The Hidden Truths of Fungal Virulence and Adaptation on Hosts: Unraveling the Conditional Dispensability of Minichromosomes in the Hemibiotrophic Colletotrichum Pathogens
Abstract
:1. Introduction
2. Colletotrichum graminicola
3. Colletotrichum lentis
4. Colletotrichum higginsianum
5. Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mueller, D.S.; Wise, K.A.; Sisson, A.J.; Allen, T.W.; Bergstrom, G.C.; Bissonnette, K.M.; Bradley, C.A.; Byamukama, E.; Chilvers, M.I.; Collins, A.A.; et al. Corn yield loss estimates due to diseases in the United States and Ontario, Canada, from 2016 to 2019. Plant Health Prog. 2019, 21, 238–247. [Google Scholar] [CrossRef]
- Morrall, R.A.A.; Pedersen, E.A. Discovery of lentil anthracnose in Saskatchewan in 1990. Can. Plant Dis. Surv. 1991, 71, 105–106. [Google Scholar]
- O’Connell, R.; Herbert, C.; Sreenivasaprasad, S.; Khatib, M.; Esquerre-Tugaye, M.T.; Dumas, B. A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions. Mol. Plant-Microbe Interact. 2004, 17, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Narusaka, Y.; Narusaka, M.; Park, P.; Kubo, Y.; Hirayama, T.; Seki, M.; Shiraishi, T.; Ishida, J.; Nakashima, M.; Enju, A.; et al. RCH1, a Locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol. Plant-Microbe Interact. 2004, 17, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Birker, D.; Heidrich, K.; Takahara, H.; Narusaka, M.; Deslandes, L.; Narusaka, Y.; Reymond, M.; Parker, J.E.; O’Connell, R. A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Plant J. 2009, 60, 602–613. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.J.; Thon, M.R.; Hacquard, S.; Amyotte, S.G.; Kleemann, J.; Torres, M.F.; Damm, U.; Buiate, E.A.; Epstein, L.; Alkan, N.; et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genet. 2012, 44, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Yang, J.; Ding, J.; Duan, C.; Zhao, W.; Peng, Y.; Bhadauria, V. CRISPR/Cas9-mediated deletion of large chromosomal segments identifies a minichromosome modulating the Colletotrichum graminicola virulence on maize. Int. J. Biol. Macromol. 2023, 245, 125462. [Google Scholar] [CrossRef]
- Dallery, J.F.; Lapalu, N.; Zampounis, A.; Pigné, S.; Luyten, I.; Amselem, J.; Wittenberg, A.; Zhou, S.; de Queiroz, M.V.; Robin, G.P.; et al. Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters. BMC Genom. 2017, 18, 667. [Google Scholar] [CrossRef]
- Bhadauria, V.; MacLachlan, R.; Pozniak, C.; Cohen-Skalie, A.; Li, L.; Halliday, J.; Banniza, S. Genetic map-guided genome assembly reveals a virulence-governing minichromosome in the lentil anthracnose pathogen Colletotrichum lentis. New Phytol. 2019, 221, 431–445. [Google Scholar] [CrossRef]
- Becerra, S.; Baroncelli, R.; Boufleur, T.R.; Sukno, S.A.; Thon, M.R. Chromosome-level analysis of the Colletotrichum graminicola genome reveals the unique characteristics of core and minichromosomes. Front. Microbiol. 2023, 14, 1129319. [Google Scholar] [CrossRef]
- Plaumann, P.L.; Schmidpeter, J.; Dahl, M.; Taher, L.; Koch, C. A dispensable chromosome is required for virulence in the hemibiotrophic plant pathogen Colletotrichum higginsianum. Front. Microbiol. 2018, 9, 1005. [Google Scholar] [CrossRef] [PubMed]
- Forgey, W.M.; Blanco, M.H.; Loegering, W.Q. Differences in pathological capabilities and host specificity of Colletotrichum graminicola on Zea mays (maize). Plant Dis. Rep. 1978, 62, 573–576. [Google Scholar]
- Duan, C.X.; Guo, C.; Yang, Z.H.; Sun, S.L.; Zhu, Z.D.; Wang, X.M. First report of anthracnose leaf blight of maize caused by Colletotrichum graminicola in China. Plant Dis. 2019, 103, 1770. [Google Scholar] [CrossRef]
- Selker, E.U.; Cambareri, E.B.; Jensen, B.C.; Haack, K.R. Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell 1987, 51, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Selker, E.U. Premeiotic instability of repeated sequences in Neurospora crassa. Annu. Rev. Genet. 1990, 24, 579–613. [Google Scholar] [CrossRef] [PubMed]
