Zebrafish (Danio rerio) as a Model for the Study of Developmental and Cardiovascular Toxicity of Electronic Cigarettes
Abstract
:1. Introduction
2. E-Cigarettes in Smoking Cessation and Harm Reduction
Compound | Adverse Effects and References |
---|---|
Nicotine | Brain maturation disruptions and cardiovascular abnormalities [30,31,32] |
Propylene glycol | Respiratory issues and asthma [26] |
Carbonyl compounds (acetaldehydes and formaldehyde) | Carcinogenic effects, mouth irritation and throat irritation [26,37] |
Diacetyl and acetyl propionyl | ‘Popcorn lung’ disease [33,34] |
Butter-flavoring diacetyl | Inflammation and bronchiole scarring [42] |
cinnamaldehyde and vanillin-flavoring | Promote oxidative stress and cytokine release [42,43] |
3. Zebrafish as a Versatile Model for Health Research
4. Zebrafish as an Insightful Model for Cardiovascular Research
Stage | Description | Significance and References |
---|---|---|
Early cardiac morphogenesis | Bilateral cardiac progenitor cells fuse to form a linear heart tube within 24 h post-fertilization (hpf). | Crucial initial step in heart development. Similarities to human aid study [79]. |
Chamber formation and looping | Remodelling from 24 to 48 hpf forms distinct chambers, and looping results in a single-looped heart. | Key stage for atrium and ventricle differentiation [80]. |
Valve development | Atrioventricular and bulboventricular valves develop and mature around 48 hpf. | Critical for regulating blood flow and potential insights into valve defects [81]. |
Onset of blood circulation | Blood circulation starts at 48 hpf as the heart beats, delivering oxygen and nutrients. | Foundation of nutrient transport, tissue development [82,83]. |
Later development and heart maturation | Further maturation occurs between 72 to 96 hpf, resulting in a fully developed atrium and ventricle with functional valves. | Increasing heart rate, organized blood flow [84]. |
Adult heart structure | Adult zebrafish heart has two chambers; atrium and ventricle. Atrium serves as a common chamber. | Unique structure compared to humans; fundamental processes conserved [85,86]. |
Transparency and genetic manipulation | Transparent embryos allow live imaging and genetic manipulation for studying gene roles and signaling pathways. | Powerful tool for cardiovascular research. Insights into gene functions [87,88,89]. |
Relevance to human cardiovascular research | Similarities aid understanding congenital heart defects, potential therapies, regenerative strategies. | Translational implications for human cardiovascular diseases and repair [63,86,90]. |
5. Exploring E-Cigarette Effects on Zebrafish: Innovative Exposure Methods for Cardiovascular and Developmental Assessments
- Whole-body exposure: Researchers utilize a custom-built exposure chamber to expose adult zebrafish to e-cigarette aerosols in a whole-body setup. This study assesses cardiovascular parameters and examines gene expression effects [91].
6. Effects of E-Cigarette Exposure during Pregnancy and on Newborns
6.1. Fetal Growth and Structural Abnormalities
6.2. Respiratory and Cardiovascular Effects
6.3. Neurobehavioral and Developmental Impacts
6.4. Renal System Concerns
7. Cellular and Molecular Mechanisms of E-Cigarette Toxicity in Zebrafish
Mechanism | Description |
---|---|
Oxidative stress and inflammation | E-cigarette aerosols induce oxidative stress and activate inflammatory pathways in zebrafish tissues [105,106,107]. |
DNA damage and apoptosis | E-cigarette exposure leads to DNA damage and programmed cell death (apoptosis) in zebrafish embryos [108,109,110]. |
Disrupted developmental signaling pathways | E-cigarette exposure disrupts critical developmental signaling pathways like Wnt and Notch, affecting organ development [111,112,113,114,115,116]. |
Gene expression changes | E-cigarette exposure alters gene expression profiles (bcl2, casp8, hsp70, Cbsa) in zebrafish, affecting various cellular processes [57,114,117,118,119,120]. |
Impaired cell function and differentiation | E-cigarette exposure impairs cellular functions (cardiovascular system, bone, vascular, and cartilage development) and differentiation, impacting tissue maturation and organogenesis [94,109,121]. |
8. Comparison of E-Cigarette Impacts: Zebrafish vs. Human Studies
8.1. Cardiovascular Effects
8.2. Respiratory Effects
8.3. Neurobehavioral Effects
8.4. Cellular and Molecular Mechanisms
9. Pushing the Boundaries of E-Cigarette Research with Zebrafish Models
9.1. Organ-on-a-Chip Technology
9.2. Single-Cell RNA Sequencing
9.3. Gene Editing Technologies (CRISPR-Cas9)
9.4. Real-Time Imaging Techniques
9.5. High-Resolution Mass Spectrometry
9.6. Longitudinal Studies
9.7. Multi-Omics Approaches and Behavioral Profiling
10. Challenges and Limitations in Utilizing Zebrafish as a Model for E-Cigarette Toxicity Research
10.1. Variability in Anatomy, Physiology, and Metabolism
10.2. Waterborne Exposure vs. Inhalation
10.3. Dose Discrepancies
10.4. Developmental Timing and Short Lifespan
10.5. Behavioral Assessments and Cognitive Functions
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- West, R.; Shiffman, S. Fast Facts: Smoking Cessation; Karger Medical and Scientific Publishers: Basel, Switzerland, 2016. [Google Scholar]
- US Department of Health and Human Services. Reducing Tobacco Use: A Report of the Surgeon General; Department of Health and Human Services, Centers for Disease: Atlanta, GA, USA, 2020.
- Hayano, J.; Yamada, M.; Sakakibara, Y.; Fujinami, T.; Yokoyama, K.; Watanabe, Y.; Takata, K. Short- and long-term effects of cigarette smoking on heart rate variability. Am. J. Cardiol. 1990, 65, 84–88. [Google Scholar] [CrossRef]
- Bonnie, R.J.; Stratton, K.; Kwan, L.Y. The Effects of Tobacco Use on Health, in Public Health Implications of Raising the Minimum Age of Legal Access to Tobacco Products; National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Department of Health and Human Services, Centers for Disease. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General; Department of Health and Human Services, Centers for Disease: Atlanta, GA, USA, 2014.
