Ethyl Acetate Fractions of Tectona Grandis Crude Extract Modulate Glucose Absorption and Uptake as Well as Antihyperglycemic Potential in Fructose–Streptozotocin-Induced Diabetic Rats
Abstract
:1. Introduction
2. Results
2.1. Total Phenol Content of the Crude and the Fractions of Ethanol Extract
2.2. Sequential Extraction of T. grandis Leaves and Antidiabetic Activity
2.3. Fractionation of T. grandis Leaves Crude Extract and Antidiabetic Activity Ex Vivo
2.4. Ethyl Acetate Fractions Studies in Fructose–Streptozotocin Diabetic Rats
2.4.1. Effect on Animal Body Weight, Food, and Fluid Intake
2.4.2. Effect on Blood Glucose
2.4.3. Effect on Oral Glucose Tolerance Test
2.4.4. Effect on Liver Glycogen and Carbohydrate Metabolism Enzymes
2.4.5. Effect on Indices of Hepatic and Renal Damages
2.4.6. Effect on Diabetes Indexes (Serum Insulin, Insulin Resistance, and Pancreatic β-Cell Function)
2.4.7. Effect on Pancreatic β-Cell Morphology
2.5. Phytochemical Constituents
3. Discussion
4. Material and Methods
4.1. Plant Material
4.2. General Experimental Procedures
4.3. Sequential Extraction of Crude Extract
4.4. Fractionation of the Crude Extract
4.4.1. Estimation of Total Phenol Content
4.4.2. Estimation of α-Glucosidase Inhibitory Activity
4.5. Ex Vivo Antidiabetic Assay
4.5.1. Estimation of Intestinal Glucose Absorption
4.5.2. Estimation of Muscle Glucose Absorption
4.6. In Vivo Antidiabetic Assay
4.6.1. Experimental Animals
4.6.2. Animal Grouping and Induction of Diabetes
- Normal control group (NC);
- Normal toxicological control + 300 mg/Kg BW of the fraction dissolved in 5% DMSO (NTTG);
- Diabetic control group (DBC);
- Diabetic + low dose (150 mg/kg BW dissolved in 5% DMSO) of the fraction (DTGL);
- Diabetic + high dose (300 mg/kg BW dissolved in 5% DMSO) of the fraction (DTGH);
- Diabetic + metformin (300 mg/kg BW dissolved in 5% DMSO) (DBM).
4.6.3. Intervention Period
4.6.4. Oral Glucose Tolerance Test (OGTT)
4.6.5. Collection of Blood, Serum, and Organs
4.6.6. Biochemical Analysis
4.6.7. Liver Glycogen Estimation
4.6.8. Determination of Liver Glucose-6-Phosphatase Activity
4.6.9. Homeostatic Model Assessment
4.6.10. Histological Examination of Pancreatic Tissue
4.7. Gas Chromatography–Mass Spectrometric (GC–MS) Analysis
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Chilelli, N.C.; Burlina, S.; Lapolla, A. AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: A “glycoxidation-centric” point of view. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, D.; Chavez, A.O. Defects in insulin secretion and action in the pathogenesis of type 2 diabetes mellitus. Curr. Diabetes Rep. 2010, 10, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Lorenzati, B.; Zucco, C.; Miglietta, S.; Lamberti, F.; Bruno, G. Oral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of ActionOral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of Action. Pharmaceuticals 2010, 3, 3005–3020. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, M.; Papi, L.; Gori, F.; Turillazzi, E. Natural Products in Neurodegenerative Diseases: A Great Promise but an Ethical Challenge. Int. J. Mol. Sci. 2019, 20, 5170. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.S.; Bhosle, D.; Janghel, A.; Deo, S.; Raut, P.; Verma, C.; Agrawal, M.; Amit, N.; Sharma, M.; Giri, T.; et al. Indian medicinal plants used for treatment of rheumatoid arthritis. Res. J. Pharm. Technol. 2015, 8, 597–610. [Google Scholar] [CrossRef]
