Unveiling the Multifaceted Problems Associated with Dysrhythmia
Abstract
:1. Introduction
2. Short Overview of the Types of Dysrhythmias
2.1. Cardio Arrhythmia
2.2. Gastro Dysrhythmia
2.3. Neuro
- Cardiovascular ischemic strokes (e.g., atrial fibrillation, valvular disease, etc.). Epidemiological data show that AF increases the risk of stroke by about 5-fold. Predisposing factors for AF include structural and electrical remodeling of the atrial structures, which plays a key role in initiating and maintaining AF. Atherial remodeling is caused by many factors, such as stretch-induced fibrosis, hypocontractility, fatty infiltration, inflammation, vascular remodeling, ischemia, ion channel dysfunction, and calcium instability. It is worth noting that these factors are also associated with stroke. Some of the fast atrial impulses are directed to the ventricles; some penetrate only the atrioventricular node, increasing its refraction; ventricular rate and irregularity are the result of implicit conduction of atrial impulses. During increased sympathetic tone, the refraction of the atrioventricular node sharply decreases, which leads to a disproportionate increase in heart rate. Platelet activation and thrombin production go up when atrial fibrillation (AF) or fast atrial rates (FA) happen. This happens more in the left atrium than in the systemic circulation. AF additionally induces endothelial dysfunction and inflammation. Thus, while a fast atrial rate increases thromboembolic risk, AF may increase it even more [39]. In addition, over the last two decades, many studies have indicated the relationship between AF and cognitive functions. AF is now a recognized risk factor and predictor of cognitive decline and dementia [40].
- Neurocardiological diseases are a group of genetic abnormalities that affect the nervous system and cardiac muscle. Examples of these diseases include Friedreich’s disease, myotonic dystrophy, and Kearns–Sayre syndrome. These disorders cause abnormal neuromuscular signaling and mitochondrial dysfunction, which can lead to cardiac manifestations such as arrhythmias and cardiomyopathies due to disruptions in neural signaling and mitochondrial energy deficits.
- Neurogenic heart diseases refer to conditions where brain dysfunctions have a profound impact on cardiac physiology. For instance, heightened stress or anxiety responses caused by sympathetic nervous system activation can trigger cardiac arrhythmias and affect heart rate dynamics. Additionally, neurological disorders such as epilepsy can cause Takotsubo syndrome (TTS) and a range of temporary cardiac effects that include fluctuations in heart rate variability, arrhythmia, and even asystole, as shown in electrocardiographic recordings [35,41,42,43].
2.4. Epilepsy
2.5. Muscle Dysrhythmia
2.6. Eye—Optic Neuropathy
3. Electrobiological Techniques as Methods for Imaging the Electrical Activity of Organs
3.1. ECG
3.2. EEG
3.3. EGG
3.4. EMG
3.5. EOG
4. Pharmacotherapy
5. Patch Clamp Methods to Research Therapeutically Important Ion Channels in Excitable Membranes
5.1. The Ion Channels Important in Dysrhythmic Disorders
5.2. Patch Clumping as Basic Ion-Channel Assay Methods
6. Materials and Methods
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Resnekov, L.; McDonald, L. Complications in 220 patients with cardiac dysrhythmias treated by phased direct current shock, and indications for electroconversion. Br. Heart J. 1967, 29, 926. [Google Scholar] [CrossRef] [PubMed]
- Royster, R.L. Arrhythmia or Dysrhythmia: Let’s Standardize Our Nomenclature. Anesth. Analg. 1990, 70, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Goette, A.; Kalman, J.M.; Aguinaga, L.; Akar, J.; Cabrera, J.A.; Chen, S.A.; Chugh, S.S.; Corradi, D.; D’Avila, A.; Dobrev, D. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: Definition, characterization, and clinical implication. Ep Europace 2016, 18, 1455–1490. [Google Scholar] [CrossRef] [PubMed]
- Raihan, M.M.S.; Shams, A.B.; Preo, R.B. Multi-class electrogastrogram (EGG) signal classification using machine learning algorithms. In Proceedings of the 2020 23rd International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 9–21 December 2020; pp. 1–6. [Google Scholar]