- Gallucci, G.; Tartarone, A.; Lerose, R.; Lalinga, A.V.; Capobianco, A.M. Cardiovascular risk of smoking and benefits of smoking cessation. J. Thorac. Dis. 2020, 12, 3866–3876. [Google Scholar] [CrossRef]
- Shea, A.K.; Steiner, M. Cigarette smoking during pregnancy. Nicotine Tob. Res. 2008, 10, 267–278. [Google Scholar] [CrossRef]
- Proctor, R.N. The history of the discovery of the cigarette-lung cancer link: Evidentiary traditions, corporate denial, global toll. Tob. Control 2012, 21, 87–91. [Google Scholar] [CrossRef]
- Rubin, H. Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: A bio-historical perspective with updates. Carcinogenesis 2001, 22, 1903–1930. [Google Scholar] [CrossRef]
- Behr, J.; Nowak, D. Tobacco smoke and respiratory disease. World 2002, 58, 1–20. [Google Scholar]
- Marques, P.; Piqueras, L.; Sanz, M.-J. An updated overview of e-cigarette impact on human health. Respir. Res. 2021, 22, 151. [Google Scholar] [CrossRef]
- Baeza-Loya, S.; Viswanath, H.; Carter, A.; Molfese, D.L.; Velasquez, K.M.; Baldwin, P.R.; Thompson-Lake, D.G.Y.; Sharp, C.; Fowler, J.C.; De La Garza, R.; et al. Perceptions about e-cigarette safety may lead to e-smoking during pregnancy. Bull. Menn. Clin. 2014, 78, 243–252. [Google Scholar] [CrossRef]
- Hughes, A.; Hendrickson, R.G. An epidemiologic and clinical description of e-cigarette toxicity. Clin. Toxicol. 2019, 57, 287–293. [Google Scholar] [CrossRef]
- Merecz-Sadowska, A.; Sitarek, P.; Zielinska-Blizniewska, H.; Malinowska, K.; Zajdel, K.; Zakonnik, L.; Zajdel, R. A summary of in vitro and in vivo studies evaluating the impact of e-cigarette exposure on living organisms and the environment. Int. J. Mol. Sci. 2020, 21, 652. [Google Scholar] [CrossRef]
- Yamin, C.K.; Bitton, A.; Bates, D.W. E-Cigarettes: A rapidly growing internet phenomenon. Ann. Intern. Med. 2010, 153, 607–609. [Google Scholar] [CrossRef]
- Williams, R.J.; Knight, R. Insights in public health: Electronic cigarettes: Marketing to Hawai’i’s adolescents. Hawaii J. Med. Public Health 2015, 74, 66–70. [Google Scholar]
- Drummond, M.B.; Upson, D. Electronic cigarettes. Potential harms and benefits. Ann. Am. Thorac. Soc. 2014, 11, 236–242. [Google Scholar] [CrossRef]
- National Institutes of Health. Vaping Devices (Electronic Cigarettes) Drug Facts; National Institutes of Health: Bethesda, MD, USA, 2021.
- Uguna, C.N.; Snape, C.E. Should IQOS Emissions be considered as smoke and harmful to health? A review of the chemical evidence. ACS Omega 2022, 7, 22111–22124. [Google Scholar] [CrossRef]
- Traboulsi, H.; Cherian, M.; Rjeili, M.A.; Preteroti, M.; Bourbeau, J.; Smith, B.M.; Eidelman, D.H.; Baglole, C.J. Inhalation toxicology of vaping products and implications for pulmonary health. Int. J. Mol. Sci. 2020, 21, 3495. [Google Scholar] [CrossRef]
- Kaisar, M.A.; Prasad, S.; Liles, T.; Cucullo, L. A decade of e-cigarettes: Limited research & unresolved safety concerns. Toxicology 2016, 365, 67–75. [Google Scholar] [CrossRef]
- Murthy, V.H. E-cigarette use among youth and young adults: A major public health concern. JAMA Pediatr. 2017, 171, 209–210. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Bu, F.-L.; Dong, F.; Wang, J.-H.; Zhu, S.-J.; Zhang, X.-W.; Robinson, N.; Liu, J.-P. The effect of e-cigarettes on smoking cessation and cigarette smoking initiation: An evidence-based rapid review and meta-analysis. Tob. Induc. Dis. 2021, 19, 04. [Google Scholar] [CrossRef]
- Kalkhoran, S.; Chang, Y.; Rigotti, N.A. E-cigarettes and Smoking Cessation in Smokers With Chronic Conditions. Am. J. Prev. Med. 2019, 57, 786–791. [Google Scholar] [CrossRef]
- Brown, R.; Bauld, L.; de Lacy, E.; Hallingberg, B.; Maynard, O.; McKell, J.; Moore, L.; Moore, G. A qualitative study of e-cigarette emergence and the potential for renormalisation of smoking in UK youth. Int. J. Drug Policy 2020, 75, 102598. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Public Health Consequences of E-Cigarettes; National Academies Press: Washington, DC, USA, 2018. [Google Scholar]
- Cheng, T. Chemical evaluation of electronic cigarettes. Tob. Control 2014, 23 (Suppl. S2), ii11–ii17. [Google Scholar] [CrossRef]
- Strongin, R.M. E-cigarette chemistry and analytical detection. Annu. Rev. Anal. Chem. 2019, 12, 23–39. [Google Scholar] [CrossRef]
- Varlet, V. Drug vaping: From the dangers of misuse to new therapeutic devices. Toxics 2016, 4, 29. [Google Scholar] [CrossRef]
- Ernst, M.; Moolchan, E.T.; Robinson, M.L. Behavioral and neural consequences of prenatal exposure to nicotine. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 630–641. [Google Scholar] [CrossRef]
- Goriounova, N.A.; Mansvelder, H.D. Short- and long-term consequences of nicotine exposure during adolescence for prefrontal cortex neuronal network function. Cold Spring Harb. Perspect. Med. 2012, 2, a012120. [Google Scholar] [CrossRef]
- Ren, M.; Lotfipour, S.; Leslie, F. Unique effects of nicotine across the lifespan. Pharmacol. Biochem. Behav. 2022, 214, 173343. [Google Scholar] [CrossRef]