- Bitchagno, G.T.M.; Sama Fonkeng, L.; Kopa, T.K.; Tala, M.F.; Kamdem Wabo, H.; Tume, C.B.; Tane, P.; Kuiate, J.R. Antibacterial activity of ethanolic extract and compounds from fruits of Tectona grandis (Verbenaceae). BMC Complement. Altern. Med. 2015, 15, 265. [Google Scholar] [CrossRef]
- Varma, S.B.; Giri, S.P. Study of wound healing activity of Tectona grandis Linn. leaf extract on rats. Anc. Sci. Life 2013, 32, 241. [Google Scholar]
- Rao, K.; McBride, T.; Oleson, J. Recognition and evaluation of lapachol as an antitumor agent. Cancer Res. 1968, 28, 1952–1954. [Google Scholar]
- Asif, M. In vivo analgesic and antiinflammatory effects of Tectona grandis Linn. stem bark extracts. Malays. J. Pharm. Sci. 2011, 9, 1–11. [Google Scholar]
- Rajaram, K. Antioxidant and anti-diabetic activity of Tectona grandis Linn. in alloxan-induced Albino rats. Drugs 2013, 4, 5. [Google Scholar]
- Han, M.; Yang, F.; Zhang, K.; Ni, J.; Zhao, X.; Chen, X.; Zhang, Z.; Wang, H.; Lu, J.; Zhang, Y. Antioxidant, Anti-Inflammatory and Anti-Diabetic Activities of Tectona grandis Methanolic Extracts, Fractions, and Isolated Compounds. Antioxidants 2023, 12, 664. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Rajasekaran, A.; Kumar, K.M. Antidiabetic, antihyperlipidemic and antioxidant potential of methanol extract of Tectona grandis flowers in streptozotocin induced diabetic rats. Asian Pac. J. Trop. Med. 2011, 4, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Samanta, K. Hypoglycemic activity of methanolic extract of Tectona grandis linn. Root in alloxan induced diabetic rats. J. Appl. Pharm. Sci. 2011, 1, 106–109. [Google Scholar]
- Mishra, B.; Kar, D.M.; Maharana, L.; Dash, S.; Mishra, G.P. Hypoglycemic activity of methanol fraction of Tectona grandis (Linn) bark in experimental rat models. Res. J. Pharm. Technol. 2021, 14, 4247–4252. [Google Scholar] [CrossRef]
- Tomlinson, T.R.; Akerele, O. Medicinal Plants: Their Role in Health and Biodiversity; University of Pennsylvania Press: Philadelphia, PA, USA, 2015. [Google Scholar]
- Song, H.; Lai, J.; Tang, Q.; Zheng, X. Mulberry ethanol extract attenuates hepatic steatosis and insulin resistance in high-fat diet–fed mice. Nutr. Res. 2016, 36, 710–718. [Google Scholar] [CrossRef]
- Dall’Asta, M.; Bayle, M.; Neasta, J.; Scazzina, F.; Bruni, R.; Cros, G.; Del Rio, D.; Oiry, C. Protection of pancreatic β-cell function by dietary polyphenols. Phytochem. Rev. 2015, 14, 933–959. [Google Scholar] [CrossRef]
- Lodato, M.; Plaisance, V.; Pawlowski, V.; Kwapich, M.; Barras, A.; Buissart, E.; Dalle, S.; Szunerits, S.; Vicogne, J.; Boukherroub, R. Venom Peptides, Polyphenols and Alkaloids: Are They the Next Antidiabetics That Will Preserve β-Cell Mass and Function in Type 2 Diabetes? Cells 2023, 12, 940. [Google Scholar] [CrossRef]
