Uterine Aging and Reproduction: Dealing with a Puzzle Biologic Topic
Abstract
:1. Introduction
2. Results
2.1. Uterine Aging in Humans
2.2. Uterine Aging in Animals
3. Discussion
3.1. Uterine Aging and Contractility
3.2. Uterine Aging and Epigenetics
3.3. Uterine Aging and Neurotransmission
3.4. Uterine Aging and Human Endometrium
3.5. Uterine Aging and Animal Experiments
3.6. Uterine Aging and Inflammation
3.7. Uterine Aging and Pregnancy
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Zhang, Z.; Ren, Y.; Wang, Y.; Fang, J.; Yue, H.; Ma, S.; Guan, F. Aging and age-related diseases: From mechanisms to therapeutic strategies. Biogerontology 2021, 22, 165–187. [Google Scholar] [CrossRef] [PubMed]
- Shirasuna, K.; Iwata, H. Effect of aging on the female reproductive function. Contracept. Reprod. Med. 2017, 2, 23. [Google Scholar] [CrossRef] [PubMed]
- Mulholland, J.; Jones, C.J. Characteristics of uterine aging. Microsc. Res. Tech. 1993, 25, 148–168. [Google Scholar] [CrossRef] [PubMed]
- Cano, F.; Simón, C.; Remohí, J.; Pellicer, A. Effect of aging on the female reproductive system: Evidence for a role of uterine senescence in the decline in female fecundity. Fertil. Steril. 1995, 64, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Meldrum, D.R. Female reproductive aging—Ovarian and uterine factors. Fertil. Steril. 1993, 59, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Arrowsmith, S.; Robinson, H.; Noble, K.; Wray, S. What do we know about what happens to myometrial function as women age? J. Muscle Res. Cell Motil. 2012, 33, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Sugai, S.; Nishijima, K.; Haino, K.; Yoshihara, K. Pregnancy outcomes at maternal age over 45 years: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 2023, 5, 100885. [Google Scholar] [CrossRef] [PubMed]
- Ratiu, D.; Sauter, F.; Gilman, E.; Ludwig, S.; Ratiu, J.; Mallmann-Gottschalk, N.; Mallmann, P.; Gruttner, B.; Baek, S. Impact of Advanced Maternal Age on Maternal and Neonatal Outcomes. In Vivo 2023, 37, 1694–1702. [Google Scholar] [CrossRef]
- Landry, M.; Allouche, M.; Vayssière, C.; Guerby, P.; Groussolles, M. Maternal and perinatal outcomes in women aged 42 years or older. Int. J. Gynaecol. Obstet. 2023. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Song, Y.; Wang, L.; Ai, J.; Li, K. Aging conundrum: A perspective for ovarian aging. Front. Endocrinol. 2022, 13, 952471. [Google Scholar] [CrossRef]
- Crankshaw, D.J.; O’Brien, Y.M.; Crosby, D.A.; Morrison, J.J. Maternal Age and Contractility of Human Myometrium in Pregnancy. Reprod. Sci. 2015, 22, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Jovanović, S.; Tulić, L.; Sljivančanin, D.; Jack, D.W.; Zižić, V.; Abdul, K.S.; Tulić, I.; Jovanović, A. KATP channels are up-regulated with increasing age in human myometrium. Mech. Aging Dev. 2013, 134, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Erickson, E.N.; Knight, A.K.; Smith, A.K.; Myatt, L. Advancing understanding of maternal age: Correlating epigenetic clocks in blood and myometrium. Epigenet. Commun. 2022, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, I.P.; Malvasi, A.; Vergara, D.; Mynbaev, O.A.; Sparic, R.; Tinelli, A. Adrenergic and Cholinergic Uterine Innervation and the Impact on Reproduction in Aged Women. Curr. Pharm. Des. 2020, 26, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Devesa-Peiro, A.; Sebastian-Leon, P.; Parraga-Leo, A.; Pellicer, A.; Diaz-Gimeno, P. Breaking the aging paradigm in endometrium: Endometrial gene expression related to cilia and aging hallmarks in women over 35 years. Hum. Reprod. 2022, 37, 762–776. [Google Scholar] [CrossRef]
- Kovalenko, T.F.; Morozova, K.V.; Pavlyukov, M.S.; Anufrieva, K.S.; Bobrov, M.Y.; Gamisoniya, A.M.; Ozolinya, L.A.; Dobrokhotova, Y.E.; Shakhparonov, M.I.; Patrushev, L.I. Methylation of the PTENP1 pseudogene as potential epigenetic marker of age-related changes in human endometrium. PLoS ONE 2021, 16, e0243093. [Google Scholar] [CrossRef]