- Klager, S.; Vallarino, J.; MacNaughton, P.; Christiani, D.C.; Lu, Q.; Allen, J.G. Flavoring chemicals and aldehydes in e-cigarette emissions. Environ. Sci. Technol. 2017, 51, 10806–10813. [Google Scholar] [CrossRef]
- Taylor, A.; Dunn, K.; Turfus, S. A review of nicotine-containing electronic cigarettes—Trends in use, effects, contents, labelling accuracy and detection methods. Drug Test. Anal. 2021, 13, 242–260. [Google Scholar] [CrossRef]
- Hahn, J.; Monakhova, Y.B.; Hengen, J.; Kohl-Himmelseher, M.; Schüssler, J.; Hahn, H.; Kuballa, T.; Lachenmeier, D.W. Electronic cigarettes: Overview of chemical composition and exposure estimation. Tob. Induc. Dis. 2014, 12, 23. [Google Scholar] [CrossRef]
- Zucchet, A.; Schmaltz, G. Electronic cigarettes—A review of the physiological health effects. Facets 2017, 2, 575–609. [Google Scholar] [CrossRef]
- Goniewicz, M.L.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jablonska-Czapla, M.; Rosik-Dulewska, C.; Havel, C.; et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 2014, 23, 133–139. [Google Scholar] [CrossRef]
- Smith, M.J.; MacKintosh, A.M.; Ford, A.; Hilton, S. Youth’s engagement and perceptions of disposable e-cigarettes: A UK focus group study. BMJ Open 2023, 13, e068466. [Google Scholar] [CrossRef]
- Katz, S.J.; Erkinnen, M.; Lindgren, B.; Hatsukami, D. Beliefs about E-cigarettes: A Focus Group Study with College Students. Am. J. Health Behav. 2019, 43, 76–87. [Google Scholar] [CrossRef]
- Dyer, M.L.; Khouja, J.N.; Jackson, A.R.; A Havill, M.; Dockrell, M.J.; Munafo, M.R.; Attwood, A.S. Effects of electronic cigarette e-liquid flavouring on cigarette craving. Tob. Control 2023, 32, e3–e9. [Google Scholar] [CrossRef]
- Crespi, E.; Hardesty, J.J.; Nian, Q.; Sinamo, J.; Welding, K.; Cohen, J.E.; Kennedy, R.D. Device and liquid characteristics used with sweet, menthol/mint, and tobacco ENDS liquid flavors: The population-based VAPER study. Addict. Behav. 2023, 144, 107727. [Google Scholar] [CrossRef]
- Allen, J.G.; Flanigan, S.S.; LeBlanc, M.; Vallarino, J.; MacNaughton, P.; Stewart, J.H.; Christiani, D.C. Flavoring chemicals in e-cigarettes: Diacetyl, 2,3-pentanedione, and acetoin in a sample of 51 products, including fruit-, candy-, and cocktail-flavored e-cigarettes. Environ. Health Perspect. 2016, 124, 733–739. [Google Scholar] [CrossRef]
- Morris, A.M.; Leonard, S.S.; Fowles, J.R.; Boots, T.E.; Mnatsakanova, A.; Attfield, K.R. Effects of e-cigarette flavoring chemicals on human macrophages and bronchial epithelial cells. Int. J. Environ. Res. Public Health 2021, 18, 11107. [Google Scholar] [CrossRef]
- Brown, J.; Beard, E.; Kotz, D.; Michie, S.; West, R. Real-world effectiveness of e-cigarettes when used to aid smoking cessation: A cross-sectional population study. Addiction 2014, 109, 1531–1540. [Google Scholar] [CrossRef]
- Ghosh, S.; Drummond, M.B. Electronic cigarettes as smoking cessation tool: Are we there? Current opinion in pulmonary. Medicine 2017, 23, 111. [Google Scholar]
- Polosa, R.; Caponnetto, P.; Morjaria, J.B.; Papale, G.; Campagna, D.; Russo, C. Effect of an electronic nicotine delivery device (e-Cigarette) on smoking reduction and cessation: A prospective 6-month pilot study. BMC Public Health 2011, 11, 786. [Google Scholar] [CrossRef]
- Barbeau, A.M.; Burda, J.; Siegel, M. Perceived efficacy of e-cigarettes versus nicotine replacement therapy among successful e-cigarette users: A qualitative approach. Addict. Sci. Clin. Pr. 2013, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Bullen, C.; Howe, C.; Laugesen, M.; McRobbie, H.; Parag, V.; Williman, J.; Walker, N. Electronic cigarettes for smoking cessation: A randomised controlled trial. Lancet 2013, 382, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Kröger, C.B.; Ofner, S.; Piontek, D. Use of E-cigarettes as an additional tool in a smoking cessation group intervention: Results after 12 months. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 2018, 61, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Van Norman, G.A. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Is it Time to Rethink Our Current Approach? JACC Basic Transl. Sci. 2019, 4, 845–854. [Google Scholar] [CrossRef]
- Hayes, A.W.; Muriana, A.; Alzualde, A.; Fernandez, D.B.; Iskandar, A.; Peitsch, M.C.; Kuczaj, A.; Hoeng, J. Alternatives to Animal Use in Risk Assessment of Mixtures. Int. J. Toxicol. 2020, 39, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, Z.Z.; Benslimane, F.M.; Nasrallah, G.K.; Shurbaji, S.; Younes, N.N.; Mraiche, F.; Da’as, S.I.; Yalcin, H.C. Using Zebrafish for Investigating the Molecular Mechanisms of Drug-Induced Cardiotoxicity. BioMed. Res. Int. 2018, 2018, 1642684. [Google Scholar] [CrossRef]
- Bailone, R.L.; Fukushima, H.C.S.; Ventura Fernandes, B.H.; De Aguiar, L.K.; Corrêa, T.; Janke, H.; Grejo Setti, P.; Roça, R.D.O.; Borra, R.C. Zebrafish as an alternative animal model in human and animal vaccination research. Lab. Anim. Res. 2020, 36, 13. [Google Scholar] [CrossRef]
- Sarvaiya, V.N.; Sadariya, K.A.; Rana, M.P.; Thaker, A.M. Zebrafish as model organism for drug discovery and toxicity testing: A review. Vet. Clin. Sci. 2014, 2, 31–38. [Google Scholar]