- Hane, J.K.; Williams, A.H.; Taranto, A.P.; Solomon, P.S.; Oliver, R.P. Repeat-Induced Point mutation: A fungal-specific, endogenous mutagenesis process. In Genetic Transformation Systems in Fungi; van den Berg, M.A., Maruthachalam, K., Eds.; Springer: New York, NY, USA, 2015; Volume 2, pp. 55–68. [Google Scholar]
- Leach, M.D.; Brown, A.J. Posttranslational modifications of proteins in the pathobiology of medically relevant fungi. Eukaryot. Cell 2012, 11, 98–108. [Google Scholar] [CrossRef]
- Pichler, A.; Fatouros, C.; Lee, H.; Eisenhardt, N. SUMO conjugation—A mechanistic view. Biomol. Concepts 2017, 8, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.-J.; Kim, K.-T.; Lee, Y.-H. SUMOylation is required for fungal development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Mol. Plant Pathol. 2018, 19, 2134–2148. [Google Scholar] [CrossRef]
- Li, S.J.; Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 1999, 398, 246–251. [Google Scholar] [CrossRef]
- Liu, H.; Lu, X.; Li, M.; Lun, Z.; Yan, X.; Yin, C.; Yuan, G.; Wang, X.; Liu, N.; Liu, D.; et al. Plant immunity suppression by an exo-β-1,3-glucanase and an elongation factor 1α of the rice blast fungus. Nat. Commun. 2023, 14, 5491. [Google Scholar] [CrossRef]
- Otsuka, A.J.; Franco, R.; Yang, B.; Shim, K.H.; Tang, L.Z.; Zhang, Y.Y.; Boontrakulpoontawee, P.; Jeyaprakash, A.; Hedgecock, E.; Wheaton, V.I.; et al. An ankyrin-related gene (unc-44) is necessary for proper axonal guidance in Caenorhabditis elegans. J. Cell Biol. 1995, 129, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Q.; Lee, S.A.; Rahman, M.; Vanapalli, S.A.; Lu, H.; Schafer, W.R. Ankyrin is an intracellular tether for TMC mechanotransduction channels. Neuron 2020, 107, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Navarre, W.W.; Schneewind, O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 1999, 63, 174–229. [Google Scholar] [CrossRef] [PubMed]
- Asplund, G.; Christiansen, J.V.; Grimvall, A. A chloroperoxidase-like catalyst in soil: Detection and characterization of some properties. Soil. Biol. Biochem. 1993, 25, 41–46. [Google Scholar] [CrossRef]
- Niedan, V.; Pavasars, I.; Öberg, G. Chloroperoxidase-mediated chlorination of aromatic groups in fulvic acid. Chemosphere 2000, 41, 779–785. [Google Scholar] [CrossRef]
- Ortiz-Bermúdez, P.; Srebotnik, E.; Hammel, K.E. Chlorination and cleavage of lignin structures by fungal chloroperoxidases. Appl. Environ. Microbiol. 2003, 69, 5015–5018. [Google Scholar] [CrossRef]
- Reina, R.G.; Leri, A.C.; Myneni, S.C. Cl K-edge X-ray spectroscopic investigation of enzymatic formation of organochlorines in weathering plant material. Environ. Sci. Technol. 2004, 38, 783–789. [Google Scholar] [CrossRef]
- Nie, Y.; Li, G.; Li, J.; Zhou, X.; Zhang, Y.; Shi, Q.; Zhou, X.; Li, H.; Chen, X.-L.; Li, Y. A novel elicitor MoVcpo is necessary for the virulence of Magnaporthe oryzae and triggers rice defense responses. Front. Plant Sci. 2022, 13, 1018616. [Google Scholar] [CrossRef]
- Galindo, A.; Hervas-Aguilar, A.; Rodriguez-Galan, O.; Vincent, O.; Arst, H.N.; Tilburn, J.; Peñalva, M.A. PalC, one of two Bro1 domain proteins in the fungal pH signalling pathway, localizes to cortical structures and binds Vps32. Traffic 2007, 8, 1346–1364. [Google Scholar] [CrossRef]
- Chen, X.-L.; He, D.; Yin, C.; Yang, J.; Sun, J.; Wang, D.; Xue, M.; Li, Z.; Peng, Z.; Chen, D.; et al. PacC-dependent adaptation and modulation of host cellular pH controls hemibiotrophic invasive growth and disease development by the rice blast fungus. bioRxiv 2020. bioRxiv: 06.22.164590. [Google Scholar]
- Bhadauria, V.; Banniza, S.; Vandenberg, A.; Selvaraj, G.; Wei, Y. Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Eukaryot. Cell. 2013, 12, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.J.; Wasmann, C.C.; Usami, T.; White, G.J.; Temporini, E.D.; McCluskey, K.; VanEtten, H.D. Characterization of the gene encoding pisatin demethylase (FoPDA1) in Fusarium oxysporum. Mol. Plant-Microbe Interact. 2011, 24, 1482–1491. [Google Scholar] [CrossRef] [PubMed]
