspinova, L.; Jahnova, H. Novel Allelic Variants and Evidence for a Prevalent Mutation in URAT1 Causing Renal Hypouricemia: Biochemical, Genetics and Functional Analysis. Eur. J. Hum. Genet. 2013, 21, 1067–1073. [Google Scholar] [CrossRef]
- Komoda, F.; Sekine, T.; Inatomi, J.; Enomoto, A.; Endou, H.; Ota, T.; Matsuyama, T.; Ogata, T.; Ikeda, M.; Awazu, M.; et al. The W258X Mutation in SLC22A12 Is the Predominant Cause of Japanese Renal Hypouricemia. Pediatr. Nephrol. 2004, 19, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Ichida, K.; Hosoyamada, M.; Kamatani, N.; Kamitsuji, S.; Hisatome, I.; Shibasaki, T.; Hosoya, T. Age and Origin of the G774A Mutation in SLC22A12 Causing Renal Hypouricemia in Japanese. Clin. Genet. 2008, 74, 243–251. [Google Scholar] [CrossRef]
- Dinour, D.; Gray, N.K.; Ganon, L.; Knox, A.J.S.; Shalev, H.; Sela, B.-A.; Campbell, S.; Sawyer, L.; Shu, X.; Valsamidou, E.; et al. Two Novel Homozygous SLC2A9 Mutations Cause Renal Hypouricemia Type 2. Nephrol. Dial. Transplant. 2011, 27, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Tasic, V.; Hynes, A.M.; Kitamura, K.; Cheong, H.I.; Lozanovski, V.J.; Gucev, Z.; Jutabha, P.; Anzai, N.; Sayer, J.A. Clinical and Functional Characterization of URAT1 Variants. PLoS ONE 2011, 6, e28641. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ding, H.; Chen, C.; Chen, Y.; Wang, D.W.; Lv, Y. Novel URAT1 Mutations Caused Acute Renal Failure after Exercise in Two Chinese Families with Renal Hypouricemia. Gene 2013, 512, 97–101. [Google Scholar] [CrossRef]
- Jeannin, G.; Chiarelli, N.; Gaggiotti, M.; Ritelli, M.; Maiorca, P.; Quinzani, S.; Verzeletti, F.; Possenti, S.; Colombi, M.; Cancarini, G. Recurrent Exercise-Induced Acute Renal Failure in a Young Pakistani Man with Severe Renal Hypouricemia and SLC2A9 compound Heterozygosity. BMC Med. Genet. 2014, 15, 3. [Google Scholar] [CrossRef]
- Androvitsanea, A.; Stylianou, K.; Maragkaki, E.; Tzanakakis, M.; Stratakis, S.; Petrakis, I.; Giatzakis, C.; Daphnis, E. Vanishing Urate, Acute Kidney Injury Episodes and a Homozygous SLC2A9 Mutation. Int. Urol. Nephrol. 2015, 47, 1035–1036. [Google Scholar] [CrossRef]
- Windpessl, M.; Ritelli, M.; Wallner, M.; Colombi, M. A Novel Homozygous SLC2A9 Mutation Associated with Renal-Induced Hypouricemia. Am. J. Nephrol. 2016, 43, 245–250. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, L.; Zhou, J.; Song, Z.; Zhang, J.; Wang, K.; Chen, B.; Pan, D.; Li, Z.; Li, C.; et al. Renal Hypouricemia Caused by Novel Compound Heterozygous Mutations in the SLC22A12 Gene: A Case Report with Literature Review. BMC Med. Genet. 2018, 19, 142. [Google Scholar] [CrossRef] [PubMed]
- Stiburkova, B.; Gabrikova, D.; Čepek, P.; Šimek, P.; Kristian, P.; Cordoba-Lanus, E.; Claverie-Martin, F. Prevalence of URAT1 Allelic Variants in the Roma Population. Nucleosides Nucleotides Nucleic Acids 2016, 35, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Peris Vidal, A.; Marin Serra, J.; Lucas Sáez, E.; Ferrando Monleón, S.; Claverie-Martin, F.; Perdomo Ramírez, A.; Trujillo-Suarez, J.; Fons Moreno, J. Hipouricemia Renal Hereditaria Tipo 1 Y 2 En Tres Niños Españoles. Revisión de Casos Pediátricos Publicados. Nefrología 2019, 39, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Stiburkova, B.; Bohatá, J.; Pavelcová, K.; Tasic, V.; Plaseska-Karanfilska, D.; Cho, S.-K.; Potočnaková, L.; Šaligová, J. Renal Hypouricemia 1: Rare Disorder as Common Disease in Eastern Slovakia Roma Population. Biomedicines 2021, 9, 1607. [Google Scholar] [CrossRef] [PubMed]