- Zhao, Y.; Zhang, K.; Sips, P.; MacRae, C.A. Screening drugs for myocardial disease in vivo with Zebrafish: An expert update. Expert Opin. Drug Discov. 2019, 14, 343–353. [Google Scholar] [CrossRef]
- Chahardehi, A.; Arsad, H.; Lim, V. Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. Plants 2020, 9, 1345. [Google Scholar] [CrossRef]
- Ellis, L.D.; Soo, E.C.; Achenbach, J.C.; Morash, M.G.; Soanes, K.H. Use of the zebrafish larvae as a model to study cigarette smoke condensate toxicity. PLoS ONE 2014, 9, e115305. [Google Scholar] [CrossRef]
- Klee, E.W.; Ebbert, J.O.; Schneider, H.; Hurt, R.D.; Ekker, S.C. Zebrafish for the study of the biological effects of nicotine. Nicotine Tob. Res. 2011, 13, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Borrego-Soto, G.; Eberhart, J.K. Embryonic nicotine exposure disrupts adult social behavior and craniofacial development in Zebrafish. Toxics 2022, 10, 612. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; Oliveri, A.; Levin, E.D. Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Res. Part C Embryo Today Rev. 2013, 99, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Karmach, O.; Madrid, J.V.; Dasgupta, S.; Volz, D.C.; Nieden, N.I.Z. Embryonic Exposure to Cigarette Smoke Extract Impedes Skeletal Development and Evokes Craniofacial Defects in Zebrafish. Int. J. Mol. Sci. 2022, 23, 9904. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.E.; Fontana, B.D.; Bertoncello, K.T.; Franscescon, F.; Mezzomo, N.J.; Canzian, J.; Stefanello, F.V.; Parker, M.O.; Gerlai, R.; Rosemberg, D.B. Understanding the neurobiological effects of drug abuse: Lessons from zebrafish models. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 100, 109873. [Google Scholar] [CrossRef]
- Giardoglou, P.; Beis, D. On Zebrafish Disease Models and Matters of the Heart. Biomedicines 2019, 7, 15. [Google Scholar] [CrossRef]
- Zhang, B.; Radisic, M. Organ-on-a-chip devices advance to market. Lab Chip 2017, 17, 2395–2420. [Google Scholar] [CrossRef]
- Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med. 2022, 12, e694. [Google Scholar] [CrossRef]
- Yu, J.; Cheng, W.; Jia, M.; Chen, L.; Gu, C.; Ren, H.-Q.; Wu, B. Toxicity of perfluorooctanoic acid on zebrafish early embryonic development determined by single-cell RNA sequencing. J. Hazard. Mater. 2021, 427, 127888. [Google Scholar] [CrossRef]
- Patton, E.E.; Zon, L.I.; Langenau, D.M. Zebrafish disease models in drug discovery: From preclinical modelling to clinical trials. Nat. Rev. Drug Discov. 2021, 20, 611–628. [Google Scholar] [CrossRef] [PubMed]
- MacRae, C.A.; Peterson, R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 2015, 14, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Gut, P.; Reischauer, S.; Stainier, D.Y.R.; Arnaout, R. Little fish, big data: Zebrafish as a model for cardiovascular and metabolic disease. Physiol. Rev. 2017, 97, 889–938. [Google Scholar] [CrossRef] [PubMed]
- Gauvrit, S.; Bossaer, J.; Lee, J.; Collins, M.M. Modeling human cardiac arrhythmias: Insights from zebrafish. J. Cardiovasc. Dev. Dis. 2022, 9, 13. [Google Scholar] [CrossRef]
- González-Rosa, J.M. Zebrafish models of cardiac disease: From fortuitous mutants to precision medicine. Circ. Res. 2022, 130, 1803–1826. [Google Scholar] [CrossRef]
- Stewart, K.M.R.; Walker, S.L.; Baker, A.H.; Riley, P.R.; Brittan, M. Hooked on heart regeneration: The zebrafish guide to recovery. Cardiovasc. Res. 2022, 118, 1667–1679. [Google Scholar] [CrossRef]
- Sayers, J.R.; Riley, P.R. Heart regeneration: Beyond new muscle and vessels. Cardiovasc. Res. 2021, 117, 727–742. [Google Scholar] [CrossRef]
- Gemberling, M.; Bailey, T.J.; Hyde, D.R.; Poss, K.D. The zebrafish as a model for complex tissue regeneration. Trends Genet. 2013, 29, 611–620. [Google Scholar] [CrossRef]
- Galdos, F.X.; Guo, Y.; Paige, S.L.; VanDusen, N.J.; Wu, S.M.; Pu, W.T. Cardiac regeneration: Lessons from development. Circ. Res. 2017, 120, 941–959. [Google Scholar] [CrossRef]
- Brown, D.R.; Samsa, L.A.; Qian, L.; Liu, J. Advances in the study of heart development and disease using zebrafish. J. Cardiovasc. Dev. Dis. 2016, 3, 13. [Google Scholar] [CrossRef]
- Motta, B.M.; Pramstaller, P.P.; Hicks, A.A.; Rossini, A. The impact of CRISPR/Cas9 technology on cardiac research: From disease modelling to therapeutic approaches. Stem Cells Int. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Brock, A.; Goh, H.-T.; Yang, B.; Lu, Y.; Li, H.; Loh, Y.-H. Cellular reprogramming: A new technology frontier in pharmaceutical research. Pharm. Res. 2012, 29, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Stainier, D.Y.R.; Lee, R.K.; Fishman, M.C. Cardiovascular development in the Zebrafish I. Myocardial fate map and heart tube formation. Development 1993, 119, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Fishman, M.C.; Olson, E.N. Parsing the heart: Genetic modules for organ assembly. Cell 1997, 91, 153–156. [Google Scholar] [CrossRef]
- Thomas, B.; Kuo-Kuang, W.; Melissa, M.; Jihui, R.; Jonathan, A. Early myocardial function affects endocardial cushion development in Zebrafish. PLoS Biol. 2004, 2, e129. [Google Scholar]