- Check, J.H.; Askari, H.A.; Choe, J.; Baker, A.; Adelson, H.G. The effect of the age of the recipients on pregnancy rates following donor-oocyte replacement. J. Assist. Reprod. Genet. 1993, 10, 137–140. [Google Scholar] [CrossRef]
- Cho, A.; Park, S.R.; Kim, S.R.; Nam, S.; Lim, S.; Park, C.H.; Lee, H.Y.; Hong, I.S. An endogenous anti-aging factor, sonic hedgehog, suppresses endometrial stem cell aging through SERPINB2. Mol. Ther. 2019, 27, 1286–1298. [Google Scholar] [CrossRef]
- Griukova, A.; Deryabin, P.; Shatrova, A.; Burova, E.; Severino, V.; Farina, A.; Nikolsky, N.; Borodkina, A. Molecular basis of senescence transmitting in the population of human endometrial stromal cells. Aging 2019, 11, 9912–9931. [Google Scholar] [CrossRef]
- Vassilieva, I.; Kosheverova, V.; Vitte, M.; Kamentseva, R.; Shatrova, A.; Tsupkina, N.; Skvortsova, E.; Borodkina, A.; Tolkunova, E.; Nikolsky, N.; et al. Paracrine senescence of human endometrial mesenchymal stem cells: A role for the insulin-like growth factor binding protein 3. Aging 2020, 12, 1987–2004. [Google Scholar] [CrossRef]
- Kong, S.; Zhang, S.; Chen, Y.; Wang, W.; Wang, B.; Chen, Q.; Duan, E.; Wang, H. Determinants of uterine aging: Lessons from rodent models. Sci. China Life Sci. 2012, 55, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Q.; Yao, M.N.; Yan, J.Q.; Li, Z.L.; Gu, X.W.; Lin, S.; Hu, W.; Yang, Z.M. The decline of pregnancy rate and abnormal uterine responsiveness of steroid hormones in aging mice. Reprod. Biol. 2017, 17, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; You, S. Restoration of miR-223-3p expression in aged mouse uteri with Samul-tang administration. Integr. Med. Res. 2022, 11, 100835. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Moffatt, J.D.; Mourmoura, E.; Demaison, L.; Seed, P.T.; Poston, L.; Tribe, R.M. Effect of reproductive aging on pregnant mouse uterus and cervix. J. Physiol. 2017, 595, 2065–2084. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Kokkonen, G.C.; Roth, G.S. Effect of aging on populations of estrogen receptor-containing cells in the rat uterus. Exp. Cell Res. 1989, 180, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Chong, H.P.; Cordeaux, Y.; Ranjan, Y.S.; Richardson, S.; Liquet, B.; Smith, G.C.; Charnock-Jones, D.S. Age-related changes in murine myometrial transcript profile are mediated by exposure to the female sex hormones. Aging Cell 2016, 15, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Cummings, M.J.; Yu, H.; Paudel, S.; Hu, G.; Li, X.; Hemberger, M.; Wang, X. Uterine-specific SIRT1 deficiency confers premature uterine aging and impairs invasion and spacing of blastocyst, and stromal cell decidualization, in mice. Mol. Hum. Reprod. 2022, 28, gaac016. [Google Scholar] [CrossRef] [PubMed]
- Skulska, K.; Kędzierska, A.E.; Krzyżowska, M.; Chodaczek, G. Age-Related Changes in Female Murine Reproductive Mucosa with respect to γδ T Cell Presence. J. Immunol. Res. 2023, 2023, 3072573. [Google Scholar] [CrossRef]
- Tanikawa, N.; Ohtsu, A.; Kawahara-Miki, R.; Kimura, K.; Matsuyama, S.; Iwata, H.; Kuwayama, T.; Shirasuna, K. Age-associated mRNA expression changes in bovine endometrial cells in vitro. Reprod. Biol. Endocrinol. 2017, 15, 63. [Google Scholar] [CrossRef]
- Bajwa, P.; Nielsen, S.; Lombard, J.M.; Rassam, L.; Nahar, P.; Rueda, B.R.; Wilkinson, J.E.; Miller, R.A.; Tanwar, P.S. Overactive mTOR signaling leads to endometrial hyperplasia in aged women and mice. Oncotarget 2017, 8, 7265–7275. [Google Scholar] [CrossRef]
- Cavalcante, M.B.; Saccon, T.D.; Nunes, A.D.C.; Kirkland, J.L.; Tchkonia, T.; Schneider, A.; Masternak, M.M. Dasatinib plus quercetin prevents uterine age-related dysfunction and fibrosis in mice. Aging 2020, 12, 2711–2722. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, T.; Tomari, H.; Onoyama, I.; Araki, H.; Yasunaga, M.; Lin, C.; Kawamura, K.; Yokota, N.; Yoshida, S.; Yagi, H.; et al. Identification of genes associated with endometrial cell aging. Mol. Hum. Reprod. 2021, 27, gaaa078. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.; Di Nisio, V.; Chiominto, A.; Cecconi, S.; Maccarrone, M. Endocannabinoid System Components of the Female Mouse Reproductive Tract Are Modulated during Reproductive Aging. Int. J. Mol. Sci. 2023, 24, 7542. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef] [PubMed]