- Parkman, H.P.; Hasler, W.L.; Barnett, J.; Eaker, E. Electrogastrography: A document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterol. Motil. 2003, 15, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Snell, J.; Yeaton, J.; Mirault, J.; Grainger, J. Parallel word reading revealed by fixation-related brain potentials. Cortex 2023, 162, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Cross, J.H.; D’souza, C.; French, J.A.; Haut, S.R.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 2017, 58, 531–542. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Zhang, C.; Shi, W.; Lo, M.-T.; Tinkhauser, G.; Oswal, A. Cross-frequency coupling and intelligent neuromodulation. Cyborg Bionic Syst. 2023, 4, 0034. [Google Scholar] [CrossRef]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Developed by the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) Endorsed by the Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar]
- Teplan, M. Fundamentals of EEG measurement. Meas. Sci. Rev. 2002, 2, 1–11. [Google Scholar]
- Colman, J.; Gnanayutham, P. ‘One-Button’ Brain-Computer Interfaces. In Proceedings of the DSAI 2010: 3rd International Conference on Software Development for Enhancing Accessibility and Fighting Info-Exclusion; Gnanayutham, P., Paredes, H., Rekanos, I., Eds.; UTAD-Universidade de Trás-os-Montes e Alto Douro: Quinta de Prados, Portugal, 2010. [Google Scholar]
- Stephanidis, C. The Universal Access Handbook; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Fialho, G.L.; Pang, T.D.; Kong, W.Y.; Tran, A.P.; Yu, C.G.; Rodriguez, I.D.; Nearing, B.D.; Waks, J.W.; Maher, T.R.; Clarke, J.R. Individuals with chronic epilepsy have elevated P-wave heterogeneity comparable to patients with atrial fibrillation. Epilepsia 2023, 64, 2361–2372. [Google Scholar] [CrossRef]
- Leo, D.G.; Ozdemir, H.; Lane, D.A.; Lip, G.Y.; Keller, S.S.; Proietti, R. At the heart of the matter: How mental stress and negative emotions affect atrial fibrillation. Front. Cardiovasc. Med. 2023, 10, 1171647. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, M.K.; Kannankeril, P.J.; Goldberger, J.J. Assessment of autonomic function in cardiovascular disease: Physiological basis and prognostic implications. J. Am. Coll. Cardiol. 2008, 51, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Cygankiewicz, I.; Zareba, W. Heart rate variability. Handb. Clin. Neurol. 2013, 117, 379–393. [Google Scholar] [PubMed]
- Mejía-Mejía, E.; Budidha, K.; Abay, T.Y.; May, J.M.; Kyriacou, P.A. Heart rate variability (HRV) and pulse rate variability (PRV) for the assessment of autonomic responses. Front. Physiol. 2020, 11, 779. [Google Scholar] [CrossRef]
- Arakaki, X.; Arechavala, R.J.; Choy, E.H.; Bautista, J.; Bliss, B.; Molloy, C.; Wu, D.-A.; Shimojo, S.; Jiang, Y.; Kleinman, M.T. The connection between heart rate variability (HRV), neurological health, and cognition: A literature review. Front. Neurosci. 2023, 17, 1055445. [Google Scholar] [CrossRef]
- Bilchick, K.C.; Berger, R.D. Heart rate variability. J. Cardiovasc. Electr. 2006, 17, 691–694. [Google Scholar] [CrossRef]
- Klimesch, W.; Doppelmayr, M.; Wimmer, H.; Gruber, W.; Röhm, D.; Schwaiger, J.; Hutzler, F. Alpha and beta band power changes in normal and dyslexic children. Clin. Neurophysiol. 2001, 112, 1186–1195. [Google Scholar] [CrossRef]
- Barry, R.J.; Clarke, A.R.; Johnstone, S.J.; Brown, C.R. EEG differences in children between eyes-closed and eyes-open resting conditions. Clin. Neurophysiol. 2009, 120, 1806–1811. [Google Scholar] [CrossRef]
- Bernier, M.; Curtis, M.J.; Hearse, D.J. Ischemia-induced and reperfusion-induced arrhythmias: Importance of heart rate. Am. J. Physiol.-Heart C. 1989, 256, H21–H31. [Google Scholar] [CrossRef]
- Sai, Y.P. A review on arrhythmia classification using ECG signals. In Proceedings of the 2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 22–23 February 2020; pp. 1–6. [Google Scholar]
- Sahoo, S.; Dash, M.; Behera, S.; Sabut, S. Machine learning approach to detect cardiac arrhythmias in ECG signals: A survey. Irbm 2020, 41, 185–194. [Google Scholar] [CrossRef]
- Wilde, A.A.; Amin, A.S.; Postema, P.G. Diagnosis, management and therapeutic strategies for congenital long QT syndrome. Heart 2022, 108, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, W.; Barud, M.; Siwicka, D.; Bielacz, M. The brain-heart interaction. Anaesthesiol. Rescue Med./Anestezjol. Ratow. 2018, 12, 298–303. [Google Scholar]