- Trinh, L.A.; Stainier, D.Y. Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev. Cell 2004, 6, 371–382. [Google Scholar] [CrossRef]
- Quinlivan, V.H.; Farber, S.A. Lipid Uptake, Metabolism, and Transport in the Larval Zebrafish. Front. Endocrinol. 2017, 8, 319. [Google Scholar] [CrossRef]
- Stainier, D.Y.R. Zebrafish genetics and vertebrate heart formation. Nat. Rev. Genet. 2001, 2, 39–48. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Lu, Q.; Wang, Y.; Chen, J.-N. Zebrafish as a model for cardiovascular development and disease. Drug Discov. Today Dis. Model. 2008, 5, 135–140. [Google Scholar] [CrossRef]
- Bowley, G.; Kugler, E.; Wilkinson, R.; Lawrie, A.; van Eeden, F.; Chico, T.J.A.; Evans, P.C.; Noël, E.S.; Serbanovic-Canic, J. Zebrafish as a tractable model of human cardiovascular disease. Br. J. Pharmacol. 2021, 179, 900–917. [Google Scholar] [CrossRef]
- Lambrechts, D.; Carmeliet, P. Genetics in Zebrafish, mice, and humans to dissect congenital heart disease: Insights in the role of VEGF. Curr. Top. Dev. Biol. 2004, 62, 189–224. [Google Scholar] [PubMed]
- Bournele, D.; Beis, D. Zebrafish models of cardiovascular disease. Hear. Fail. Rev. 2016, 21, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Bakkers, J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 2011, 91, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Asnani, A.; Peterson, R.T. The ZZebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis. Models Mech. 2014, 7, 763–767. [Google Scholar] [CrossRef]
- Mills, A.; Dakhlallah, D.; Robinson, M.; Kirk, A.; Llavina, S.; Boyd, J.W.; Chantler, P.D.; Olfert, I.M. Short-term effects of electronic cigarettes on cerebrovascular function: A time course study. Exp. Physiol. 2022, 107, 994–1006. [Google Scholar] [CrossRef]
- Xing, X.; Kang, J.; Qiu, J.; Zhong, X.; Shi, X.; Zhou, B.; Wei, Y. Waterborne exposure to low concentrations of BDE-47 impedes early vascular development in zebrafish embryos/larvae. Aquat. Toxicol. 2018, 203, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Massarsky, A.; Abdel, A.; Glazer, L.; Levin, E.D.; Di Giulio, R.T. Exposure to 1, 2-propanediol impacts early development of Zebrafish (Danio rerio) and induces hyperactivity. Zebrafish 2017, 14, 216–222. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Narain, V.; Bondesson, M. E-cigarette vaping liquids and the flavoring chemical cinnamaldehyde perturb bone, cartilage and vascular development in zebrafish embryos. Aquat. Toxicol. 2021, 240, 105995. [Google Scholar] [CrossRef] [PubMed]
- Mescolo, F.; Ferrante, G.; La Grutta, S. Effects of E-Cigarette Exposure on Prenatal Life and Childhood Respiratory Health: A Review of Current Evidence. Front. Pediatr. 2021, 9, 711573. [Google Scholar] [CrossRef]
- Tehrani, H.; Rajabi, A.; Ghojogh, M.G.; Nejatian, M.; Jafari, A. The prevalence of electronic cigarettes vaping globally: A systematic review and meta-analysis. Arch. Public Health 2022, 80, 240. [Google Scholar] [CrossRef]
- Fallin, A.; Miller, A.; Assef, S.; Ashford, K. Perceptions of electronic cigarettes among medicaid-eligible pregnant and postpartum women. J. Obstet. Gynecol. Neonatal Nurs. 2016, 45, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lee, N.L.; Burstyn, I. Smoking and use of electronic cigarettes (vaping) in relation to preterm birth and small-for-gestational-age in a 2016 US national sample. Prev. Med. 2020, 134, 106041. [Google Scholar] [CrossRef] [PubMed]
- Niesłony, F.; Niesłony, D.; Mado, H. Electronic Cigarettes and Pregnancy-What Do We Currently Know? Electron. J. Gen. Med. 2022, 19, em341. [Google Scholar]
- Luck, W.; Nau, H.; Hansen, R.; Steldinger, R. Extent of nicotine and cotinine transfer to the human fetus, placenta and amniotic fluid of smoking mothers. Dev. Pharmacol. Ther. 1985, 8, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Sifat, A.E.; Nozohouri, S.; Villalba, H.; Al Shoyaib, A.; Vaidya, B.; Karamyan, V.T.; Abbruscato, T. Prenatal electronic cigarette exposure decreases brain glucose utilization and worsens outcome in offspring hypoxic–ischemic brain injury. J. Neurochem. 2020, 153, 63–79. [Google Scholar] [CrossRef]
- Church, J.S.; Chace-Donahue, F.; Blum, J.L.; Ratner, J.R.; Zelikoff, J.T.; Schwartzer, J.J. Neuroinflammatory and behavioral outcomes measured in adult offspring of mice exposed prenatally to e-cigarette aerosols. Environ. Health Perspect. 2020, 128, 47006. [Google Scholar] [CrossRef]
- Raja, A.; Zelikoff, J.T.; Jaimes, E.A. A contemporary review of nephrotoxicity and e-cigarette use. Curr. Opin. Toxicol. 2022, 31, 100361. [Google Scholar] [CrossRef]
- Li, G.; Chan, Y.L.; Nguyen, L.T.; Mak, C.; Zaky, A.; Anwer, A.G.; Shi, Y.; Nguyen, T.; Pollock, C.A.; Oliver, B.G.; et al. Impact of maternal e-cigarette vapor exposure on renal health in the offspring. Ann. N. Y. Acad. Sci. 2019, 1452, 65–77. [Google Scholar] [CrossRef]
- Noël, A.; Hossain, E.; Perveen, Z.; Zaman, H.; Penn, A.L. Sub-ohm vaping increases the levels of carbonyls, is cytotoxic, and alters gene expression in human bronchial epithelial cells exposed at the air–liquid interface. Respir. Res. 2020, 21, 1–20. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Chen, J.; Liu, P.; Li, M. A review of toxicity mechanism studies of electronic cigarettes on respiratory system. Int. J. Mol. Sci. 2022, 23, 5030. [Google Scholar] [CrossRef]