- Woods, L.; Perez-Garcia, V.; Kieckbusch, J.; Wang, X.; DeMayo, F.; Colucci, F.; Hemberger, M. Decidualisation and placentation defects are a major cause of age-related reproductive decline. Nat. Commun. 2017, 8, 352. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Snell, W. The primary cilium: Keeper of the key to cell division. Cell 2007, 129, 1255–1257. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Hirota, Y.; Daikoku, T.; Tranguch, S.; Xie, H.; Bradshaw, H.B.; Dey, S.K. Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J. Clin. Investig. 2010, 120, 803–815. [Google Scholar] [CrossRef]
- Secomandi, L.; Borghesan, M.; Velarde, M.; Demaria, M. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Hum. Reprod. Update 2022, 28, 172–189. [Google Scholar] [CrossRef]
- Kusama, K.; Yamauchi, N.; Yoshida, K.; Azumi, M.; Yoshie, M.; Tamura, K. Senolytic treatment modulates decidualization in human endometrial stromal cells. Biochem. Biophys. Res. Commun. 2021, 571, 174–180. [Google Scholar] [CrossRef]
- Maldonado, E.; Morales-Pison, S.; Urbina, F.; Solari, A. Aging Hallmarks and the Role of Oxidative Stress. Antioxidants 2023, 12, 651. [Google Scholar] [CrossRef]
- Wu, Y.; Li, M.; Zhang, J.; Wang, S. Unveiling uterine aging: Much more to learn. Aging Res. Rev. 2023, 86, 101879. [Google Scholar] [CrossRef]
- Ra, K.; Park, S.C.; Lee, B.C. Female Reproductive Aging and Oxidative Stress: Mesenchymal Stem Cell Conditioned Medium as a Promising Antioxidant. Int. J. Mol. Sci. 2023, 24, 5053. [Google Scholar] [CrossRef]
- Hochler, H.; Lipschuetz, M.; Suissa-Cohen, Y.; Weiss, A.; Sela, H.Y.; Yagel, S.; Rosenbloom, J.I.; Grisaru-Granovsky, S.; Rottenstreich, M. The impact of advanced maternal age on pregnancy outcomes: A retrospective multicenter study. J. Clin. Med. 2023, 12, 5696. [Google Scholar] [CrossRef]
- Osmundson, S.S.; Gould, J.B.; Butwick, A.J.; Yeaton-Massey, A.; El-Sayed, Y.Y. Labor outcome at extremely advanced maternal age. Am. J. Obstet. Gynecol. 2016, 214, 362e1–362e7. [Google Scholar] [CrossRef]
- Tanaka, H.; Hasegawa, J.; Katsuragi, S.; Tanaka, K.; Arakaki, T.; Nakamura, M.; Hayata, E.; Nakata, M.; Murakoshi, T.; Sekizawa, A.; et al. High maternal mortality rate associated with advanced maternal age in Japan. Sci. Rep. 2023, 13, 12918. [Google Scholar] [CrossRef]
- Vincent-Rohfritsch, A.; Le Ray, C.; Anselem, O.; Cabrol, D.; Goffinet, F. Grossesse à 43 ans et plus: Risquesmaternels et périnataux [Pregnancy in women aged 43 years or older: Maternal and perinatal risks]. J. Gynecol. Obstet. Biol. Reprod. 2012, 41, 468–475. [Google Scholar] [CrossRef]
- Lang, M.; Zhou, M.; Lei, R.; Li, W. Comparison of pregnancy outcomes between IVF-ET pregnancies and spontaneous pregnancies in women of advanced maternal age. J. Matern. Fetal Neonatal Med. 2023, 36, 2183761. [Google Scholar] [CrossRef]
- Sydsjö, G.; Lindell Pettersson, M.; Bladh, M.; Skoog Svanberg, A.; Lampic, C.; Nedstrand, E. Evaluation of risk factors’ importance on adverse pregnancy and neonatal outcomes in women aged 40 years or older. BMC Pregnancy Childbirth 2019, 19, 92. [Google Scholar] [CrossRef]
- Silvestris, E.; Petracca, E.A.; Mongelli, M.; Arezzo, F.; Loizzi, V.; Gaetani, M.; Nicolì, P.; Damiani, G.R.; Cormio, G. Pregnancy by Oocyte Donation: Reviewing Fetal-Maternal Risks and Complications. Int. J. Mol. Sci. 2023, 24, 13945. [Google Scholar] [CrossRef]
Study | Main Findings |
---|---|
Crankshaw et al. [11] | There is no influence of the process of aging on uterine contractility. |
Du et al. [12] | The uterine aging leads to an increase in the expression of the uterine SUR2B and Kir6.1 KATP channels. |
Erickson et al. [13] | The uterine epigenetic clock correlates with the chronological maternal age. |
Kosmas et al. [14] | The aging led to a decrease in the distribution of adrenergic and AChE neurofibers in the uterine fundus, body, and cervix. |