- Cheung, S.Y.A.; Parkinson, J.; Wählby-Hamrén, U.; Dota, C.D.; Kragh, Å.M.; Bergenholm, L.; Vik, T.; Collins, T.; Arfvidsson, C.; Pollard, C.E.; et al. A tutorial on model informed approaches to cardiovascular safety with focus on cardiac repolarisation. J. Pharmacokinet. Pharm. 2018, 45, 365–381. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Pan, J.; McCallum, R. Clinical significance of gastric myoelectrical dysrhythmias. Digest. Dis. 1995, 13, 275–290. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.; Varghese, C.; Carson, D.A.; Hayes, T.C.; Gharibans, A.A.; Andrews, C.N.; O’Grady, G. Gastric dysrhythmia in gastroesophageal reflux disease: A systematic review and meta-analysis. Esophagus 2021, 18, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Laliberté, F.; Moore, Y.; Dea, K.; LaMori, J.C.; Mody, S.H.; Jones, J.L.; Arledge, M.D.; Damaraju, C.; Schein, J.R.; Lefebvre, P. Gastrointestinal comorbidities associated with atrial fibrillation. SpringerPlus 2014, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Long, M.T.; Ko, D.; Arnold, L.M.; Trinquart, L.; Sherer, J.A.; Keppel, S.-S.; Benjamin, E.J.; Helm, R.H. Gastrointestinal and liver diseases and atrial fibrillation: A review of the literature. Ther. Adv. Gastroenter. 2019, 12, 1756284819832237. [Google Scholar] [CrossRef]
- Budzyński, J.; Pulkowski, G. Review article Atrial fibrillation, other arrhythmias and digestive tract. Kardiol. Pol. (Pol. Heart J.) 2009, 67, 1268–1273. [Google Scholar]
- Buttar, N.S.; Falk, G.W. Pathogenesis of gastroesophageal reflux and Barrett esophagus. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2001; pp. 226–234. [Google Scholar]
- Farmer, A.D.; Albusoda, A.; Amarasinghe, G.; Ruffle, J.K.; Fitzke, H.E.; Idrees, R.; Fried, R.; Brock, C.; Aziz, Q. Transcutaneous vagus nerve stimulation prevents the development of, and reverses, established oesophageal pain hypersensitivity. Aliment. Pharm. Ther. 2020, 52, 988–996. [Google Scholar] [CrossRef]
- Kaźmierski, R. Wpływ zaburzeń czynności mózgu na serce. Czy można umrzeć ze strachu? Pol. Przegląd Neurol. 2016, 12, 131–138. [Google Scholar]
- Beis, D.; Zerr, I.; Martelli, F.; Doehner, W.; Devaux, Y. RNAs in brain and heart diseases. Int. J. Mol. Sci. 2020, 21, 3717. [Google Scholar] [CrossRef] [PubMed]
- Costagliola, G.; Orsini, A.; Coll, M.; Brugada, R.; Parisi, P.; Striano, P. The brain–heart interaction in epilepsy: Implications for diagnosis, therapy, and SUDEP prevention. Ann. Clin. Transl. Neur. 2021, 8, 1557–1568. [Google Scholar] [CrossRef] [PubMed]
- Markousis-Mavrogenis, G.; Noutsias, M.; Rigopoulos, A.G.; Giannakopoulou, A.; Gatzonis, S.; Pons, R.M.; Papavasiliou, A.; Vartela, V.; Bonou, M.; Kolovou, G. The emerging role of combined brain/heart magnetic resonance imaging for the evaluation of brain/heart interaction in heart failure. J. Clin. Med. 2022, 11, 4009. [Google Scholar] [CrossRef] [PubMed]
- Kodani, E.; Akao, M. Atrial fibrillation and stroke prevention: State of the art—Epidemiology and pathophysiology: New risk factors, concepts and controversies. Eur. Heart J. Suppl. 2020, 22, O1–O13. [Google Scholar] [CrossRef] [PubMed]
- Gallinoro, E.; D’elia, S.; Prozzo, D.; Lioncino, M.; Natale, F.; Golino, P.; Cimmino, G. Cognitive function and atrial fibrillation: From the strength of relationship to the dark side of prevention. Is there a contribution from sinus rhythm restoration and maintenance? Medicina 2019, 55, 587. [Google Scholar] [CrossRef] [PubMed]
- Amin, H.Z.; Amin, L.Z.; Pradipta, A. Takotsubo cardiomyopathy: A brief review. J. Med. Life 2020, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Matta, A.; Delmas, C.; Campelo-Parada, F.; Lhermusier, T.; Bouisset, F.; Elbaz, M.; Nader, V.; Blanco, S.; Roncalli, J.; Carrié, D. Takotsubo cardiomyopathy. Rev. Cardiovasc. Med. 2022, 23, 38. [Google Scholar] [CrossRef]
- Lu, X.; Li, P.; Teng, C.; Cai, P.; Jin, L.; Li, C.; Liu, Q.; Pan, S.; Dixon, R.A.; Wang, B. Prognostic factors of Takotsubo cardiomyopathy: A systematic review. ESC Heart Fail. 2021, 8, 3663–3689. [Google Scholar] [CrossRef]
- Gibbs, F.A.; Gibbs, E.L.; Lennox, W.G. Epilepsy: A paroxysmal cerebral dysrhythmia. Epilepsy Behav. 2002, 3, 395–401. [Google Scholar] [CrossRef]
- Iolascon, G.; Paoletta, M.; Liguori, S.; Curci, C.; Moretti, A. Neuromuscular diseases and bone. Front. Endocrinol. 2019, 10, 794. [Google Scholar] [CrossRef]
- Dresser, L.; Wlodarski, R.; Rezania, K.; Soliven, B. Myasthenia gravis: Epidemiology, pathophysiology and clinical manifestations. J. Clin. Med. 2021, 10, 2235. [Google Scholar] [CrossRef] [PubMed]
- Koneczny, I.; Herbst, R. Myasthenia gravis: Pathogenic effects of autoantibodies on neuromuscular architecture. Cells 2019, 8, 671. [Google Scholar] [CrossRef] [PubMed]
- De Baets, M.H.; Oosterhuis, H.J. Myasthenia Gravis; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Nguyen-Cao, T.M.; Gelinas, D.; Griffin, R.; Mondou, E. Myasthenia gravis: Historical achievements and the “golden age” of clinical trials. J. Neurol. Sci. 2019, 406, 116428. [Google Scholar] [CrossRef] [PubMed]