- Onyenwoke, R.U.; Leung, T.; Huang, X.; Parker, D.; Shipman, J.G.; Alhadyan, S.K.; Sivaraman, V. An assessment of vaping-induced inflammation and toxicity: A feasibility study using a 2-stage zebrafish and mouse platform. Food Chem. Toxicol. 2022, 163, 112923. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, B. Are E-Cigarettes Safe? A Study of the Effects of E-Cigarette Vaping Liquids on Zebrafish. Ph.D. Thesis, Indiana University, Bloomington, IN, USA, 2022. [Google Scholar]
- Ribeiro, T.X.S. The Impact of E-Cigarette Aerosols in Lung Development. Master’s Thesis, University of Minho, Braga, Portugal, 2018. [Google Scholar]
- Rowell, T.R.; Tarran, R. Will chronic e-cigarette use cause lung disease? Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 309, L1398–L1409. [Google Scholar] [CrossRef] [PubMed]
- Cerrizuela, S.; Vega-Lopez, G.A.; Aybar, M.J. The role of teratogens in neural crest development. Birth Defects Res. 2020, 112, 584–632. [Google Scholar] [CrossRef] [PubMed]
- Garland, M.A.; Reynolds, K.; Zhou, C.J. Environmental mechanisms of orofacial clefts. Birth Defects Res. 2020, 112, 1660–1698. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, Y.; Chen, Y.; Yue, C.; Chen, J.; Tong, J.; Jiang, Y.; Chen, T. Crosstalk between AhR and wnt/β-catenin signal pathways in the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Toxicology 2016, 355–356, 31–38. [Google Scholar] [CrossRef]
- Palpant, N.J.; Hofsteen, P.; Pabon, L.; Reinecke, H.; Murry, C.E. Cardiac development in ZZebrafish and human embryonic stem cells is inhibited by exposure to tobacco cigarettes and e-cigarettes. PLoS ONE 2015, 10, e0126259. [Google Scholar] [CrossRef]
- Sarmah, S.; Marrs, J.A. Zebrafish as a vertebrate model system to evaluate effects of environmental toxicants on cardiac development and function. Int. J. Mol. Sci. 2016, 17, 2123. [Google Scholar] [CrossRef]
- Hammer, B.; Wagner, C.; Rankov, A.D.; Reuter, S.; Bartel, S.; Hylkema, M.N.; Krüger, A.; Svanes, C.; Krauss-Etschmann, S. In utero exposure to cigarette smoke and effects across generations: A conference of animals on asthma. Clin. Exp. Allergy 2018, 48, 1378–1390. [Google Scholar] [CrossRef]
- Martin, E.M.; Clapp, P.W.; Rebuli, M.E.; Pawlak, E.A.; Glista-Baker, E.; Benowitz, N.L.; Fry, R.C.; Jaspers, I. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016, 311, L135–L144. [Google Scholar] [CrossRef]
- Espinoza-Derout, J.; Hasan, K.M.; Shao, X.M.; Jordan, M.C.; Sims, C.; Lee, D.L.; Sinha, S.; Simmons, Z.; Mtume, N.; Liu, Y.; et al. Chronic intermittent electronic cigarette exposure induces cardiac dysfunction and atherosclerosis in apolipoprotein-E knockout mice. Am. J. Physiol. Circ. Physiol. 2019, 317, H445–H459. [Google Scholar] [CrossRef]
- Orzabal, M.R.; Naik, V.D.; Lee, J.; Hillhouse, A.E.; Brashear, W.A.; Threadgill, D.W.; Ramadoss, J. Impact of E-cig aerosol vaping on fetal and neonatal respiratory development and function. Transl. Res. 2022, 246, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Song, M.-K.; Kim, D.I.; Lee, J.-K.; Jung, J.-W.; Lee, J.W.; Lee, K. Comparative study of lung toxicity of E-cigarette ingredients to investigate E-cigarette or vaping product associated lung injury. J. Hazard. Mater. 2023, 445, 130454. [Google Scholar] [CrossRef] [PubMed]
- Metzger, H. Differential Effects of E-Cigarette Fluid Flavors on Development and the Impact of Using Zebrafish in the Classroom. Ph.D. Thesis, California State University, Chico, CA, USA, 2020. [Google Scholar]
- Ali, N.; Xavier, J.; Engur, M.; Pv, M.; de la Serna, J.B. The impact of e-cigarette exposure on different organ systems: A review of recent evidence and future perspectives. J. Hazard. Mater. 2023, 457, 131828. [Google Scholar] [CrossRef] [PubMed]
- Daiber, A.; Kuntic, M.; Oelze, M.; Hahad, O.; Münzel, T. E-cigarette effects on vascular function in animals and humans. Pflug. Arch. 2023, 475, 783–796. [Google Scholar] [CrossRef]
- Espinoza-Derout, J.; Shao, X.M.; Lao, C.J.; Hasan, K.M.; Rivera, J.C.; Jordan, M.C.; Echeverria, V.; Roos, K.P.; Sinha-Hikim, A.P.; Friedman, T.C. Electronic Cigarette Use and the Risk of Cardiovascular Diseases. Front. Cardiovasc. Med. 2022, 9, 879726. [Google Scholar] [CrossRef]
- Chang, Y.S.; Park, S.M.; Rah, Y.C.; Han, E.J.; Koun, S.I.; Chang, J.; Choi, J. In vivo assessment of the toxicity of electronic cigarettes to zebrafish (Danio rerio) embryos, following gestational exposure, in terms of mortality, developmental toxicity, and hair cell damage: Toxicity of E-cigs to zebrafish embryos. Hum. Exp. Toxicol. 2021, 40, 148–157. [Google Scholar] [CrossRef]
- Lee, S.; Shang, S.; Tsou, S.Y.; Halabi, R.; Ciechanski, P.; Lobb, D.; Logan, C. E-Cigarette Exposure in Zebrafish Leads to Defects in Neurogenesis Similar to Those Found Following Exposure to Traditional Tobacco Cigarettes. J. Undergrad. Res. Alta. 2018–2019, 7, 1–61. [Google Scholar]