Devesa-Peiro et al. [15] | The aging process reduces the gene expression related to cilia and aging hallmarks in the endometrium of women over 35 years old. |
Kovalenko et al. [16] | The aging process is associated with the increase in PTENP1 methylation and its expression in endometrial tissue. |
Check et al. [17] | Aging is related to the endometrium failure to generate a critical thickness. |
Cho et al. [18] | Sonic hedgehog (SHH) signaling activity declines with aging, and SHH is a possible endogenous anti-aging factor in human endometrial stem cells. |
Study | Main Findings |
---|---|
Li et al. [22] | The aging led to an increase in Muc1 and PR levels and a decrease in Hand2 level endometrium of mice. |
Kim et al. [23] | In silico analysis shows that the aging process in mice is associated with changes in expression in microRNAs-miR-223-3p, 155-5p, and 129-5p-within mice endometrium tissue. |
Patel et al. [24] | The aging leads to a decrease in the expression of oxytocin receptor and connexin-43 mRNA as well as in the number of mitochondrial copy numbers in the myometrium of mice. Additionally, the aging leads to more frequent but shorter-duration spontaneous myometrial contractions and an attenuated response to oxytocin in mice. |
Han et al. [25] | Aging is associated with the loss of estrogen receptors in the endometrial stroma of rats. |
Chong et al. [26] | Aging is linked to the changes in the transcript profile of mouse myometrium. The regulator factor of interferon 7 has a possible role in the regulation of myometrial aging. |
Cummings et al. [27] | The deletion of the SIRT1 gene led to the accelerated deposition of aging-related fibrillar Type I and III collagens in mice uteri. |
Skulska et al. [28] | During the aging process, the profile of secreted inflammatory cytokines shifted toward the proinflammatory type in the murine reproductive epithelia. |
Tanikawa et al. [29] | The aging is related to the activation of the inflammation-related (predicted molecules are IL1A, C1Qs, DDX58, NFKB, and CCL5) and interferon-signaling (predicted molecules are IRFs, IFITs, STATs, and IFNs) pathways in the cow endometrial cells as well as the activation of “DNA damage checkpoint regulation” and the inhibition of “mitotic mechanisms”. |
Bajwa et al. [30] | There is an activation of the mTOR signaling in the aged women and mice. |
Cavalcante et al. [31] | Aging is related to the downregulation of the Pi3k/Akt1/mTOR signaling pathway as well as a reduction in the expression of miR34c, miR126a, and miR181b. |
Rossi et al. [33] | It has been shown a significant increase in components of the endocannabinoid system, such as TRPV1 receptor and enzymes NAPE-PLD, FAAH, and DAGL-β in the reproductive tract of female mice during aging. |
Main Biological Process |
---|
Cellular Senescence |
Chronic Inflammation |
Genomic Instability |
Epigenetic Alterations |
Telomere Attrition |
Disabled Macro Autophagy |
Loss of Proteostasis |
Mitochondrial Dysfunction |
Dysbiosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinelli, A.; Andjić, M.; Morciano, A.; Pecorella, G.; Malvasi, A.; D’Amato, A.; Sparić, R. Uterine Aging and Reproduction: Dealing with a Puzzle Biologic Topic. Int. J. Mol. Sci. 2024, 25, 322. https://doi.org/10.3390/ijms25010322
Tinelli A, Andjić M, Morciano A, Pecorella G, Malvasi A, D’Amato A, Sparić R. Uterine Aging and Reproduction: Dealing with a Puzzle Biologic Topic. International Journal of Molecular Sciences. 2024; 25(1):322. https://doi.org/10.3390/ijms25010322
Chicago/Turabian StyleTinelli, Andrea, Mladen Andjić, Andrea Morciano, Giovanni Pecorella, Antonio Malvasi, Antonio D’Amato, and Radmila Sparić. 2024. "Uterine Aging and Reproduction: Dealing with a Puzzle Biologic Topic" International Journal of Molecular Sciences 25, no. 1: 322. https://doi.org/10.3390/ijms25010322
APA StyleTinelli, A., Andjić, M., Morciano, A., Pecorella, G., Malvasi, A., D’Amato, A., & Sparić, R. (2024). Uterine Aging and Reproduction: Dealing with a Puzzle Biologic Topic. International Journal of Molecular Sciences, 25(1), 322. https://doi.org/10.3390/ijms25010322