- Naik, G. Biomedical Signal Processing; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Mesentier-Louro, L.A.; Liao, Y.J. Optic nerve regeneration: Considerations on treatment of acute optic neuropathy and end-stage disease. Curr. Ophthalmol. Rep. 2019, 7, 11–20. [Google Scholar] [CrossRef]
- Ju, W.-K.; Perkins, G.A.; Kim, K.-Y.; Bastola, T.; Choi, W.-Y.; Choi, S.-H. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog. Retin. Eye Res. 2023, 95, 101136. [Google Scholar] [CrossRef] [PubMed]
- Behbehani, R. Clinical approach to optic neuropathies. Clin. Ophthalmol. 2007, 1, 233–246. [Google Scholar] [PubMed]
- Fague, L.; Liu, Y.A.; Marsh-Armstrong, N. The basic science of optic nerve regeneration. Ann. Transl. Med. 2021, 9, 11–20. [Google Scholar] [CrossRef]
- Levkovitch-Verbin, H. Animal models of optic nerve diseases. Eye 2004, 18, 1066–1074. [Google Scholar] [CrossRef]
- Sarkar, P.; Mehtani, A.; Gandhi, H.; Dubey, V.; Tembhurde, P.M.; Gupta, M.K. Atypical optic neuritis: An overview. Indian J. Ophthalmol. 2021, 69, 27. [Google Scholar] [CrossRef]
- Bennett, J.L.; Costello, F.; Chen, J.J.; Petzold, A.; Biousse, V.; Newman, N.J.; Galetta, S.L. Optic neuritis and autoimmune optic neuropathies: Advances in diagnosis and treatment. Lancet Neurol. 2023, 22, 89–100. [Google Scholar] [CrossRef]
- Szabo, M.E.; Gallyas, E.; Bak, I.; Rakotovao, A.; Boucher, F.; de Leiris, J.; Nagy, N.; Varga, E.; Tosaki, A. Heme oxygenase-1–related carbon monoxide and flavonoids in ischemic/reperfused rat retina. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3727–3732. [Google Scholar] [CrossRef] [PubMed]
- Baj, J.; Flieger, W.; Teresiński, G.; Buszewicz, G.; Sitarz, R.; Forma, A.; Karakuła, K.; Maciejewski, R. Magnesium, calcium, potassium, sodium, phosphorus, selenium, zinc, and chromium levels in alcohol use disorder: A review. J. Clin. Med. 2020, 9, 1901. [Google Scholar] [CrossRef] [PubMed]
- Roda, M.; di Geronimo, N.; Pellegrini, M.; Schiavi, C. Nutritional optic neuropathies: State of the art and emerging evidences. Nutrients 2020, 12, 2653. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tripathi, R.C.; Tripathi, B.J. Drug-induced ocular disorders. Drug Saf. 2008, 31, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Baj, J.; Forma, A.; Kobak, J.; Tyczyńska, M.; Dudek, I.; Maani, A.; Teresiński, G.; Buszewicz, G.; Januszewski, J.; Flieger, J. Toxic and Nutritional Optic Neuropathies—An Updated Mini-Review. Int. J. Environ. Res. Public Heath 2022, 19, 3092. [Google Scholar] [CrossRef] [PubMed]
- Stielow, M.; Witczyńska, A.; Kubryń, N.; Fijałkowski, Ł.; Nowaczyk, J.; Nowaczyk, A. The Bioavailability of Drugs—The Current State of Knowledge. Molecules 2023, 28, 8038. [Google Scholar] [CrossRef]
- Crumb, W.J., Jr.; Vicente, J.; Johannesen, L.; Strauss, D.G. An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel. J. Pharmacol. Tox. Met. 2016, 81, 251–262. [Google Scholar] [CrossRef]
- Calder, S.; O’Grady, G.; Cheng, L.K.; Du, P. A theoretical analysis of electrogastrography (EGG) signatures associated with gastric dysrhythmias. IEEE Technol. Biomed. Eng. 2016, 64, 1592–1601. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, Y.; Tu, L.; Chan, S.W.; Ngan, M.P.; Cui, D.; Liu, Y.H.J.; Huang, I.B.; Kung, J.S.; Hui, C.M.J. Sulprostone-Induced Gastric Dysrhythmia in the Ferret: Conventional and Advanced Analytical Approaches. Front. Physiol. 2021, 11, 583082. [Google Scholar] [CrossRef]
- Carson, D.A.; O’Grady, G.; Du, P.; Gharibans, A.A.; Andrews, C.N. Body surface mapping of the stomach: New directions for clinically evaluating gastric electrical activity. Neurogastroent. Motil. 2021, 33, e14048. [Google Scholar] [CrossRef]
- Kyle, J.J.; Sharma, S.; Tiarks, G.; Rodriguez, S.; Bassuk, A.G. Fast Detection and Quantification of Interictal Spikes and Seizures in a Rodent Model of Epilepsy Using an Automated Algorithm. Bio-Protocol 2023, 13, e4632. [Google Scholar]
- Loddenkemper, T. Detect, predict, and prevent acute seizures and status epilepticus. Epilepsy Behav. 2023, 141, 109141. [Google Scholar] [CrossRef] [PubMed]
- Robson, A.G.; Nilsson, J.; Li, S.; Jalali, S.; Fulton, A.B.; Tormene, A.P.; Holder, G.E.; Brodie, S.E. ISCEV guide to visual electrodiagnostic procedures. Doc. Ophthalmol. 2018, 136, 1–26. [Google Scholar] [CrossRef] [PubMed]
- International Society for Clinical Electrophysiology of Vision. Available online: http://www.iscev.org/standards (accessed on 31 July 2023).