- Gabrikova, D.; Bernasovska, J.; Sokolova, J.; Stiburkova, B. High Frequency of SLC22A12 Variants Causing Renal Hypouricemia 1 in the Czech and Slovak Roma Population; Simple and Rapid Detection Method by Allele-Specific Polymerase Chain Reaction. Urolithiasis 2015, 43, 441–445. [Google Scholar] [CrossRef]
- Mendizabal, I.; Lao, O.; Marigorta, U.M.; Wollstein, A.; Gusmão, L.; Ferak, V.; Ioana, M.; Jordanova, A.; Kaneva, R.; Kouvatsi, A.; et al. Reconstructing the Population History of European Romani from Genome-Wide Data. Curr. Biol. 2012, 22, 2342–2349. [Google Scholar] [CrossRef] [PubMed]
- Morar, B.; Gresham, D.; Angelicheva, D.; Tournev, I.; Gooding, R.; Guergueltcheva, V.; Schmidt, C.; Abicht, A.; Lochmüller, H.; Tordai, A.; et al. Mutation History of the Roma/Gypsies. Am. J. Hum. Genet. 2004, 75, 596–609. [Google Scholar] [CrossRef]
- Martínez-Cruz, B.; Mendizabal, I.; Harmant, C.; de Pablo, R.; Ioana, M.; Angelicheva, D.; Kouvatsi, A.; Makukh, H.; Netea, M.G.; Pamjav, H.; et al. Origins, Admixture and Founder Lineages in European Roma. Eur. J. Hum. Genet. 2015, 24, 937–943. [Google Scholar] [CrossRef]
- Ruiz, A.; Gautschi, I.; Schild, L.; Bonny, O. Human Mutations in SLC2A9 (Glut9) Affect Transport Capacity for Urate. Front. Physiol. 2018, 9, 476. [Google Scholar] [CrossRef]
- Kawamura, Y.; Matsuo, H.; Chiba, T.; Nagamori, S.; Nakayama, A.; Inoue, H.; Utsumi, Y.; Oda, T.; Nishiyama, J.; Kanai, Y.; et al. Pathogenic GLUT9 Mutations Causing Renal Hypouricemia Type 2 (RHUC2). Nucleosides Nucleotides Nucleic Acids 2011, 30, 1105–1111. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Estiverne, C.; Mandal, A.K.; Mount, D.B. Molecular Pathophysiology of Uric Acid Homeostasis. Semin. Nephrol. 2020, 40, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, H.; Fan, Y.; Yu, Z.; You, G. Regulation of organic anion transporters: Role in physiology, pathophysiology, and drug elimination. Pharmacol. Ther. 2021, 217, 107647. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.K.; Leask, M.P.; Estiverne, C.; Choi, H.K.; Merriman, T.R.; Mount, D.B. Genetic and Physiological Effects of Insulin on Human Urate Homeostasis. Front. Physiol. 2021, 12, 713710. [Google Scholar] [CrossRef]
- Mandal, A.K.; Leask, M.P.; Sumpter, N.A.; Choi, H.K.; Merriman, T.R.; Mount, D.B. Genetic and Physiological Effects of Insulin-Like Growth Factor-1 (IGF-1) on Human Urate Homeostasis. J. Am. Soc. Nephrol. 2023, 34, 451–466. [Google Scholar] [CrossRef] [PubMed]
- Anzai, N.; Miyazaki, H.; Noshiro, R.; Khamdang, S.; Chairoungdua, A.; Shin, H.J.; Enomoto, A.; Sakamoto, S.; Hirata, T.; Tomita, K.; et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J. Biol. Chem. 2004, 279, 45942–45950. [Google Scholar] [CrossRef]
- Cunningham, R.; Brazie, M.; Kanumuru, S.; Xiaofei, E.; Biswas, R.; Wang, F.; Steplock, D.; Wade, J.B.; Anzai, N.; Endou, H.; et al. Sodium-hydrogen exchanger regulatory factor-1 interacts with mouse urate transporter 1 to regulate renal proximal tubule uric acid transport. J. Am. Soc. Nephrol. 2007, 18, 1419–1425. [Google Scholar] [CrossRef]
- Toyoda, Y.; Cho, S.K.; Tasic, V.; Pavelcová, K.; Bohatá, J.; Suzuki, H.; David, V.A.; Yoon, J.; Pallaiova, A.; Šaligová, J.; et al. Identification of a Dysfunctional Exon-Skipping Splice Variant in GLUT9/SLC2A9 Causal for Renal Hypouricemia Type 2. Front. Genet. 2023, 13, 1048330. [Google Scholar] [CrossRef]