- Keller, N.P.; Turner, G.; Bennett, J.W. Fungal secondary metabolism—From biochemistry to genomics. Nat. Rev. Microbiol. 2005, 3, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Bolton, M.D.; van Esse, H.P.; Vossen, J.H.; de Jonge, R.; Stergiopoulos, I.; Stulemeijer, I.J.; van den Berg, G.C.; Borrás-Hidalgo, O.; Dekker, H.L.; de Koster, C.G.; et al. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Mol. Microbiol. 2008, 69, 119–136. [Google Scholar] [CrossRef]
- de Jonge, R.; van Esse, H.P.; Kombrink, A.; Shinya, T.; Desaki, Y.; Bours, R.; van der Krol, S.; Shibuya, N.; Joosten, M.H.; Thomma, B.P. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 2010, 329, 953–955. [Google Scholar] [CrossRef]
Strains | Features | Chr11 | Chr12 | Chr13 |
---|---|---|---|---|
T1-3-3 | Length (bp) | 714,004 | 618,571 | 561,802 |
GC content (%) | 29.10 | 31.24 | 30.74 | |
Repetitive DNA (%) | 11.14 | 11.11 | 12.13 | |
RIP-affected genomic proportion (%) | 80.97 | 71.65 | 75.36 | |
Gene models | 32 | 31 | 26 | |
RNA-Seq evidence (%) | 81.25 | 58.06 | 76.92 | |
Effector candidates | 0 | 1 | 0 | |
CAZymes | 0 | 0 | 0 | |
SMBSE a | 0 | 0 | 0 | |
Conditionally dispensability b | No | Yes | No | |
M1.001 | Length (bp) | 729,294 | 559,114 | 550,543 |
GC content (%) | 29.90 | 30.10 | 30.31 | |
Repetitive DNA (%) | 10.59 | 10.78 | 8.86 | |
RIP-affected genomic proportion (%) | 77.38 | 74.44 | 75.68 | |
Gene models | 43 | 43 | 35 | |
RNA-Seq evidence (%) | 65 | 58 | 43 | |
Effector candidates | 0 | 0 | 0 | |
CAZymes | 0 | 0 | 0 | |
SMBSE | 0 | 0 | 0 | |
Conditionally dispensability | Unknown | Unknown | Unknown | |
CT-30 | Length (bp) | 1,517,430 | 386,020 | - |
GC content (%) | 37.57 | 37.26 | - | |
Repetitive DNA (%) | 9.21 | 8.02 | - | |
RIP-affected genomic proportion (%) | 63.82 | 60.41 | - | |
Gene models | 164 | 38 | - | |
RNA-Seq evidence (%) | na d | na d | - | |
Effector candidates | 9 | 0 | - | |
CAZymes | 0 | 0 | - | |
SMBSE | 5 | 7 | - | |
Conditionally dispensability c | Yes | No | - | |
IMI 349063A | Length (bp) | 646,208 | 597,935 | - |
GC content (%) | 49.35 | 47.20 | - | |
Repetitive DNA (%) | 13.65 | 8.89 | - | |
RIP-affected genomic proportion (%) | 8.89 | 15.38 | - | |
Gene models | 138 | 133 | - | |
RNA-Seq evidence (%) | na d | na d | - | |
Effector candidates | 10 | 7 | - | |
CAZymes | 1 | 1 | - | |
SMBSE | 0 | 1 | - | |
Conditionally dispensability b | Yes | No | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhadauria, V.; Zhang, M.; Ma, W.; Yang, J.; Zhao, W.; Peng, Y.-L. The Hidden Truths of Fungal Virulence and Adaptation on Hosts: Unraveling the Conditional Dispensability of Minichromosomes in the Hemibiotrophic Colletotrichum Pathogens. Int. J. Mol. Sci. 2024, 25, 198. https://doi.org/10.3390/ijms25010198
Bhadauria V, Zhang M, Ma W, Yang J, Zhao W, Peng Y-L. The Hidden Truths of Fungal Virulence and Adaptation on Hosts: Unraveling the Conditional Dispensability of Minichromosomes in the Hemibiotrophic Colletotrichum Pathogens. International Journal of Molecular Sciences. 2024; 25(1):198. https://doi.org/10.3390/ijms25010198
Chicago/Turabian StyleBhadauria, Vijai, Manyu Zhang, Wendi Ma, Jun Yang, Wensheng Zhao, and You-Liang Peng. 2024. "The Hidden Truths of Fungal Virulence and Adaptation on Hosts: Unraveling the Conditional Dispensability of Minichromosomes in the Hemibiotrophic Colletotrichum Pathogens" International Journal of Molecular Sciences 25, no. 1: 198. https://doi.org/10.3390/ijms25010198
APA StyleBhadauria, V., Zhang, M., Ma, W., Yang, J., Zhao, W., & Peng, Y. -L. (2024). The Hidden Truths of Fungal Virulence and Adaptation on Hosts: Unraveling the Conditional Dispensability of Minichromosomes in the Hemibiotrophic Colletotrichum Pathogens. International Journal of Molecular Sciences, 25(1), 198. https://doi.org/10.3390/ijms25010198