- Robson, A.G.; Frishman, L.J.; Grigg, J.; Hamilton, R.; Jeffrey, B.G.; Kondo, M.; Li, S.; McCulloch, D.L. ISCEV Standard for full-field clinical electroretinography (2022 update). Doc. Ophthalmol. 2022, 144, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Cornish, E.E.; Vaze, A.; Jamieson, R.V.; Grigg, J.R. The electroretinogram in the genomics era: Outer retinal disorders. Eye 2021, 35, 2406–2418. [Google Scholar] [CrossRef]
- Constable, P.A.; Bach, M.; Frishman, L.J.; Jeffrey, B.; Robson, A.G. ISCEV Standard for clinical electro-oculography (2017 update). Doc. Ophthalmol. 2017, 134, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Brugada, J.; Katritsis, D.G.; Arbelo, E.; Arribas, F.; Bax, J.J.; Blomström-Lundqvist, C.; Calkins, H.; Corrado, D.; Deftereos, S.G.; Diller, G.-P. 2019 ESC guidelines for the management of patients with supraventricular tachycardia the task force for the management of patients with supraventricular tachycardia of the European society of Cardiology (ESC) developed in collaboration with the association for European paediatric and congenital Cardiology (AEPC). Eur. Heart J. 2020, 41, 655–720. [Google Scholar]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS) The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar]
- Tosaki, A. Arrhythmo Geno Pharmaco Therapy. Front. Pharmacol. 2020, 11, 616. [Google Scholar] [CrossRef]
- Kowalska, M.; Nowaczyk, J.; Nowaczyk, A. KV11. 1, NaV1. 5, and CaV1. 2 Transporter Proteins as Antitarget for Drug Cardiotoxicity. Int. J. Mol. Sci. 2020, 21, 8099. [Google Scholar] [CrossRef]
- Lei, M.; Wu, L.; Terrar, D.A.; Huang, C.L.-H. Modernized classification of cardiac antiarrhythmic drugs. Circulation 2018, 138, 1879–1896. [Google Scholar] [CrossRef] [PubMed]
- Kingma, C.; Simard, C.; Drolet, B. Overview of Cardiac Arrhythmias and Treatment Strategies. Pharmaceuticals 2023, 16, 844. [Google Scholar] [CrossRef] [PubMed]
- Panchal, A.R.; Berg, K.M.; Kudenchuk, P.J.; Del Rios, M.; Hirsch, K.G.; Link, M.S.; Kurz, M.C.; Chan, P.S.; Cabañas, J.G.; Morley, P.T. 2018 American Heart Association focused update on advanced cardiovascular life support use of antiarrhythmic drugs during and immediately after cardiac arrest: An update to the American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2018, 138, e740–e749. [Google Scholar] [PubMed]
- Wołowiec, Ł.; Grześk, G.; Osiak, J.; Wijata, A.; Mędlewska, M.; Gaborek, P.; Banach, J.; Wołowiec, A.; Głowacka, M. Beta-blockers in cardiac arrhythmias–Clinical pharmacologist’s point of view. Front. Pharmacol. 2023, 13, 1043714. [Google Scholar] [CrossRef]
- Naksuk, N.; Sugrue, A.M.; Padmanabhan, D.; Kella, D.; DeSimone, C.V.; Kapa, S.; Asirvatham, S.J.; Lee, H.-C.; Ackerman, M.J.; Noseworthy, P.A. Potentially modifiable factors of dofetilide-associated risk of torsades de pointes among hospitalized patients with atrial fibrillation. J. Interv. Card. Electr. 2019, 54, 189–196. [Google Scholar] [CrossRef]
- Tosaki, A.; Szekeres, L.; Hearse, D. Diltiazem and the reduction of reperfusion-induced arrhythmias in the rat: Protection is secondary to modification of ischemic injury and heart rate. J. Mol. Cell Cardiol. 1987, 19, 441–451. [Google Scholar] [CrossRef]
- Żelazny, P.; Uździcki, A.; Awgul, S.; Pawlik, A. Ion channels as the target of anti-epileptic drugs. Farm. Współczesna 2018, 11, 201–206. [Google Scholar]
- Lee, W.; Ng, B.; Mangala, M.M.; Perry, M.D.; Subbiah, R.N.; Vandenberg, J.I.; Hill, A.P. Action Potential Morphology Accurately Predicts Proarrhythmic Risk for Drugs with Potential to Prolong Cardiac Repolarization. Circ. Arrhythmia Electrophysiol. 2023, e011574. [Google Scholar] [CrossRef]
- Grześk, G.; Woźniak-Wiśniewska, A.; Błażejewski, J.; Górny, B.; Wołowiec, Ł.; Rogowicz, D.; Nowaczyk, A. The interactions of nintedanib and oral anticoagulants—Molecular mechanisms and clinical implications. Int. J. Mol. Sci. 2020, 22, 282. [Google Scholar] [CrossRef]
- Grześk, G. Therapeutic monitoring of direct oral anticoagulants—An 8-year observational study. Acta Haematol. Pol. 2021, 52, 446–452. [Google Scholar] [CrossRef]
- Grześk, G.; Rogowicz, D.; Wołowiec, Ł.; Ratajczak, A.; Gilewski, W.; Chudzińska, M.; Sinkiewicz, A.; Banach, J. The clinical significance of drug–food interactions of direct oral anticoagulants. Int. J. Mol. Sci. 2021, 22, 8531. [Google Scholar] [CrossRef] [PubMed]