- Dominguez Avila, J.A.; Rodrigo Garcia, J.; Gonzalez Aguilar, G.A.; De la Rosa, L.A. The antidiabetic mechanisms of polyphenols related to increased glucagon-like peptide-1 (GLP1) and insulin signaling. Molecules 2017, 22, 903. [Google Scholar] [CrossRef]
- Fernández-Millán, E.; Ramos, S.; Alvarez, C.; Bravo, L.; Goya, L.; Martín, M.Á. Microbial phenolic metabolites improve glucose-stimulated insulin secretion and protect pancreatic beta cells against tert-butyl hydroperoxide-induced toxicity via ERKs and PKC pathways. Food Chem. Toxicol. 2014, 66, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, G.; Martel, F. The effect of dietary polyphenols on intestinal absorption of glucose and fructose: Relation with obesity and type 2 diabetes. Food Rev. Int. 2019, 35, 390–406. [Google Scholar] [CrossRef]
- Jin, T.; Song, Z.; Weng, J.; Fantus, I.G. Curcumin and other dietary polyphenols: Potential mechanisms of metabolic actions and therapy for diabetes and obesity. Am. J. Physiol. Endocrinol. Metab. 2018, 314, E201–E205. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Mangelinckx, S.; Ma, L.; Wang, Z.; Li, W.; De Kimpe, N. Caffeoylquinic acid derivatives isolated from the aerial parts of Gynura divaricata and their yeast α-glucosidase and PTP1B inhibitory activity. Fitoterapia 2014, 99, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, L.; Fan, S.; Song, S.; Min, H.; Wu, Y.; He, X.; Liang, Q.; Wang, Y.; Yi, L. Puerarin acts on the skeletal muscle to improve insulin sensitivity in diabetic rats involving μ-opioid receptor. Eur. J. Pharmacol. 2018, 818, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Zhang, Z.; Zhao, Y.; Kang, C.; Zhang, X.; Tian, Y.; Yu, J.; Cao, H.; Wang, M. The anti-diabetic activity of polyphenols-rich vinegar extract in mice via regulating gut microbiota and liver inflammation. Food Chem. 2022, 393, 133443. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Rajasekaran, A.; Kumar, K.M. Evaluation of anti–inflammatory and analgesic potential of methanol extract of Tectona grandis flowers. Asian Pac. J. Trop. Biomed. 2011, 1, S155–S158. [Google Scholar] [CrossRef]
- Kim, S.-H.; Jo, S.-H.; Kwon, Y.-I.; Hwang, J.-K. Effects of onion (Allium cepa L.) extract administration on intestinal α-glucosidases activities and spikes in postprandial blood glucose levels in SD rats model. Int. J. Mol. Sci. 2011, 12, 3757–3769. [Google Scholar] [CrossRef]
- Zhao, C.; Wan, X.; Zhou, S.; Cao, H. Natural polyphenols: A potential therapeutic approach to hypoglycemia. EFood 2020, 1, 107–118. [Google Scholar] [CrossRef]
- Williamson, G. Effects of Polyphenols on Glucose-Induced Metabolic Changes in Healthy Human Subjects and on Glucose Transporters. Mol. Nutr. Food Res. 2022, 66, 2101113. [Google Scholar] [CrossRef]
- Dimitriadis, G.D.; Maratou, E.; Kountouri, A.; Board, M.; Lambadiari, V. Regulation of postabsorptive and postprandial glucose metabolism by insulin-dependent and insulin-independent mechanisms: An integrative approach. Nutrients 2021, 13, 159. [Google Scholar] [CrossRef] [PubMed]