- Melammed, R.L.; Jane, S. Gerber. The Jews of Spain: A History of the Sephardic Experience. New York: Free Press, 1992. Xxv, 333 pp. AJS Rev. 1995, 20, 219–222. [Google Scholar] [CrossRef]
- Adams, S.M.; Bosch, E.; Balaresque, P.L.; Ballereau, S.J.; Lee, A.C.; Arroyo, E.; López-Parra, A.M.; Aler, M.; Grifo, M.S.G.; Brion, M.; et al. The Genetic Legacy of Religious Diversity and Intolerance: Paternal Lineages of Christians, Jews, and Muslims in the Iberian Peninsula. Am. J. Hum. Genet. 2008, 83, 725–736. [Google Scholar] [CrossRef]
- Mandal, A.K.; Mount, D.B. The Molecular Physiology of Uric Acid Homeostasis. Annu. Rev. Physiol. 2015, 77, 323–345. [Google Scholar] [CrossRef] [PubMed]
- Dinour, D.; Bahn, A.; Ganon, L.; Ron, R.; Geifman-Holtzman, O.; Knecht, A.; Gafter, U.; Rachamimov, R.; Sela, B.-A.; Burckhardt, G.; et al. URAT1 Mutations Cause Renal Hypouricemia Type 1 in Iraqi Jews. Nephrol. Dial. Transplant. 2010, 26, 2175–2181. [Google Scholar] [CrossRef] [PubMed]
- Schürmann, A.; Doege, H.; Ohnimus, H.; Monser, V.; Buchs, A.; Joost, H.-G. Role of Conserved Arginine and Glutamate Residues on the Cytosolic Surface of Glucose Transporters for Transporter Function. Biochemistry 1997, 36, 12897–12902. [Google Scholar] [CrossRef] [PubMed]
- Holman, G.D. Structure, Function and Regulation of Mammalian Glucose Transporters of the SLC2 Family. Pflug. Arch. 2020, 472, 1155–1175. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- The 1000 Genomes Project Consortium; Auton, A.; Brooks, L.; Durbin, R.; Garrison, E.; Kang, H.; Korbel, J.; Marchini, J.; McCarthy, S.; McVean, S.; et al. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Hoover, J.; et al. ClinVar: Public Archive of Interpretations of Clinically Relevant Variants. Nucleic Acids Res. 2015, 44, D862–D868. [Google Scholar] [CrossRef]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Shaw, K.; Phillips, A.D.; Cooper, D.N. The Human Gene Mutation Database: Building a Comprehensive Mutation Repository for Clinical and Molecular Genetics, Diagnostic Testing and Personalized Genomic Medicine. Hum Genet. 2013, 133, 1–9. [Google Scholar] [CrossRef]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The Human Genomic Variant Search Engine. Bioinformatics 2018, 35, 1978–1980. [Google Scholar] [CrossRef]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and Sequence Analysis Tools Services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef]
Patient/ Family | Gender | Age (Years) | SUA (mg/mL) | FE UA (%) | SCrea (mg/dL) | Renal Symptoms | Ethnicity | SLC22A12 Mutation | SLC2A9 Mutation |
---|---|---|---|---|---|---|---|---|---|
P20/F14 | M | 4 | 1.70 | 26 | 0.34 | - | Caucasic | - | p.T125M |
- | - | ||||||||
P21/F15 | F | 13 | 0.12 | 190 | 0.49 | - | Caucasic | - | p.T125M p.T125M |
- | |||||||||
p.T125M | M | 16 | 0.14 | 170 | 0.54 | - | Caucasic | - | |
- | |||||||||
p.T125M | F | 18 | 0.80 | 22 | 0.50 | UTI | Roma | p.T467M | - |
p.T467M | - | ||||||||
P24/F16 | F | 43 | 0.90 | 37 | 0.66 | NL | Roma | p.T467M | - |
p.T467M | - | ||||||||
P25/F17 | F | 6 | 1.90 | 19 | 0.60 | - | Caucasic | - | p.T125M |
- | - | ||||||||
P26/F18 | M | 4 | 1.10 | 28 | 0.29 | - | Roma | p.T467M | - |
p.T467M | - | ||||||||
P27/F19 | M | 13 | 1.40 | 38 | 0.86 | NS | Roma | p.T467M | - |
p.T467M | - | ||||||||
P28/F19 | M | 3 | 1.30 | 37 | 0.39 | - | Roma | p.T467M | - |
p.T467M | - | ||||||||
P29/F20 | F | 69 | 0.90 | 41 | 0.84 | - | Caucasic | - | p.T125M |