- Heijman, J.; Hohnloser, S.H.; Camm, A.J. Antiarrhythmic drugs for atrial fibrillation: Lessons from the past and opportunities for the future. EP Eur. 2021, 23 (Suppl. S2), ii14–ii22. [Google Scholar] [CrossRef] [PubMed]
- Shorvon, S. The Drug Treatment of Epilepsy from 1857 to 2015; John Wiley & Sons: Oxford, UK, 2015. [Google Scholar]
- Pérez-Carbonell, L.; Faulkner, H.; Higgins, S.; Koutroumanidis, M.; Leschziner, G. Vagus nerve stimulation for drug-resistant epilepsy. Pract. Neurol. 2020, 20, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.-C.; Lee, H.-S.; Chang, K.-P.; Lee, Y.-Y.; Lai, H.-C.; Hung, P.-L.; Lee, H.-F.; Chi, C.-S. The impact of anti-epileptic drugs on growth and bone metabolism. Int. J. Mol. Sci. 2016, 17, 1242. [Google Scholar] [CrossRef] [PubMed]
- Gopalan, H. Use of Anti-epileptic Drugs for Post Traumatic Seizure: A Global Survey. Ann. Neurosci. 2022, 30, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Rubinos, C.; Waters, B.; Hirsch, L.J. Predicting and Treating Post-traumatic Epilepsy. Curr. Treat. Options Neurol. 2022, 24, 365–381. [Google Scholar] [CrossRef]
- Delen, D.; Davazdahemami, B.; Eryarsoy, E.; Tomak, L.; Valluru, A. Using predictive analytics to identify drug-resistant epilepsy patients. Health Inform. J. 2020, 26, 449–460. [Google Scholar] [CrossRef]
- Grześk, G.; Stolarek, W.; Kasprzak, M.; Grześk, E.; Rogowicz, D.; Wiciński, M.; Krzyżanowski, M. Therapeutic Drug Monitoring of Carbamazepine: A 20-Year Observational Study. J. Clin. Med. 2021, 10, 5396. [Google Scholar] [CrossRef]
- Pong, A.W.; Xu, K.J.; Klein, P. Recent advances in pharmacotherapy for epilepsy. Curr. Opin. Neurol. 2023, 36, 77–85. [Google Scholar] [CrossRef]
- Löscher, W.; Klein, P. The pharmacology and clinical efficacy of antiseizure medications: From bromide salts to cenobamate and beyond. CNS Drugs 2021, 35, 935–963. [Google Scholar] [CrossRef]
- Nissenkorn, A.; Kluger, G.; Schubert-Bast, S.; Bayat, A.; Bobylova, M.; Bonanni, P.; Ceulemans, B.; Coppola, A.; Di Bonaventura, C.; Feucht, M.; et al. Perampanel as precision therapy in rare genetic epilepsies. Epilepsia 2023, 64, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Romanov, A.S.; Sharahova, E.F. Pharmacotherapy of epilepsy: New solutions to old problems. Aspir. Vestn. Povolzhiya 2023, 23, 43–52. [Google Scholar] [CrossRef]
- Elkommos, S.; Mula, M. Current and future pharmacotherapy options for drug-resistant epilepsy. Expert Opin. Pharmacol. 2022, 23, 2023–2034. [Google Scholar] [CrossRef] [PubMed]
- Targownik, L.E.; Fisher, D.A.; Saini, S.D. AGA clinical practice update on de-prescribing of proton pump inhibitors: Expert review. Gastroenterology 2022, 162, 1334–1342. [Google Scholar] [CrossRef] [PubMed]
- Yibirin, M.; De Oliveira, D.; Valera, R.; Plitt, A.E.; Lutgen, S. Adverse effects associated with proton pump inhibitor use. Cureus 2021, 13, e12759. [Google Scholar] [CrossRef] [PubMed]
- Lanas-Gimeno, A.; Hijos, G.; Lanas, Á. Proton pump inhibitors, adverse events and increased risk of mortality. Expert Opin. Drug Saf. 2019, 18, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Bavishi, C.; Dupont, H. Systematic review: The use of proton pump inhibitors and increased susceptibility to enteric infection. Aliment. Pharm. Ther. 2011, 34, 1269–1281. [Google Scholar] [CrossRef]
- Thong, B.K.S.; Ima-Nirwana, S.; Chin, K.-Y. Proton pump inhibitors and fracture risk: A review of current evidence and mechanisms involved. Int. J. Environ. Res. Public Heath 2019, 16, 1571. [Google Scholar] [CrossRef]
- Shiraev, T.P.; Bullen, A. Proton pump inhibitors and cardiovascular events: A systematic review. Heart Lung Circ. 2018, 27, 443–450. [Google Scholar] [CrossRef]
- Nolde, M.; Bahls, M.; Friedrich, N.; Dörr, M.; Dreischulte, T.; Felix, S.B.; Rückert-Eheberg, I.-M.; Ahn, N.; Amann, U.; Schwedhelm, E.; et al. Association of proton pump inhibitor use with endothelial function and metabolites of the nitric oxide pathway: A cross-sectional study. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2021, 41, 198–204. [Google Scholar] [CrossRef]
- Hassan, S.A.; Farooque, U.; Jamal, S.; Yasmin, F.; Kumar, N.; Hussain, T.; Girdhari, K.; Ezeh, J.; Sheikh, F.N.; Choudhry, A. Proton Pump Inhibitors and Cardiovascular Disease: A Review of Clinical Evidence and Biological Mechanisms. Cardiol. Cardiovasc. Med. 2020, 4, 611–619. [Google Scholar]