- Parry, S.A.; Turner, M.C.; Woods, R.M.; James, L.J.; Ferguson, R.A.; Cocks, M.; Whytock, K.L.; Strauss, J.A.; Shepherd, S.O.; Wagenmakers, A.J. High-fat overfeeding impairs peripheral glucose metabolism and muscle microvascular eNOS Ser1177 phosphorylation. J. Clin. Endocrinol. Metab. 2020, 105, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Shahwan, M.; Alhumaydhi, F.; Ashraf, G.M.; Hasan, P.M.; Shamsi, A. Role of polyphenols in combating Type 2 Diabetes and insulin resistance. Int. J. Biol. Macromol. 2022, 206, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.-H.; Ho, C.-T.; Chen, Z.-F.; Chen, L.-C.; Whang-Peng, J.; Lin, T.-N.; Ho, Y.-S. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. J. Food Drug Anal. 2018, 26, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Zakłos-Szyda, M.; Pawlik, N.; Polka, D.; Nowak, A.; Koziołkiewicz, M.; Podsędek, A. Viburnum opulus fruit phenolic compounds as cytoprotective agents able to decrease free fatty acids and glucose uptake by Caco-2 cells. Antioxidants 2019, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Alkhalidy, H.; Liu, D. The emerging role of polyphenols in the management of type 2 diabetes. Molecules 2021, 26, 703. [Google Scholar] [CrossRef] [PubMed]
- Pasi, R.; Ravi, K.S. Type 1 diabetes mellitus in pediatric age group: A rising endemic. J. Fam. Med. Prim. Care 2022, 11, 27. [Google Scholar]
- Wilson, R.D.; Islam, M.S. Fructose-fed streptozotocin-injected rat: An alternative model for type 2 diabetes. Pharmacol. Rep. 2012, 64, 129–139. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Islam, M.S. Effects of butanol fraction of Ziziphus mucronata root ethanol extract on glucose homeostasis, serum insulin and other diabetes-related parameters in a murine model for type 2 diabetes. Pharm. Biol. 2017, 55, 416–422. [Google Scholar] [CrossRef]
- Son, J.; Accili, D. Reversing pancreatic β-cell dedifferentiation in the treatment of type 2 diabetes. Exp. Mol. Med. 2023, 55, 1652–1658. [Google Scholar] [CrossRef]
- Hudish, L.I.; Reusch, J.E.; Sussel, L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J. Clin. Investig. 2019, 129, 4001–4008. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lee, D.Y.; Lee, Y.J.; Park, K.J.; Kim, K.H.; Kim, J.W.; Kim, W.-H. Chronic alcohol consumption potentiates the development of diabetes through pancreatic β-cell dysfunction. World J. Biol. Chem. 2015, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Balakumar, M.; Prabhu, D.; Sathishkumar, C.; Prabu, P.; Rokana, N.; Kumar, R.; Raghavan, S.; Soundarajan, A.; Grover, S.; Batish, V.K. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur. J. Nutr. 2018, 57, 279–295. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Dang, H.N.; Yong, J.; Chui, W.-S.; Dizon, M.P.; Yaw, C.K.; Kaufman, D.L. Oral treatment with γ-aminobutyric acid improves glucose tolerance and insulin sensitivity by inhibiting inflammation in high fat diet-fed mice. PLoS ONE 2011, 6, e25338. [Google Scholar] [CrossRef] [PubMed]