- Casey, A.M.; Muise, E.D.; Alexander, L.E.C. Vaping and e-cigarette use. Mysterious lung manifestations and an epidemic. Curr. Opin. Immunol. 2020, 66, 143–150. [Google Scholar] [CrossRef]
- Bhatta, D.N.; Glantz, S.A. Association of e-cigarette use with respiratory disease among adults: A longitudinal analysis. Am. J. Prev. Med. 2020, 58, 182–190. [Google Scholar] [CrossRef]
- Osei, A.D.; Mirbolouk, M.; Orimoloye, O.A.; Dzaye, O.; Uddin, S.I.; Benjamin, E.J.; Hall, M.E.; DeFilippis, A.P.; Bhatnagar, A.; Biswal, S.S.; et al. Association between e-cigarette use and chronic obstructive pulmonary disease by smoking status: Behavioral risk factor surveillance system 2016 and 2017. Am. J. Prev. Med. 2020, 58, 336–342. [Google Scholar] [CrossRef]
- Kalininskiy, A.; Bach, C.T.; E Nacca, N.; Ginsberg, G.; Marraffa, J.; A Navarette, K.; McGraw, M.D.; Croft, D.P. E-cigarette, or vaping, product use associated lung injury (EVALI): Case series and diagnostic approach. Lancet Respir. Med. 2019, 7, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Wills, T.A.; Soneji, S.S.; Choi, K.; Jaspers, I.; Tam, E.K. E-cigarette use and respiratory disorders: An integrative review of converging evidence from epidemiological and laboratory studies. Eur. Respir. J. 2020, 57, 1901815. [Google Scholar] [CrossRef] [PubMed]
- Ruszkiewicz, J.A.; Zhang, Z.; Gonçalves, F.M.; Tizabi, Y.; Zelikoff, J.T.; Aschner, M. Neurotoxicity of e-cigarettes. Food Chem. Toxicol. 2020, 138, 111245. [Google Scholar] [CrossRef]
- Jarema, K.A.; Hunter, D.L.; Hill, B.N.; Olin, J.K.; Britton, K.N.; Waalkes, M.R.; Padilla, S. Developmental Neurotoxicity and Behavioral Screening in Larval Zebrafish with a Comparison to Other Published Results. Toxics 2022, 10, 256. [Google Scholar] [CrossRef]
- Massarsky, A.; Abdel, A.; Glazer, L.; Levin, E.D.; Di Giulio, R.T. Neurobehavioral effects of 1, 2-propanediol in ZZebrafish (Danio rerio). Neurotoxicology 2018, 65, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, P.T.; Holloway, A.C.; Vijayan, M.M. Vape flavourants dull sensory perception and cause hyperactivity in developing zebrafish embryos. Biol. Lett. 2020, 16, 20200361. [Google Scholar] [CrossRef]
- Alasmari, F.; Alotibi, F.M.; Alqahtani, F.; Alshammari, T.K.; Kadi, A.A.; Alghamdi, A.M.; Allahem, B.S.; Alasmari, A.F.; Alsharari, S.D.; Al-Rejaie, S.S.; et al. Effects of Chronic Inhalation of Electronic Cigarette Vapor Containing Nicotine on Neurobehaviors and Pre/Postsynaptic Neuron Markers. Toxics 2022, 10, 338. [Google Scholar] [CrossRef]
- Froggatt, S.; Reissland, N.; Covey, J. The effects of prenatal cigarette and e-cigarette exposure on infant neurobehaviour: A comparison to a control group. EClinicalMedicine 2020, 28, 100602. [Google Scholar] [CrossRef]
- Platel, A.; Dusautoir, R.; Kervoaze, G.; Dourdin, G.; Gateau, E.; Talahari, S.; Huot, L.; Simar, S.; Ollivier, A.; Laine, W.; et al. Comparison of the in vivo genotoxicity of electronic and conventional cigarettes aerosols after subacute, subchronic and chronic exposures. J. Hazard. Mater. 2022, 423, 127246. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, D.; Ma, Y.; Ma, X.; Wang, S.; Li, F.; Li, M.; Zhang, T. Toxicity of electronic cigarettes: A general review of the origins, health hazards, and toxicity mechanisms. Sci. Total. Environ. 2021, 772, 145475. [Google Scholar] [CrossRef] [PubMed]
- Khachatoorian, C.; Luo, W.; McWhirter, K.J.; Pankow, J.F.; Talbot, P. E-cigarette fluids and aerosol residues cause oxidative stress and an inflammatory response in human keratinocytes and 3D skin models. Toxicol. Vitr. 2021, 77, 105234. [Google Scholar] [CrossRef] [PubMed]
- Gerloff, J.; Sundar, I.K.; Freter, R.; Sekera, E.R.; Friedman, A.E.; Robinson, R.; Pagano, T.; Rahman, I. Inflammatory response and barrier dysfunction by different e-cigarette flavoring chemicals identified by gas chromatography–mass spectrometry in e-liquids and e-vapors on human lung epithelial cells and fibroblasts. Appl. Vitr. Toxicol. 2017, 3, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Lerner, C.A.; Sundar, I.K.; Yao, H.; Gerloff, J.; Ossip, D.J.; McIntosh, S.; Robinson, R.; Rahman, I. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PLoS ONE 2015, 10, e0116732. [Google Scholar] [CrossRef] [PubMed]
- Muthumalage, T.; Prinz, M.; Ansah, K.O.; Gerloff, J.; Sundar, I.K.; Rahman, I. Inflammatory and oxidative responses induced by exposure to commonly used e-cigarette flavoring chemicals and flavored e-liquids without nicotine. Front. Physiol. 2018, 8, 1130. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, M.; Chen, W.; Jiang, L.; Chen, C.; Qin, J. Assessment of air pollutant PM2. 5 pulmonary exposure using a 3d lung-on-chip model. ACS Biomater. Sci. Eng. 2020, 6, 3081–3090. [Google Scholar] [CrossRef]
- Qian, F.; Wei, G.; Gao, Y.; Wang, X.; Gong, J.; Guo, C.; Wang, X.; Zhang, X.; Zhao, J.; Wang, C.; et al. Single-cell RNA-sequencing of zebrafish hair cells reveals novel genes potentially involved in hearing loss. Cell. Mol. Life Sci. 2022, 79, 385. [Google Scholar] [CrossRef]