- Sheikh, S.; Alvi, U.; Soliven, B.; Rezania, K. Drugs that induce or cause deterioration of myasthenia gravis: An update. J. Clin. Med. 2021, 10, 1537. [Google Scholar] [CrossRef] [PubMed]
- Scavone, C.; Mascolo, A.; Ruggiero, R.; Sportiello, L.; Rafaniello, C.; Berrino, L.; Capuano, A. Quinolones-induced musculoskeletal, neurological, and psychiatric ADRs: A pharmacovigilance study based on data from the Italian spontaneous reporting system. Front. Pharmacol. 2020, 11, 428. [Google Scholar] [CrossRef] [PubMed]
- Lagrèze, W.A. Neuro-ophthalmology of trauma. Curr. Opin. Ophthalmol. 1998, 9, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Petzold, A.; Fraser, C.L.; Abegg, M.; Alroughani, R.; Alshowaeir, D.; Alvarenga, R.; Andris, C.; Asgari, N.; Barnett, Y.; Battistella, R.; et al. Diagnosis and classification of optic neuritis. Lancet Neurol. 2022, 21, 1120–1134. [Google Scholar] [CrossRef]
- Spoor, T.C.; Lensink, D.B.; Wilkinson, M.J.; Wchartel, W.C. Treatment of traumatic optic neuropathy with corticosteroids. Am. J. Ophthalmol. 1990, 110, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Pakdel, F.; Sanjari, M.S.; Naderi, A.; Pirmarzdashti, N.; Haghighi, A.; Kashkouli, M.B. Erythropoietin in treatment of methanol optic neuropathy. J. Neuro-Ophthalmol. 2018, 38, 167–171. [Google Scholar] [CrossRef]
- Kraut, J.A.; Mullins, M.E. Toxic alcohols. N. Engl. J. Med. 2018, 378, 270–280. [Google Scholar] [CrossRef]
- Bron, A.M.; Maupoil, V.; Garcher, C.; Guyonnet, G.; Chelqi, E.H.; Rochette, L. Modification of vitamin E during ischemia-reperfusion in rat retina. Investig. Ophthalmol. Vis. Sci. 1995, 36, 1084–1087. [Google Scholar]
- DeBusk, A.; Moster, M.L. Gene therapy in optic nerve disease. Curr. Opin. Ophthalmol. 2018, 29, 234–238. [Google Scholar] [CrossRef]
- Bell, D.C.; Fermini, B. Use of automated patch clamp in cardiac safety assessment: Past, present and future perspectives. J. Pharmacol. Tox. Met. 2021, 110, 107072. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, M.; Fijałkowski, Ł.; Kubacka, M.; Sałat, K.; Grześk, G.; Nowaczyk, J.; Nowaczyk, A. Antiepileptic drug tiagabine does not directly target key cardiac ion channels Kv11. 1, Nav1. 5 and Cav1. 2. Molecules 2021, 26, 3522. [Google Scholar] [CrossRef]
- Villa, C.; Combi, R. Potassium channels and human epileptic phenotypes: An updated overview. Front. Cell. Neurosci. 2016, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhu, Y.; Cheng, J.; Tao, J. Ion channels in epilepsy: Blasting fuse for neuronal hyperexcitability. Epilepsy-Adv. Diagn. Ther. 2019, 1–12. [Google Scholar] [CrossRef]
- D’Adamo, M.C.; Liantonio, A.; Conte, E.; Pessia, M.; Imbrici, P. Ion channels involvement in neurodevelopmental disorders. Neuroscience 2020, 440, 337–359. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, L.; Yang, X.; Yao, S.; Wang, H.; An, J.; Jin, H.; Wen, G.; Tuo, B. Pathology and physiology of acid-sensitive ion channels in the digestive system. Int. J. Mol. Med. 2022, 50, 1–12. [Google Scholar] [CrossRef]
- Heusser, S.A.; Pless, S.A. Acid-sensing ion channels as potential therapeutic targets. Trends Pharmacol. Sci. 2021, 42, 1035–1050. [Google Scholar] [CrossRef]
- Vullo, S.; Kellenberger, S. A molecular view of the function and pharmacology of acid-sensing ion channels. Pharmacol. Res. 2020, 154, 104166. [Google Scholar] [CrossRef]
- Cannon, S.C. Channelopathies of skeletal muscle excitability. Compr. Physiol. 2015, 5, 761. [Google Scholar]
- Xu, L.; Ding, X.; Wang, T.; Mou, S.; Sun, H.; Hou, T. Voltage-gated sodium channels: Structures, functions, and molecular modeling. Drug Discov. Today 2019, 24, 1389–1397. [Google Scholar] [CrossRef]
- Imbrici, P.; Liantonio, A.; Camerino, G.M.; De Bellis, M.; Camerino, C.; Mele, A.; Giustino, A.; Pierno, S.; De Luca, A.; Tricarico, D. Therapeutic approaches to genetic ion channelopathies and perspectives in drug discovery. Front. Pharmacol. 2016, 7, 121. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, N.; Canfora, I.; Camerino, G.M.; Pierno, S. Therapeutic targets in amyotrophic lateral sclerosis: Focus on ion channels and skeletal muscle. Cells 2022, 11, 415. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yan, N.; Yan, Z. Structure-Function Relationship of the Voltage-Gated Calcium Channel Ca v 1.1 Complex. Membr. Dyn. Calcium Signal. 2017, 350, 23–39. [Google Scholar] [CrossRef]