- | p.T125M | ||||||||
P30/F21 | F | 55 | 1.2 * | 48 * | 0.80 * | RPGN | Roma | p.T467M | - |
p.T467M | - | ||||||||
P31/F22 | M | 18 | 1.00 ** | 61 # | 0.77 ** | EIARF | Roma | p.T467M | - |
p.L415_G417del | - | ||||||||
P32/F23 | M | 8 | 1.10 | 22 | 0.35 | - | Unknown | - | p.T125M |
- | - | ||||||||
P33/F24 | M | 7 | 0.4 | 45 | 0.39 | Renal scar | Caucasic | - | p.T125M |
- | p.L75R | ||||||||
P34/F25 | F | 0.5 | 1.56 | 24 | 0.22 | - | Caucasic | - | p.T125M |
- | - | ||||||||
P35/F26 | M | 5 | 0.95 | 25 | 0.35 | UF | Roma | p.T467M | - |
p.T467M | - | ||||||||
P36/F27 | M | 7 | 1.10 | 41 | 0.35 | - | Roma | p.T467M | - |
p.T467M | - | ||||||||
P37/F28 | F | 5 | 1.00 | 39 | 0.47 | - | Caucasic | - | p.T125M |
- | - | ||||||||
P38/F29 | M | 2 | 1.10 | 46 | 0.29 | - | Caucasic | - | p.R198H |
- | - | ||||||||
P39/F30 | F | 11 | 0.70 | 57 | 0.49 | - | Roma | p.T467M | - |
p.T467M | - | ||||||||
P40/F31 | M | 8 | 1.40 | 28 | 0.45 | UF | Caucasic | - | p.T125M |
- | - |
SNP1_ 9934286 | SNP2_ 9964756 | SNP3_ 9990331 | Mutation c.374C>T_ 9996817 | SNP4_ 9998612 | SNP5_ 10011839 | SNP6_ 10018108 | Total (%) | Controls (%) | Patients (%) | |
---|---|---|---|---|---|---|---|---|---|---|
1 | G | A | C | T | G | T | C | 0.5 | NA | 0.694 |
2 | G | G | C | C | G | T | C | 0.2 | 0.429 | 0.111 |
3 | A | A | T | C | T | T | C | 0.14 | 0.286 | 0.083 |
4 | A | A | C | C | G | A | T | 0.08 | 0.214 | 0.009 |
5 | G | A | C | C | G | A | T | 0.04 | NA | 0.056 |
6 | G | G | C | T | G | T | C | 0.02 | NA | 0.028 |
7 | G | G | C | C | G | A | T | 0.02 | 0.071 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perdomo-Ramirez, A.; Cordoba-Lanus, E.; Trujillo-Frias, C.J.; Gonzalez-Navasa, C.; Ramos-Trujillo, E.; Luis-Yanes, M.I.; Garcia-Nieto, V.; Claverie-Martin, F., on behalf of the RenalTube. Pathogenic Variants of SLC22A12 (URAT1) and SLC2A9 (GLUT9) in Spanish Patients with Renal Hypouricemia: Founder Effect of SLC2A9 Variant c.374C>T; p.(T125M). Int. J. Mol. Sci. 2023, 24, 8455. https://doi.org/10.3390/ijms24098455
Perdomo-Ramirez A, Cordoba-Lanus E, Trujillo-Frias CJ, Gonzalez-Navasa C, Ramos-Trujillo E, Luis-Yanes MI, Garcia-Nieto V, Claverie-Martin F on behalf of the RenalTube. Pathogenic Variants of SLC22A12 (URAT1) and SLC2A9 (GLUT9) in Spanish Patients with Renal Hypouricemia: Founder Effect of SLC2A9 Variant c.374C>T; p.(T125M). International Journal of Molecular Sciences. 2023; 24(9):8455. https://doi.org/10.3390/ijms24098455
Chicago/Turabian StylePerdomo-Ramirez, Ana, Elizabeth Cordoba-Lanus, Carmen Jane Trujillo-Frias, Carolina Gonzalez-Navasa, Elena Ramos-Trujillo, Maria Isabel Luis-Yanes, Victor Garcia-Nieto, and Felix Claverie-Martin on behalf of the RenalTube. 2023. "Pathogenic Variants of SLC22A12 (URAT1) and SLC2A9 (GLUT9) in Spanish Patients with Renal Hypouricemia: Founder Effect of SLC2A9 Variant c.374C>T; p.(T125M)" International Journal of Molecular Sciences 24, no. 9: 8455. https://doi.org/10.3390/ijms24098455
APA StylePerdomo-Ramirez, A., Cordoba-Lanus, E., Trujillo-Frias, C. J., Gonzalez-Navasa, C., Ramos-Trujillo, E., Luis-Yanes, M. I., Garcia-Nieto, V., & Claverie-Martin, F., on behalf of the RenalTube. (2023). Pathogenic Variants of SLC22A12 (URAT1) and SLC2A9 (GLUT9) in Spanish Patients with Renal Hypouricemia: Founder Effect of SLC2A9 Variant c.374C>T; p.(T125M). International Journal of Molecular Sciences, 24(9), 8455. https://doi.org/10.3390/ijms24098455