- Gerich, J.E.; Meyer, C.; Woerle, H.J.; Stumvoll, M. Renal gluconeogenesis: Its importance in human glucose homeostasis. Diabetes Care 2001, 24, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Fabbrini, E.; Magkos, F. Hepatic steatosis as a marker of metabolic dysfunction. Nutrients 2015, 7, 4995–5019. [Google Scholar] [CrossRef] [PubMed]
- Alimohammadi, S.; Hobbenaghi, R.; Javanbakht, J.; Kheradmand, D.; Mortezaee, R.; Tavakoli, M.; Khadivar, F.; Akbari, H. RETRACTED ARTICLE: Protective and antidiabetic effects of extract from Nigella sativa on blood glucose concentrations against streptozotocin (STZ)-induced diabetic in rats: An experimental study with histopathological evaluation. Diagn. Pathol. 2013, 8, 137. [Google Scholar] [CrossRef]
- Rizza, R.A. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: Implications for therapy. Diabetes 2010, 59, 2697–2707. [Google Scholar] [CrossRef]
- Hatting, M.; Tavares, C.D.; Sharabi, K.; Rines, A.K.; Puigserver, P. Insulin regulation of gluconeogenesis. Ann. N. Y. Acad. Sci. 2018, 1411, 21–35. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Shi, C.-X.; Gao, R.; Sun, H.-J.; Xiong, X.-Q.; Ding, L.; Chen, Q.; Li, Y.-H.; Wang, J.-J.; Kang, Y.-M. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin. Sci. 2015, 129, 839–850. [Google Scholar] [CrossRef]
- Lewis, G.F.; Carpentier, A.C.; Pereira, S.; Hahn, M.; Giacca, A. Direct and indirect control of hepatic glucose production by insulin. Cell Metab. 2021, 33, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Chourpiliadis, C.; Mohiuddin, S.S. Biochemistry, Gluconeogenesis; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Giri, B.; Dey, S.; Das, T.; Sarkar, M.; Banerjee, J.; Dash, S.K. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed. Pharmacother. 2018, 107, 306–328. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules 2022, 27, 950. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, N.; Thornalley, P.J. Protein glycation–biomarkers of metabolic dysfunction and early-stage decline in health in the era of precision medicine. Redox Biol. 2021, 42, 101920. [Google Scholar] [CrossRef] [PubMed]
- Akpan, U.A.; Eka, O.; Ekanemesang, U.; Akpanabiatu, M. Effect of Ethanolic Leaf Extract of Heinsia crinita (Atama) on the haematological indices and lipid profile in Normoglycemic and Diabetic Albino Wistar Rats. Niger. J. Pharm. Appl. Sci. Res. 2016, 5, 48–53. [Google Scholar]
- Ghaisas, M.; Navghare, V.; Takawale, A.; Zope, V.; Phanse, M. Efecto antidiabético y neuroprotector de Tectona grandis Linn. En la diabetes inducida Aloxana. Ars Pharm. (Internet) 2010, 51, 195–206. [Google Scholar]
- Aslan, G.; Afsar, B.; Sag, A.A.; Camkiran, V.; Erden, N.; Yilmaz, S.; Siriopol, D.; Incir, S.; You, Z.; Garcia, M.L. The effect of urine pH and urinary uric acid levels on the development of contrast nephropathy. Kidney Blood Press. Res. 2020, 45, 131–141. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, V.; Prakash, O. Enzymes inhibition and antidiabetic effect of isolated constituents from Dillenia indica. BioMed Res. Int. 2013, 2013, 382063. [Google Scholar] [CrossRef]