- Zamponi, G.W.; Striessnig, J.; Koschak, A.; Dolphin, A.C. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev. 2015, 67, 821–870. [Google Scholar] [CrossRef] [PubMed]
- Mergler, S.; Pleyer, U. The human corneal endothelium: New insights into electrophysiology and ion channels. Prog. Retin. Eye Res. 2007, 26, 359–378. [Google Scholar] [CrossRef] [PubMed]
- Giblin, J.P.; Comes, N.; Strauss, O.; Gasull, X. Ion channels in the eye: Involvement in ocular pathologies. Adv. Protein Chem. Str. 2016, 104, 157–231. [Google Scholar]
- Wimmers, S.; Karl, M.O.; Strauss, O. Ion channels in the RPE. Prog. Retin. Eye Res. 2007, 26, 263–301. [Google Scholar] [CrossRef]
- Puro, D.G. Role of ion channels in the functional response of conjunctival goblet cells to dry eye. Am. J. Physiol.-Cell Phys. 2018, 315, C236–C246. [Google Scholar] [CrossRef]
- Van Hook, M.J.; Nawy, S.; Thoreson, W.B. Voltage-and calcium-gated ion channels of neurons in the vertebrate retina. Prog. Retin. Eye Res. 2019, 72, 100760. [Google Scholar] [CrossRef]
- Leech, C.A.; Holz, G.G., IV. Application of patch clamp methods to the study of calcium currents and calcium channels. Methods Cell Biol. 1994, 40, 135. [Google Scholar]
- Li, G.R.; Sun, H.; Deng, X.; Lau, C.P. Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells 2005, 23, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.-F.; Gomez, A.M.; Morgan, J.P.; Lederer, W.; Leaf, A. Suppression of voltage-gated L-type Ca2+ currents by polyunsaturated fatty acids in adult and neonatal rat ventricular myocytes. Proc. Natl. Acad. Sci. USA 1997, 94, 4182–4187. [Google Scholar] [CrossRef] [PubMed]
- González-Garrido, A.; Domínguez-Pérez, M.; Jacobo-Albavera, L.; López-Ramírez, O.; Guevara-Chávez, J.G.; Zepeda-García, O.; Iturralde, P.; Carnevale, A.; Villarreal-Molina, T. Compound Heterozygous KCNQ1 Mutations Causing Recessive Romano–Ward Syndrome: Functional Characterization by Mutant Co-expression. Front. Cardiovasc. Med. 2021, 8, 625449. [Google Scholar] [CrossRef] [PubMed]
- Priori, S.G.; Schwartz, P.J.; Napolitano, C.; Bianchi, L.; Dennis, A.; Fusco, M.D.; Brown, A.M.; Casari, G. A recessive variant of the Romano-Ward long-QT syndrome? Circulation 1998, 97, 2420–2425. [Google Scholar] [CrossRef]
- Liora, S.; Lijuan, M.; Nicole, S.; Yoni, H.; Asher, P.; Reuven, W.; Joel, H.; Olaf, P.; Bernard, A. Calmodulin Is Essential for Cardiac I KS Channel Gating and Assembly. Circ. Res. 2006, 98, 1055–1063. [Google Scholar]
- Thomas, P.; Smart, T.G. HEK293 cell line: A vehicle for the expression of recombinant proteins. J. Pharmacol. Tox. Met. 2005, 51, 187–200. [Google Scholar] [CrossRef]
- Page, M.J.; E McKenzie, J.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 1–9. [Google Scholar]
First Generation | Second Generation | Third Generation |
---|---|---|
carbamazepine (CBZ) | felbamate (FBM) | eslicarbazepine acetate (ESL) |
clobazam (CLB) | gabapentin (GPT) | lacosamide (LCS) |
clonazepam (CZP) | lamotrigine (LTG) | perampanel (PER) |
ethosuximide (ETS) | levetiracetam (LEV) | retigabine (RTG) |
phenobarbital (PB) | oxcarbazepine (OXC) | rufinamide (RUF) |
phenytoin (PHT) | pregabalin (PGB) | stiripentol (STP) |
sulthiame (STM) | tiagabine (TGB) | fenfluramine (FFA) |
valproic acid (VPA) | topiramate (TPM) | cenobamate (CMB) |
vigabatrin (GVG) | ganaxolone (GNX) | |
zonisamide (ZNS) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witczyńska, A.; Alaburda, A.; Grześk, G.; Nowaczyk, J.; Nowaczyk, A. Unveiling the Multifaceted Problems Associated with Dysrhythmia. Int. J. Mol. Sci. 2024, 25, 263. https://doi.org/10.3390/ijms25010263
Witczyńska A, Alaburda A, Grześk G, Nowaczyk J, Nowaczyk A. Unveiling the Multifaceted Problems Associated with Dysrhythmia. International Journal of Molecular Sciences. 2024; 25(1):263. https://doi.org/10.3390/ijms25010263
Chicago/Turabian StyleWitczyńska, Adrianna, Aidas Alaburda, Grzegorz Grześk, Jacek Nowaczyk, and Alicja Nowaczyk. 2024. "Unveiling the Multifaceted Problems Associated with Dysrhythmia" International Journal of Molecular Sciences 25, no. 1: 263. https://doi.org/10.3390/ijms25010263
APA StyleWitczyńska, A., Alaburda, A., Grześk, G., Nowaczyk, J., & Nowaczyk, A. (2024). Unveiling the Multifaceted Problems Associated with Dysrhythmia. International Journal of Molecular Sciences, 25(1), 263. https://doi.org/10.3390/ijms25010263