- He, B.; Chen, J.; Tian, M.; Chen, J.; Zhou, C.; Ou, Y.; Wang, S.; Li, X.; Zhuang, J. Adverse effects of nicotine on cardiogenic differentiation from human embryonic stem cells detected by single-cell RNA sequencing. Biochem. Biophys. Res. Commun. 2020, 526, 848–855. [Google Scholar] [CrossRef]
- Albadri, S.; Del Bene, F.; Revenu, C. Genome editing using CRISPR/Cas9-based knock-in approaches in Zebrafish. Methods 2017, 121–122, 77–85. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, B.S.; Verma, R.J. CRISPR-based genome editing of Zebrafish. Prog. Mol. Biol. Transl. Sci. 2021, 180, 69–84. [Google Scholar]
- Chandy, M.; Obal, D.; Wu, J.C. Elucidating effects of environmental exposure using human-induced pluripotent stem cell disease modeling. EMBO Mol. Med. 2022, 14, e13260. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, L.; Zhang, H.; Li, G.; Yi, C.; Li, Y.; Yang, Y.; Ding, Y.; Zhen, M.; Gao, S.; et al. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning. Nat. Methods 2021, 18, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Rendino, L.; Cassar, S.; Buck, W.; Sawicki, J.; Talaty, N.; Wagner, D. Optimization of Zebrafish Larvae Sectioning for Mass Spectrometry Imaging. Pharmaceuticals 2022, 15, 1230. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Burns, A.E.; Burke, G.J.P.; Poindexter, M.E.; Madl, A.K.; Pinkerton, K.E.; Nguyen, T.B. Application of High-Resolution Mass Spectrometry and a Theoretical Model to the Quantification of Multifunctional Carbonyls and Organic Acids in e-Cigarette Aerosol. Environ. Sci. Technol. 2020, 54, 5640–5650. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.W.; Castro, V.; Chaves, R.; Espinosa, M.; Rodil, R.; Quintana, J.B.; Vieira, M.N.; Santos, M.M. Using zebrafish embryo bioassays combined with high-resolution mass spectrometry screening to assess ecotoxicological water bodies quality status: A case study in Panama rivers. Chemosphere 2021, 272, 129823. [Google Scholar] [CrossRef]
- Caruana, E.J.; Roman, M.; Hernández-Sánchez, J.; Solli, P. Longitudinal studies. J. Thorac. Dis. 2015, 7, E537–E540. [Google Scholar]
- Lee, H.; Sung, E.J.; Seo, S.; Min, E.K.; Lee, J.-Y.; Shim, I.; Kim, P.; Kim, T.-Y.; Lee, S.; Kim, K.-T. Integrated multi-omics analysis reveals the underlying molecular mechanism for developmental neurotoxicity of perfluorooctanesulfonic acid in zebrafish. Environ. Int. 2021, 157, 106802. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Mao, M.; He, L.; Wang, T.; Pan, Y.; Zhao, X.; Li, Z.; Mu, X.; Qian, Y.; et al. Multi-omics analysis of a drug-induced model of bipolar disorder in Zebrafish. iScience 2023, 26, 106744. [Google Scholar] [CrossRef]
- Titz, B.; Szostak, J.; Sewer, A.; Phillips, B.; Nury, C.; Schneider, T.; Dijon, S.; Lavrynenko, O.; Elamin, A.; Guedj, E.; et al. Multi-omics systems toxicology study of mouse lung assessing the effects of aerosols from two heat-not-burn tobacco products and cigarette smoke. Comput. Struct. Biotechnol. J. 2020, 18, 1056–1073. [Google Scholar] [CrossRef]
Aspect | Relevance to Human Health |
---|---|
Conservation of genes and pathways | Shared genes and pathways with humans provide insights into heart development and diseases [70]. |
Modeling cardiovascular diseases | Zebrafish models mimic human heart conditions, aiding disease mechanism exploration [71]. |
Drug discovery and toxicity testing | Transparent embryos enable drug testing and safety assessment, expediting drug development [54,55]. |
Heart regeneration | Studying zebrafish heart regeneration informs human cardiac tissue repair research [72,73,74,75]. |
Functional analysis of disease-associated genes | Genetic manipulation studies reveal the effects of disease genes, aiding understanding of human disorders [69,75]. |
Personalized medicine and therapies | Zebrafish models allow testing patient-specific genetic variants, guiding personalized treatments [76,77,78]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussen, E.; Aakel, N.; Shaito, A.A.; Al-Asmakh, M.; Abou-Saleh, H.; Zakaria, Z.Z. Zebrafish (Danio rerio) as a Model for the Study of Developmental and Cardiovascular Toxicity of Electronic Cigarettes. Int. J. Mol. Sci. 2024, 25, 194. https://doi.org/10.3390/ijms25010194
Hussen E, Aakel N, Shaito AA, Al-Asmakh M, Abou-Saleh H, Zakaria ZZ. Zebrafish (Danio rerio) as a Model for the Study of Developmental and Cardiovascular Toxicity of Electronic Cigarettes. International Journal of Molecular Sciences. 2024; 25(1):194. https://doi.org/10.3390/ijms25010194
Chicago/Turabian StyleHussen, Eman, Nada Aakel, Abdullah A. Shaito, Maha Al-Asmakh, Haissam Abou-Saleh, and Zain Z. Zakaria. 2024. "Zebrafish (Danio rerio) as a Model for the Study of Developmental and Cardiovascular Toxicity of Electronic Cigarettes" International Journal of Molecular Sciences 25, no. 1: 194. https://doi.org/10.3390/ijms25010194
APA StyleHussen, E., Aakel, N., Shaito, A. A., Al-Asmakh, M., Abou-Saleh, H., & Zakaria, Z. Z. (2024). Zebrafish (Danio rerio) as a Model for the Study of Developmental and Cardiovascular Toxicity of Electronic Cigarettes. International Journal of Molecular Sciences, 25(1), 194. https://doi.org/10.3390/ijms25010194