- Oyebode, O.A.; Erukainure, O.L.; Chukwuma, C.I.; Ibeji, C.U.; Koorbanally, N.A.; Islam, S. Boerhaavia diffusa inhibits key enzymes linked to type 2 diabetes in vitro and in silico; and modulates abdominal glucose absorption and muscle glucose uptake ex vivo. Biomed. Pharmacother. 2018, 106, 1116–1125. [Google Scholar] [CrossRef]
- Nualkaew, S.; Padee, P.; Talubmook, C. Hypoglycemic activity in diabetic rats of stigmasterol and sitosterol-3-O--D-glucopyranoside isolated from Pseuderanthemum palatiferum (Nees) Radlk. leaf extract. J. Med. Plants Res. 2015, 9, 629–635. [Google Scholar]
- Palani, S.; Raja, S.; Kumar, R.P.; Sakthivel, K.; Devi, K.; Kumar, B.S. Phytoconstituents evaluation and antihyperglycemic and antihyperlipidemic effects of Mahonia leschenaultia Takeda in streptozotocin-induced diabetic rats. Toxicol. Env. Chem. 2010, 92, 1199–1211. [Google Scholar] [CrossRef]
- Mnafgui, K.; Kchaou, M.; Ben Salah, H.; Hajji, R.; Khabbabi, G.; Elfeki, A.; Allouche, N.; Gharsallah, N. Essential oil of Zygophyllum album inhibits key-digestive enzymes related to diabetes and hypertension and attenuates symptoms of diarrhea in alloxan-induced diabetic rats. Pharm. Biol. 2016, 54, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K.J.A. Methods for testing antioxidant activity. Analyst 2002, 127, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Ademiluyi, A.O.; Oboh, G.; Aragbaiye, F.P.; Oyeleye, S.I.; Ogunsuyi, O.B. Antioxidant properties and in vitro α-amylase and α-glucosidase inhibitory properties of phenolics constituents from different varieties of Corchorus spp. J. Taibah Univ. Med. Sci. 2015, 10, 278–287. [Google Scholar] [CrossRef]
- Chukwuma, C.I.; Islam, M.S. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: A multi-mode study. Food Funct. 2015, 6, 955–962. [Google Scholar] [CrossRef]
- Roehrig, K.L.; Allred, J.B. Direct enzymatic procedure for the determination of liver glycogen. Anal. Biochem. 1974, 58, 414–421. [Google Scholar] [CrossRef]
- Baginski, E.S.; Foà, P.P.; Zak, B. Glucose-6-phosphatase. In Methods of Enzymatic Analysis; Elsevier: Amsterdam, The Netherlands, 1974; pp. 876–880. [Google Scholar]
Crude Extract | α-Glucosidase IC50 Values (µg/mL) | Total Phenol Content (mg/g GAE) |
---|---|---|
Ethyl Acetate | 32.17 ± 4.46 b | 10.34 ± 3.87 b |
Ethanol | 16.34 ± 5.12 a | 25.84 ± 6.53 a |
Aqueous | 28.43 ± 6.05 b | 14.75 ± 2.94 c |
Fractions extract | ||
Dichloromethane | 67.61 ± 3.42 c | 38.72 ± 7.03 d |
Ethyl acetate | 36.31 ± 2.12 a | 132.55 ± 6.25 a |
Butanol | 91.20 ± 2.14 d | 51.91 ± 4.13 c |
Aqueous | 51.29 ± 3.05 b | 73.25 ± 5.97 b |
NC | DBC | DTGL | DTGH | DBM | NTTG | |
---|---|---|---|---|---|---|
Insulin (ρmol/L) | 72.60 ± 2.47 d | 31.61 ± 3.20 a | 49.99 ± 3.29 b | 61.81 ± 4.35 c | 59.23 ± 1.70 c | 74.81 ± 0.72 d |
HOMA-IR | 1.85 ± 0.76 a | 8.61 ± 1.54 c | 5.95 ± 1.1 b | 3.06 ± 0.46 b | 4.32 ± 0.96 b | 1.92 ± 0.54 a |
HOMA-β | 64.34 ± 2.45 d | 2.9 ± 0.32 a | 32.01 ± 1.96 c | 18.93 ± 3.67 b | 13.59 ± 2.34 b | 67.11 ± 1.23 d |
Liver glycogen (mg/g tissue) | 5.36 ± 0.31 e | 1.63 ± 0.88 a | 2.32 ± 0.54 b | 4.18 ± 0.26 d | 3.58 ± 0.18 c | 5.04 ± 0.66 e |
Glucose-6-phosphatase (U) | 1.92 ± 0.03 a | 6.21 ± 0.08 e | 2.51 ± 0.22 d | 2.21 ± 0.03 c | 2.01 ± 0.03 ab | 1.98 ± 0.04 a |
Fructosamine F (µmol/L) | 119 ± 3.31 a | 867 ± 11.24 c | 534.13 ± 14 b | 144 ± 15.34 b | 633 ± 17.28 b | 114 ± 6.88 a |
Urea (mg/dL) | 54.75 ± 5.21 a | 75.00 ± 3.12 c | 61.60 ± 2.27 b | 59.45 ± 3.04 b | 61.25 ± 1.25 b | 55.75 ± 4.48 a |
Uric acid (mg/dL) | 1.14 ± 0.17 a | 4.80 ± 0.92 c | 2.35 ± 0.54 b | 2.53 ± 0.21 b | 1.95 ± 0.14 b | 0.75 ± 0.53 a |
Creatine (U/L) | 2.13 ± 0.03 a | 2.81 ± 0.08 d | 2.41 ± 0.22 bc | 2.3 ± 0.03 b | 2.61 ± 0.03 b | 2.23 ± 0.04 b |
Retention Time (min) | Compounds | Relative Abundance (%) |
---|---|---|
Ethyl Acetate | ||
14.39 | Phytol, acetate | 2.59 |
15.14 | 2,6,10,15-Tetramethylheptadecane | 1.19 |
15.57 | 2-Ethyl-2-methyl-1-tridecanol | 1.81 |
17.09 | Phytol | 5.17 |
19.00 | 2-methylhexacosane | 2.03 |
20.75 | Urs-12-en-28-oic acid, 3-hydroxy-, methyl ester, (3.beta.)- | 1.97 |
24.12 | Ursane-3,12-diol | 1.05 |
24.23 | Cholane-5,20(22)-diene-3b-phenoxy | 3.46 |
24.31 | 22-Stigmasten-3-one | 6.82 |
Ethanol | ||
4.06 | Linolenic acid | 3.24 |
14.83 | Phytol, acetate | 2.68 |
15.12 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 2.4 |
15.96 | delta-Decalactone | 8.07 |
16.55 | Hexadecanoic acid, ethyl ester | 2.71 |
17.59 | 9,12-Octadecadienoic acid, ethyl ester | 12.21 |
17.82 | Linolenic acid | 7.17 |
19.42 | 1,1,6-trimethyl-3-methylene-2-(3,6,9,13-tetramethyl-6-ethenye-10,14-dimethylene-pentadec-4-enyl)cyclohexane | 0.38 |
20.19 | Ethyl arachidate | 2.67 |
21.23 | Ethyl docosanoate | 2.69 |
24 | Stigmast-5-en-3-ol, oleate | 1.15 |
24.39 | Stigmasterol acetate | 1.15 |
24.73 | Vitamin A aldehyde | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanni, O.; Nkomozepi, P.; Islam, M.S. Ethyl Acetate Fractions of Tectona Grandis Crude Extract Modulate Glucose Absorption and Uptake as Well as Antihyperglycemic Potential in Fructose–Streptozotocin-Induced Diabetic Rats. Int. J. Mol. Sci. 2024, 25, 28. https://doi.org/10.3390/ijms25010028
Sanni O, Nkomozepi P, Islam MS. Ethyl Acetate Fractions of Tectona Grandis Crude Extract Modulate Glucose Absorption and Uptake as Well as Antihyperglycemic Potential in Fructose–Streptozotocin-Induced Diabetic Rats. International Journal of Molecular Sciences. 2024; 25(1):28. https://doi.org/10.3390/ijms25010028
Chicago/Turabian StyleSanni, Olakunle, Pilani Nkomozepi, and Md. Shahidul Islam. 2024. "Ethyl Acetate Fractions of Tectona Grandis Crude Extract Modulate Glucose Absorption and Uptake as Well as Antihyperglycemic Potential in Fructose–Streptozotocin-Induced Diabetic Rats" International Journal of Molecular Sciences 25, no. 1: 28. https://doi.org/10.3390/ijms25010028
APA StyleSanni, O., Nkomozepi, P., & Islam, M. S. (2024). Ethyl Acetate Fractions of Tectona Grandis Crude Extract Modulate Glucose Absorption and Uptake as Well as Antihyperglycemic Potential in Fructose–Streptozotocin-Induced Diabetic Rats. International Journal of Molecular Sciences, 25(1), 28. https://doi.org/10.3390/ijms25010028